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Abstract. Let p be a fixed prime. We estimate the number of elements
of a set A ⊆ F∗

p for which

s1s2 ≡ a (mod p) for some a ∈ [−X,X] for all s1, s2 ∈ A.

We also consider variations and generalizations.

1. Introduction and notation

Let p be a fixed prime number. For any member α of an equivalence class
of Z/pZ, we write

|α|p := min
k∈Z

|α+ kp|

and for any finite set A we write |A| := #A which should not be confused with
the norm of a complex number. Inspired by the paper [2], we are interested by
the cardinality of a set A ⊆ F∗

p that satisfies a particular property. Precisely,
for each X ≥ 1 we let S(X) be the set of all subsets A ⊆ F∗

p that satisfy

(1.1)
∣∣∣s1
s2

∣∣∣
p
≤ X and/or

∣∣∣s2
s1

∣∣∣
p
≤ X for each (s1, s2) ∈ A2.

We thus define
S(X) := max

A∈S(X)
|A|.
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Similarly, for each integer n ≥ 2 and X ≥ 1 we let Rn(X) be the set of all
subsets A ⊆ F∗

p that satisfy

(1.2) |s1 · · · sn|p ≤ X for all pairwise distinct s1, . . . , sn ∈ A.

Then, we consider the quantity

Rn(X) := max
A∈Rn(X)

|A|.

For any n ∈ N and m ∈ Z∗, we write

τn(m) := #{(d1, . . . , dn) ∈ Nn : d1 · · · dn = m}.

We will often use the well known fact that τn(m) ≪n,ϵ mϵ for each integer
n ≥ 2 and real ϵ > 0. We also write ep(z) := exp

(
2πiz
p

)
for any z ∈ C.

2. Statement of theorems

Theorem 2.1. Let t > 0 be a small fixed real number. For each 1 ≤ X ≤
≤

(
1
4 − t

)
p, we have

S(X) ≪ϵ,t min

(
Xϵ +

X2+ϵ

p
, p1/2

)
for each fixed ϵ > 0.

Theorem 2.2. Let t > 0 be a small fixed real number. For each integer n ≥ 2
and 1 ≤ X ≤

(
1
2 − t

)
p, we have

Rn(X) ≪ϵ,t,n min

(
X1/n+ϵ +

Xn/(n−1)+ϵ

p1/(n−1)
, p1/n+ϵ

)
for each fixed ϵ > 0.

3. Preliminary lemmas

There are a number of interesting results in the literature concerning mul-
tilinear exponential sums; see [1], [4], [5] and [6] for example. We will need the
following two.

Lemma 3.1. Let A1, . . . , An ⊆ F∗
p (n ≥ 2) be subsets. Then

(3.1)

∣∣∣∣∣∣
∑

a1∈A1,...,an∈An

ep(a1 · · · an)

∣∣∣∣∣∣ ≤ p1/2(|A1| · · · |An|)
n−1
n .
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Proof. We assume that |A1| ≥ |A2| ≥ · · · ≥ |An|. The inequality follows from
the well known result

max
m∈F∗

p

∣∣∣∣∣∣
∑

a1∈A1,a2∈A2

ep(ma1a2)

∣∣∣∣∣∣ ≤ (p|A1||A2|)1/2,

see [5, (1.2)]. ■

Lemma 3.2. Let 0 < δ < 1/4 and n ∈ Z+. There is and effectively com-
putable constant δ′ = δ′(δ) > 0 such that if p is a sufficiently large prime and
A1, . . . , An ⊂ Fp satisfy
(i) |Ai| > pδ for 1 ≤ i ≤ n;
(ii)

∏n
i=1 |Ai| > p1+δ;

then there is the exponential sum bound∣∣∣∣ ∑
a1∈A1,...,an∈An

ep(a1 · · · an)
∣∣∣∣ < p−δ′ |A1| · · · |An|.

Proof. It follows from Theorem A of the paper [1]. ■

The purpose of the following lemma is very similar to Lemma 4.1 of [3].

Lemma 3.3. Let ϵ > 0 be a real number. Let also 0 ≤ ∆ ≤ 1 − 2ϵ be a real
number. Consider the 1-periodic function defined on [− 1

2 ,
1
2 ) by

f(x) :=



0 − 1
2 ≤ x < −∆

2 − ϵ,
x
ϵ + ∆

2ϵ + 1 −∆
2 − ϵ ≤ x < −∆

2 ,

1 −∆
2 ≤ x < ∆

2 ,

−x
ϵ + ∆

2ϵ + 1 ∆
2 ≤ x < ∆

2 + ϵ,

0 ∆
2 + ϵ ≤ x < 1

2 .

The function

g(x) := ∆ + ϵ+
∑

0<|k|≤⌈1/ϵ2⌉

(cos(πk∆)− cos(πk(∆ + 2ϵ)))
e(kx)

2ϵ(πk)2

satisfies

|f(x)− g(x)| ≤ 2ϵ

π2

for each x ∈ R.

