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Abstract. In this paper, we prove that the Hardy-Littlewood maximal
operator is bounded on the Orlicz-Lorentz—Karamata space La,q.5(R™).
More precisely, we give a sufficient condition for the boundedness of the
Hardy-Littlewood maximal operator on Lg 4,5(R™) when a Young function
® €V, 1<g< o0 and b is a slowly varying function.

1. Introduction

The aim and the idea of Karamata’s paper [13], which defined and gave the
basic properties of the new classes of functions, called slowly varying function.
Karamata proved some fundamental theorems such as the Representation The-
orem, the Uniform Convergence Theorem and the Characterization Theorem
(see [14]). These results are the basis for the theory and numerous applications.
In 2000, Edmunds et al. [4] introduced a new class of function spaces, that
is, Lorentz—Karamata spaces. we briefly recall the definition of the Lorentz—
Karamata space as follows (see Section 2 for any unexplained terminology): let
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0<p< oo, 0<qg< oo and b be a slowly varying function. The Lorentz—
Karamata space L, 4.5(R"™), consists of the set of all measurable functions f on
R™ with || f]|p,q,6 < 00, where

(T(t%fyb(t)f*(t))q%)l/q if 0 < ¢ < o0,

I £llp.q,6 = 0
1 . .
sup;~ t7 () f* (1) if ¢ = oo.

By taking different p, ¢ and b, these spaces generalize the classical Lebesgue
space, Lorentz spaces, Zygmund spaces, Lorentz—Zygmund spaces and the gen-
eralized Lorentz—Zygmund space. This class not only offers a more general
and unified insight for these families of spaces, but also provides a framework
in which it is easier to appreciate the central issues of different results, see
[3, 5,6, 7,11, 12, 15, 17] and the references therein.

As a generalization of the Lorentz—Karamata space, Hao et al. [9] intro-
duced the definition of Orlicz—Lorentz—Karamata spaces L 44, where ® is an
Orlicz function (A function @ is said to be an Orlicz function, if it is non-
decreasing, ®(0) = 0, ®(¢) > 0 for all ¢ > 0 and ®(t) — oo when t — ),
0 < g < oo and b is a slowly varying function. Note that if b = 1, the space
Lg 4.1 gives to the Orlicz-Lorentz space Lg 4 studied in [8]; if ¢ = oo, the space
Lg 4 becomes the weak Orlicz-Karamata space introduced in [19]; if ¢ = oo
and b = 1, the space Lg 45 goes back to the weak Orlicz space showed in [16].
For more values of ®, g and b, see Section 2.

The Orlicz—Lorentz—Karamata space is much more wider than the above
spaces. The development of different space theory enriches the theory of har-
monic analysis and the Hardy-Littlewood maximal operator has obtained a
mount of investigation. For example, Liu and Wang [16] studied the bounded-
ness of the Hardy—Littlewood maximal operator and other operators on weak
Orlicz spaces. Very recently, Hatano et al. [10] investigated the boundedness
of the Hardy—-Littlewood maximal operator on Orlicz—Lorentz spaces, which
extended the result of [16]. As we all known, the Hardy-Littlewood maximal
operator has many elegant properties [2] and often plays a key role in many
quantitative estimations. It can control various operators appeared in harmonic
analysis, and therefore, its boundedness is of great importance. Motivated by
this, we study the Hardy-Littlewood maximal operator on Orlicz—Lorentz—
Karamata spaces in this article. More precisely, this paper is to show that
the Hardy-Littlewood maximal operator is bounded on the Orlicz—Lorentz—
Karamata space Lg q5(R™) for a Young function ® € Vy, 1 < ¢ < oo and b
is a slowly varying function. It is worthwhile to mention that our result im-
proves the boundedness of the Hardy—-Littlewood maximal operator from Liu
and Wang [16] when b = 1 and ¢ = oo and Hatano et al. [10] when b = 1,
respectively.
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At the end of this section, we make some conventions. Throughout this
paper, the symbol f < g means that there exists a positive constant C' such
that f < Cg. If f < g < f, then we write f ~ g and say that f is equivalent
to g. The constant C, depends only on p and may be different from line to
line.

2. Preliminaries

In this section, we introduce some notations and lemmas that will be used
in next section.

