ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 56 (2024)

https://doi.org/10.71352/ac.56.217

The boundedness of the Hardy–Littlewood maximal operator on Orlicz–Lorentz–Karamata spaces

Zhiwei Hao, Guangheng Xie and Dejian Zhou

Abstract. In this paper, we prove that the Hardy–Littlewood maximal operator is bounded on the Orlicz–Lorentz–Karamata space \(L_{\Phi,q,b}(\mathbb{R}^n)\). More precisely, we give a sufficient condition for the boundedness of the Hardy–Littlewood maximal operator on \(L_{\Phi,q,b}(\mathbb{R}^n)\) when a Young function \(\Phi\in\nabla_2\), \(1\leq q\leq\infty\) and \(b\) is a slowly varying function.

Full text PDF
Journal cover