Proof. The function g(x) is simply the Fourier series of the function f(x) that
has been truncated to keep only the terms with |k| ≤ ⌈1/ϵ2⌉. ■
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4. Proof of Theorem 2.1

We assume throughout the proof that A ∈ S(X) and satisfies S(X) = |A|.
We begin with the first inequality. We choose s1 ∈ A that satisfies (1.1) with

every element of A by being at least |A|
2 times at the denominator. We denote

by A1 the set of values that are thereby at the numerator. Restricting our
attention to A1, we choose s2 ∈ A1 that satisfies (1.1) with every element of

A1 by being at least |A1|
2 times at the numerator and we denote by A2 the set

of values that are thereby at the denominator.

Now, for each value s ∈ A2 we have two representations. Indeed,
s

s1
≡ a (mod p) and

s2
s

≡ b (mod p) with 0 < |a|, |b| ≤ X.

We deduce that

s1a ≡ s2
b

(mod p) ⇒ ab ≡ s2
s1

≡: α (mod p) with 0 < |a|, |b|, |α| ≤ X.

We thus have ab = α + Kp with 0 ≤ |K| ≤
⌊
2X2

p

⌋
. For each fixed value of

K, the number of solutions (a, b) is at most 2τ2(α + Kp) ≪ Xϵ. Indeed, we
either have X so small that K is only 0 and thus the inequality follows from
the inequality for the divisors function for an α ≤ X, otherwise, we have X
large and the inequality remains true. We deduce that

|A| ≤ 4|A2| ≪ Xϵ

(
1 +

X2

p

)
.

We now turn to the second inequality. We can assume that |A| and p are
large enough. We will apply Lemma 3.3 with ∆ := 2X

p and ϵ < t
100 small

enough. We get

|A|2 + |A|
2

≤
∑

s1,s2∈A

f
(s1s−1

2

p

)
=

=
∑

s1,s2∈A

g
(s1s−1

2

p

)
+O(ϵ|A|2) ≤

≤ ∆|A|2 + C log(1/ϵ) max
0<|k|≤⌈1/ϵ2⌉

∣∣∣ ∑
s1,s2∈A

ep(ks1s
−1
2 )

∣∣∣+O(ϵ|A|2)

for some constant C large enough. We deduce that there is a value of k, with
0 < |k| ≤ ⌈1/ϵ2⌉ < p, such that

t|A|2

log(1/ϵ)
≪

∣∣∣ ∑
s1,s2∈A

ep(ks1s
−1
2 )

∣∣∣ ≤ p1/2|A|.

The second inequality follows from Lemma 3.1. The proof is complete. ■
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5. Proof of Theorem 2.2

We assume throughout the proof that A ∈ Rn(X) and satisfies Rn(X) =
= |A|. Also, for any k ≥ 1, we say that (s1, . . . , sk) is an admissible k-tuple
if the sj are pairwise distinct (j = 1, . . . , k). There are exactly |A| · (|A| −
−1) · · · (|A| − k + 1) admissible k-tuples. We can assume that |A| is large
enough since otherwise there is nothing to prove.

We begin with the second inequality. Proceeding as previously, we write

|A|n ≤
∑

s1,...,sn∈A
(s1,...,sn) admissible

f
(s1 · · · sn

p

)
+O(|A|n−1) =

=
∑

s1,...,sn∈A

g
(s1 · · · sn

p

)
+O(ϵ|A|n + |A|n−1) ≤

≤ ∆|A|n + C log(1/ϵ) max
0<|k|≤⌈1/ϵ2⌉

∣∣∣ ∑
s1,...,sn∈A

ep(ks1 · · · sn)
∣∣∣+

+O(ϵ|A|n + |A|n−1).

Now, assuming that |A| > p1/n+δ for some fixed 0 < δ < 1/4n, we get to

t|A|n

log(1/ϵ)
≪

∣∣∣ ∑
s1,...,sn∈A

ep(ks1 · · · sn)
∣∣∣ ≤ p−δ′ |A|n

for some δ′ > 0, from Lemma 3.2. This is a contradiction for p large enough
and we deduce that |A| ≪ p1/n+ϵ for each ϵ > 0. Also, in the case n = 2, we
can take ϵ = 0 by using Lemma 3.1 instead.

For the first inequality, we define α by

±α := max
r1,...,rn∈A

(r1,...,rn) admissible

|r1 · · · rn|p,

and we assume that α ≡ s1 · · · sn (mod p) (with (s1, . . . , sn) admissible). We
now define a change of variables according to this choice. In the set A′ :=
:= A \ {s1, . . . , sn}, we can write an element r as r ≡ aj

sj
α (mod p) for some

0 < |aj | ≤ X (j = 1, . . . , n).