2.1. The Hardy-Littlewood maximal operator

The Hardy—Littlewood mazximal operator M is defined by setting, for every
f e Li_(R") and every z € R",

loc

1
(2.1) M) = s o Q/ F()ldy,

where the supremum is extended over all cubes Q C R"™, whose edges are
parallel to the coordinate axes of R™, that contain x.

The well-known theorem of Hardy, Littlewood and Wiener states that if
f € Ly(R™), then

(2.2) IMfllp < Conllflly 1 <p<oo,

where the constant C), ,, depends only on p and n, see [18].
2.2. Young functions

For a function ® : [0, co] — [0, 00, let
a(®)=sup{t>0:®(t) =0} and b(®)=inf{t>0:P(t) =o0}.

An increasing function ® : [0,00] — [0,00] is called a Young function, if it
satisfies the following properties:

(i) 0 < a(P) < 00, 0 < b(P) < o0

ii) limy_ 40 ®(t) = (0) = 0;

iii) @ is convex on [0, b(P));

iv) if b(®) = oo, then lim;_,o P(t) = P(00) = o0;

(
(
(
(v) if b(®) < oo, then limy_,ya)—o P(t) = ©(b(P)).
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A Young function ® : [0, 00] — [0, o0] is said to satisfy the As-condition or
the doubling condition, denoted by ® € As, if there exists a constant a > 1
such that

O(2r) <a®(r), Vr>0.

A Young function ® : [0,00] — [0,00] is said to satisfy the Va-condition,
denoted by ® € Vg, if there exists a constant o > 1, called the V3-constant,
such that

1
o < —0 .
(r) < o (ar), Vr>0

Obviously, if ® € V3, then there exists a constant p € (1, 00) such that the
function t — ¢t~ 1/P®~1(t) is equivalent to a non-increasing function.

Lemma 2.1. ([10]) Let ® be a Young function. ® € V4 if and only if there
exists a constant o > 1 such that

d'(20m) < a® ' (u), Vu>0.

In this case, a can be taken as the Va-constant of ®.
2.3. Slowly varying functions

A Lebesgue measurable function b : [1,00) — (0,00) is said to be a slowly
varying function, if for any given € > 0, the function ¢¢b(¢) is equivalent to a non-
decreasing function and the function ¢t~€b(t) is equivalent to a non-increasing
function on [1, 00).

Let b be a slowly varying function on [1,00). For convenience, we define
Ww(t) = b(max {t,1/t}), t € (0,00).

The useful properties on slowly varying function are given below.

Lemma 2.2. ([3]) Let b be a slowly varying function. Then the following
conclusions hold:

(i) For any given € > 0, the function t°v,(t) is equivalent to a non-decreasing
function and the function t~,(t) is equivalent to a non-increasing function on
(0,00).

(ii) For any r > 0,

Yw(rt) = yw(t), t>0.

2.4. Orlicz—Lorentz—Karamata spaces

Now we present the definition of Orlicz—Lorentz—Karamata spaces. Denote
by L(R™) the space of all measurable functions.
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Definition 2.1. Let ® be an Orlicz function, b be a slowly varying function
and 0 < g < co. The Orlicz—Lorentz—Karamata space Lo 45(R™), consists of
the set of all functions f € L°(R™) with || f||¢,qs < 00, where

F 1/q
(Of (m%(t)f*(t))q%) if 0 < ¢ < oo,

SUP;0 g=r(r7 (D) F* (1) if ¢ = oo.

||fH<I>>q,b =

Here f*(t) = inf{s>0:[{z € R": [f(z)| > s}| <t} (inf@ = o) is the non-

incre-asing rearrangement function of f on (0, 00).

Note that if () = ¢? for 0 < p < oo, the space Lg 4,5 gives to the Lorentz—
Karamata space Ly 45; if ®(t) =P for 0 < p < oo and b = 1, the space Ly ¢
is the classical Lorentz space Ly, ,. Also, if ®(¢t) =7 for 0 < ¢ < oo and b=1,
then the space Lo 4,5 is the usual Lebesgue space L.

3. Main results

We shall provide the boundedness of the Hardy—Littlewood maximal oper-
ator on the Orlicz—Lorentz—Karamata space.

