ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 54 (2023)

https://doi.org/10.71352/ac.54.245

Subsets of \(\mathbb{F}_p^*\) with only small products or ratios

Patrick Letendre

Abstract. Let \(p\) be a fixed prime. We estimate the number of elements of a set \(A \subseteq \mathbb{F}^*_p\) for which $$s_1s_2 \equiv a \pmod{p} \quad \mbox{for some}\quad a \in [-X,X] \quad \mbox{for all}\quad s_1,s_2 \in A.$$ We also consider variations and generalizations.

Full text PDF
Journal cover