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Abstract. Let p be a fixed prime. We estimate the number of elements
of a set A C IF,, for which

sis2 =a (modp) forsome a€[-X,X] forall si,s2€ A

We also consider variations and generalizations.

1. Introduction and notation

Let p be a fixed prime number. For any member « of an equivalence class

of Z/pZ, we write
al, ;= min |a + k
ey kEIZ | |

and for any finite set A we write |A| := #A which should not be confused with
the norm of a complex number. Inspired by the paper [2], we are interested by
the cardinality of a set A C I, that satisfies a particular property. Precisely,
for each X > 1 we let S(X) be the set of all subsets A C IF; that satisfy

51

(1.1) =

< X and/or ’8—2 < X for each (s1,s2) € A%
S1lp

p

‘We thus define

S(X):= max |A]
AES(X)
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Similarly, for each integer n > 2 and X > 1 we let R,,(X) be the set of all
subsets A C ]F; that satisfy

(1.2) |s1---splp < X for all pairwise distinct s1,...,s, € A.
Then, we consider the quantity

R,(X):= max |A|
AR, (X)

For any n € N and m € Z*, we write
Tn(m) = #{(dh . adn> e N™: dy---dy, = m}

We will often use the well known fact that 7,(m) <, m® for each integer
n > 2 and real e > 0. We also write e,(z) := exp(%;%) for any z € C.

2. Statement of theorems

Theorem 2.1. Let t > 0 be a small fized real number. For each 1 < X <

< (i — t)p, we have

X2+e
S(X) <ep min (X “+ "/ 2)
p

for each fized € > 0.

Theorem 2.2. Lett > 0 be a small fized real number. For each integer n > 2
and 1 < X < (% — t)p, we have

xn/(n—1)+e
Rn(X) L tn min )(Pl/7l—~_6 + 1771)1/71-&-6
R » 7D

for each fized € > 0.

3. Preliminary lemmas

There are a number of interesting results in the literature concerning mul-
tilinear exponential sums; see [1], [4], [5] and [6] for example. We will need the
following two.

Lemma 3.1. Let Ay,..., A, CF; (n > 2) be subsets. Then

n—

(3.1) Yo eplaran)| <PV AT
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Proof. We assume that |A;| > |As| > --- > |A,|. The inequality follows from
the well known result

max Z ep(mayas)| < (p|A1l|Az])/?,

mer a1€A1,a2€A
see [5, (1.2)]. [ |

Lemma 3.2. Let 0 < 6 < 1/4 and n € Z,. There is and effectively com-
putable constant 0’ = 6'(§) > 0 such that if p is a sufficiently large prime and
Ai, ..., A, CF, satisfy

(i) A > p° for 1 <i<m;

(i) TTy Al > p'*s
then there is the exponential sum bound

Yo eplarcan)| <p Al A,

a1 €A1,...,an€A,

Proof. It follows from Theorem A of the paper [1]. [ |
The purpose of the following lemma is very similar to Lemma 4.1 of [3].

Lemma 3.3. Let € > 0 be a real number. Let also 0 < A < 1 — 2¢ be a real

number. Consider the 1-periodic function defined on [—%, %) by

0 —% <x< —% — €
sipe1 boesecod
fla):=1 1 —ySe<3,
—Z4 241 S<a<Ste
0 % +e<ax< %
The function
glz):=A+e+ Z (cos(mkA) — cos(mk(A + 2¢))) e(kz)
2¢(mk)?
0<|k|<[1/€?]
satisfies
2e
(@) — a(a)| < 2%

for each x € R.

Proof. The function g(x) is simply the Fourier series of the function f(x) that
has been truncated to keep only the terms with |k| < [1/€2]. [ |
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4. Proof of Theorem 2.1

We assume throughout the proof that A € S(X) and satisfies S(X) = |A|.
We begin with the first inequality. We choose s; € A that satisfies (1.1) with
every element of A by being at least % times at the denominator. We denote
by A; the set of values that are thereby at the numerator. Restricting our
attention to Aj, we choose so € A; that satisfies (1.1) with every element of
A; by being at least 1411 times at the numerator and we denote by As the set

of values that are thereby at the denominator.

Now, for each value s € A, we have two representations. Indeed,

si =a (modp) and 3;2 =b (modp) with 0<]a|,|b] <X.
1
We deduce that
s1a = %2 (mod p) = ab= 2—2 =:a (modp) with 0<]al,|b],|a <X.
1

We thus have ab = o+ Kp with 0 < |[K| < L%J For each fixed value of
K, the number of solutions (a,b) is at most 27 (a + Kp) < X€. Indeed, we
either have X so small that K is only 0 and thus the inequality follows from
the inequality for the divisors function for an o < X, otherwise, we have X
large and the inequality remains true. We deduce that

X2
1A < 4]As] < X°© (1 + p) .

We now turn to the second inequality. We can assume that |A| and p are
large enough. We will apply Lemma 3.3 with A := % and € < ﬁ small

enough. We get

[A]” + 4] 5155

il LI el R 2172 )
2 - Z f( P )

51,52€A
-1
S18
= > o(*) +o(eap) <
51,82€A p

IN

AJA|? + Clog(1
|A[" + C'log( /6)0<|kr|n§a[>1</eﬂ

> epksisy')| +O(el AP)

51,52€A

for some constant C' large enough. We deduce that there is a value of k, with
0 < |k| < [1/€%] < p, such that
tA?