Theorem 3.1. Let ® be a Young function with ® € Vo, 1 < q < 00 and b be
a slowly varying function. If f € Lo q.(R™), then

1M fllo.q0 S IS

®,q,b-

Before proving Theorem 3.1, we recall the definition of the generalized
Lorentz space.

Definition 3.1. Let 0 < ¢ < oo and ¢ : (0,00) — (0,00) be a measurable
function. We define the generalized Lorentz space Ay 4(R™) by the set of all
functions f € LY(R™) with the finite quasi-norm

(:fo(¢(t)f*(t))q‘?)1/q if 0 < ¢ < oo,

1fllag, = ,
ess sup ¢(t)f*(t) if ¢ = 0.
>0

Remark 3.1. Let 0 < ¢ < 0. If

(3.1 o) = G 0.

then Ay 4(R™) is reduced to the Orlicz-Lorentz-Karamata space Lg 4 5(R™).
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Proposition 3.2. ([1, Corollary 1.9]) Let 1 < g < 00 and ¢ : (0,00) — (0, 00)
be a measurable function. Then M is bounded on Ay ,(R™) if and only if for
every r > 0,

(32) /(29 %s—/qs

T

Now we begin to prove Theorem 3.1.

Proof. Firstly, we prove the case of 1 < ¢ < oco. It suffices to prove that ¢,
given by (3.1), satisfies (3.2) of Proposition 3.2. Fix r > 0, we get

/( 1(1/75 th 1/ i 1/ o) %(”))q%
and
/( 11/15 th 0/ 1/ ?) %(Tt)Y%

0

by making change of variables. Let a be the Vy-constant. By using Lemma 2.1
and Lemma 2.2, we have

oo

/ (tCIJ*ll(l/t) %(t))q% =

r

W (20)7

> / (rtq)—l(ll/r(Qa)j)%(Tt))q%S’

j:1(2a)j—1

/ (r(?a)j*1<1> 1 (e r(20)7))

(2a)i—1
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It follows from the above inequalities that ¢ satisfies (3.2).

Secondly, we prove the case of ¢ = co. According to Theorem 3.4 in [10],
we know that if the inequality

t
¢(t) / ds
3.3 — [ —
(3:3) es§>s(}1p t ess sup o(7) =
0 0<7<s

holds, then one can see that M is bounded on Ay o (R™). Let ¢ be as in (3.1).
Now we verify that ¢ satisfies (3.3). Fix t > 0. Since ® € V5, then there exists

a constant p € (1,00) such that t~1/?®~1(¢) is equivalent to a non-increasing
o~ (1/t)
P A/

function on (0,00). Hence is equivalent to a non-decreasing function

on (0,00). We estimate

t
Yo (t) / 1 ds =
t@fl(l/t) ) Sup0<7_<s Wvb(’]—)
o 1
Yo(t /
= ds <
te=1(1/t) ) SWocrcs T s T(T)
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@7 W07 (1) S
_ Y (t) 2p @*1(1/t)t: 2p
te=H(1/t)p—1 w(t) p—1
which proves (3.3). The proof is complete. |

Especially for ®(¢f) = t* (1 < p < oo) in Theorem 3.1, we obtain the
following result.

Corollary 3.1. Let 1 < p < o0, 1 < q < oo andb be a slowly varying function.
If f € Ly 4 (R™), then
1M fllp.ap S If

If we take b = 1 in Theorem 3.1, then the following results hold:

p,q,b-

Corollary 3.2. ([10]) Let ® be a Young function with ® € V4 and 1 < g < 0.
If f € Ly o(R™), then

IMfllo.q < flle.q:
Remark 3.2. We refer the reader to [16] for the boundedness of the Hardy—
Littlewood maximal operator on Lg o (R™) in the case of ® € Ay N Va. It
is noteworthy that ® does not need to satisfy ® € Ay in Corollary 3.2 when

q = oo. Hence, our results improve the boundedness of the Hardy-Littlewood
maximal operator in [16].

When ®(t) =t? (1 < p < 00) in Corollary 3.2, we get the next conclusion.
Corollary 3.3. Letl1 <p<ooand1 < g <oo. If f € L, ,(R™), then

1M fllp.q < 11

p,q-

In particular, if we consider the case ®(¢t) =t and 1 < p = ¢ < 0o, we have
the boundedness of the Hardy-Littlewood maximal operator on the Lebesgue
space L,(R™), see (2.2).
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