Any of the |A′| · (|A′| − 1) · · · (|A′| − n+ 1) admissible n-tuples (r1, . . . , rn)
gives rise to

r1 · · · rn ≡ c (mod p) ⇒ a1
s1
α

· · · an
sn
α

≡ c (mod p)(5.1)

⇒ a1 · · · an ≡ cαn−1 (mod p)

⇒ a1 · · · an = cαn−1 +Kp(5.2)
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where 0 < |c|, |a1|, . . . , |an| ≤ X and 0 ≤ |K| ≤ ⌊ 2Xn

p ⌋. From there, we
distinguish two cases.

Case 1: K = 0 for more than half of the admissible n-tuples. In this case,
we have

|A′|n ≪ |{(a1, . . . , an) ∈ Zn : a1 · · · an = cαn−1, 0 < |α|, |c| ≤ X}| =
= 2n−1

∑
0<|c|≤X

τn(cα
n−1) ≪ X1+ϵ

for each fixed ϵ > 0.

Case 2: K ̸= 0 for at least half of the admissible n-tuples. In this case,
we fix a value of r = r1 ≡ a s1

α (̸≡ 0) (mod p) that is in ≫ |A′|n−1 admissible
n-tuples (r, r2, . . . , rn) in (5.1) that lead to (5.2) withK ̸= 0. Then, we consider
the congruence

rr2 · · · rn ≡ c (mod p) ⇒ aa2 · · · an ≡ cαn−1 (mod p)

⇒ aa2 · · · an = cαn−1 +Kp

with 0 < |c|, |a2|, . . . , |an| ≤ X and 0 < |K| ≤ ⌊ 2Xn

p ⌋. Now, we write d :=

:= gcd(a, αn−1) and a′ := a
d , β := αn−1

d and K ′ := K
d . We find that

aa2 · · · an = cαn−1 +Kp ⇒ a′a2 · · · an ≡ K ′p (mod β)

so that a fixed value of K ′ gives at most d values of a2 · · · an (mod αn−1).
There are ≪ Xn

dp possible values for K ′ and since 0 < |a2 · · · an| ≤ |α|n−1, we

have in fact at most 2d values of a2 · · · an. That is, we have at most ≪ Xn

p

possible values of (c,K). We get

|A′|n−1 ≪
∑
(c,K)

cαn−1+Kp̸=0

τn−1

(
cαn−1 +Kp

a

)
≪ Xn+ϵ

p

for each fixed ϵ > 0. For n = 2 we have in fact ϵ = 0 in this last inequality.
The result follows.

Remark 5.1. There are various inequalities more effective for some medium
size of the parameter X in Theorem 2.2. Using the same notation as previously,
we write

rk(a) := |{(r1, . . . , rk) ∈ A′k admissible : r1 · · · rk ≡ a (mod p)}|

for each k = 1, . . . , n − 1. For a fixed value of k we can split each admissible
n-tuple (r1, . . . , rn) ∈ A′n into r1 · · · rn ≡ bc ≡ a (mod p), i.e. respectively
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r1 · · · rn−k ≡ b (mod p) and rn−k+1 · · · rn ≡ c (mod p). This leads to

|A′| · · · (|A′| − n+ 1) ≤
∑

0<|a|≤X

p−1∑
b=1

rn−k(b)rk(ab
−1) ≤

≤ max
m∈F∗

p

rk(m)
∑

0<|a|≤X

p−1∑
b=1

rn−k(b) =

= 2X|A′| · · · (|A′| − n+ k + 1) max
m∈F∗

p

rk(m).

Now, for any fixed m ∈ F∗
p we use the change of variables from the proof of the

first inequality to write

r1 · · · rk ≡ m (mod p) ⇒ a1 · · · ak ≡ ℓ (mod p) (for some ℓ = ±|ℓ|p)

⇒ a1 · · · ak = ℓ+Kp (with 0 ≤ |K| ≤
⌊
2Xk

p

⌋
).

As previously, we deduce that

rk(m) ≤ 2k−1
∑
K

τk(ℓ+Kp) ≪ Xϵ

(
1 +

Xk

p

)
.

Overall, we get to

|A| ≪ |A′| ≪
(
X1/k +

X1+1/k

p1/k

)
Xϵ

for any k = 1, . . . , n− 1.

6. Concluding remarks

The set
A := {±2k : k = 0, . . . , ⌊log(X)/ log(2)⌋}

shows that S(X) ≫ log(2X). Also, the set

A := {±1, . . . ,±⌊X1/n⌋}

shows that Rn(X) ≫ X1/n. We conjecture that both S(X) ≪ϵ,t Xϵ and
Rn(X) ≪ϵ,t,n X1/n+ϵ hold for each ϵ > 0 when X ≤

(
1
2 − t

)
p for a fixed t > 0

as p → ∞.
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