ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 54 (2023)

https://doi.org/10.71352/ac.54.125

Fonctions moyennes sur les entiers sans facteurs carrés et y-friables

Anaclet Congera, Janvier Pesser Ntahomvukiye and Servat Nyandwi

Abstract. A natural number greater than 1 is said to be y-smooth, y real, if all its prime factors do not exceed y. In this work, we are interested in the estimates of means on integers free of Prime factors >y of the function fg(n)=1h(n)d/ng(d)f(d), where h=g1, f and g belong to a class S containing the set {σ(n)n,nφ(n),φ(n,l)n}, where function Sfg(x,y)=nx,P(n)yfg(n) is proportional to the summation function of integers without square factors and y-smooth. This study generalizes that by J.-M. De Koninck and J. Grah for the function fμ2 and that of M. Naîmi for the mean over the friable integers of the function μ2f.

Full text PDF
Journal cover