— < ’ e (ksls_l)‘ < p'/?|A.
log(1/€) 51,5226.4 P 2

The second inequality follows from Lemma 3.1. The proof is complete. |
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5. Proof of Theorem 2.2

We assume throughout the proof that A € R,,(X) and satisfies R,(X) =
= |A|. Also, for any k > 1, we say that (s1,...,sk) is an admissible k-tuple
if the s; are pairwise distinct (j = 1,...,k). There are exactly |A| - (|| —
—1)---(JA| — k + 1) admissible k-tuples. We can assume that |A]| is large
enough since otherwise there is nothing to prove.

We begin with the second inequality. Proceeding as previously, we write

A < > () rouar T =

81,..,8n €A
(815+--,8n) admissible

= X o(F) oA vl <

51,..,5, €A

IN

AlA" + Clog(1
|A]" + C'log( /6)0<|kr|n§a(>1</62w

Z ep(ksi---sp)| +

81,...,8n €A

+O(e| A|™ +|A™Y).
Now, assuming that |A| > p'/?*? for some fixed 0 < § < 1/4n, we get to

A"
m < ’ Z €p(k'$1"'8n)

51,..,5, €A

<p YA

for some ¢’ > 0, from Lemma 3.2. This is a contradiction for p large enough
and we deduce that |A| <« pl/7te for each € > 0. Also, in the case n = 2, we
can take e = 0 by using Lemma 3.1 instead.

For the first inequality, we define a by
to = max |7”1"'7“n|p»

T1yeesTn €
(r1,...,7n) admissible

and we assume that a = s1--- s, (mod p) (with (sq,...,s,) admissible). We
now define a change of variables according to this choice. In the set A’ :=
= A\ {s1,...,5,}, we can write an element r as 7 = a;> (mod p) for some

0<\aj\§X(j:1,...,n).

Any of the |A'|- (|A'| = 1)--- (JA'| — n+ 1) admissible n-tuples (r1,...,7,)
gives rise to

(5.1) ri-rp=c¢ (modp) = a1ﬂ~-~an—"zc (mod p)
o) a
= ay---a, =ca” ' (mod p)
(5.2) = a;--a,=ca" '+ Kp
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where 0 < |c|,|a1],...,]an] < X and 0 < |K| < L%j From there, we
distinguish two cases.

Case 1: K = 0 for more than half of the admissible n-tuples. In this case,
we have

A" < {(a1,. .y an) €Z™: ay - an =ca™ 0 < al,|c] < X} =
— 9n-1 Z T,L(C()énil) <<X1+e
0<|c|<X
for each fixed € > 0.

Case 2: K # 0 for at least half of the admissible n-tuples. In this case,
we fix a value of r = r1 = a2 (£ 0) (mod p) that is in > |A’|"~! admissible
n-tuples (1,79, ...,7,) in (5.1) that lead to (5.2) with K # 0. Then, we consider
the congruence

rry-orp=c (mod p) = aag---an, =ca™ ! (mod p)

= aay---a, =ca" 1+ Kp

with 0 < |¢], |az],...,]an] < X and 0 < |K]| < L%J Now, we write d :=

= ged(a,a™ 1) and o = 9, 8= andﬂ and K’ := %. We find that

aag---ap =ca" '+ Kp = day---a, = K'p (mod j)

so that a fixed value of K’ gives at most d values of as---a, (mod o™~ 1).
There are < )57 possible values for K’ and since 0 < |az - a,| < |a|"™1, we

have in fact at most 2d values of as---a,. That is, we have at most < XTTL
possible values of (¢, K). We get

n—1 K Xn+e

e T () <
(c.K) ¢ P
ca"71+Kp760

for each fixed € > 0. For n = 2 we have in fact ¢ = 0 in this last inequality.
The result follows.

Remark 5.1. There are various inequalities more effective for some medium
size of the parameter X in Theorem 2.2. Using the same notation as previously,
we write

re(a) == [{(r1,...,7) € A’* admissible : 71 ---7, =a (mod p)}|

for each k = 1,...,n — 1. For a fixed value of k we can split each admissible
n-tuple (r1,...,r,) € A™ into r1---r, = be = a (mod p), i.e. respectively
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r1- Tp—p =b (mod p) and ry_g41 -7 = ¢ (mod p). This leads to

Al (A =nt+1) < Y irn_k(b)rk(ab‘l)g

0<|a|<X b=1

p—1
max ri(m) Z Zrn,k(b):

0<la|<X b=1
= 2X|A'|---(JA'| = n+k+ 1) max rx(m).
mE]F;

IN

Now, for any fixed m € F}, we use the change of variables from the proof of the
first inequality to write

riorp=m (modp) = a;---ar=¢ (modp) (for some ¢ = £|{|,)

, 2Xk
= a1 ---ap=0+Kp (with0<|K|< 'y )-

As previously, we deduce that

Xk
rp(m) < 2k_1ZTk(€—|—Kp) < XE(l + p)'
K

Overall, we get to

X1+1/k
Al < |4 <« (Xl/k+ % >X€
p

forany k=1,...,n— 1.

6. Concluding remarks

The set
A={£2" 1k =0,...,[log(X)/log(2)|}

shows that S(X) > log(2X). Also, the set
A= {+1,..., £[ X"}

shows that R,(X) > X'/". We conjecture that both S(X) <., X¢ and
R, (X) <ctm X /nte hold for each € > 0 when X < (% — t) p for a fixed t > 0
as p — oo.
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