https://doi.org/10.71352/ac.49.285
A note on a result of B. Bojan
Abstract.
We determine all solutions of those functions \(f:{\mathbb N}\to {\mathbb C}\) for which
\(f(n^2+m^2+k)= f^2( n)+f^2(m)+K\) is satisfied for all positive integers \(n,m\), where a
non-negative integer \(k\) and
\(K\in{\mathbb C}\) are given. This improves the result of B. Bojan.
