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Abstract. We determine all solutions of those functions f : N → C for
which f(n2 + m2 + k) = f2(n) + f2(m) + K is satisfied for all positive
integers n,m, where a non-negative integer k and K ∈ C are given. This
improves the result of B. Bojan.

1. Introduction

Let, as usual, N, Z, C be the set positive integers, integers and complex
numbers, respectively.

In 2014 B. Bojan [1] determined all solutions of those f : N → C for which

f(n2 +m2) = f2(n) + f2(m) for every n,m ∈ N,

namely

f(n) ∈ {0,±1

2
,±n}.

Our purpose in this note is to improve the result of B. Bojan [1].

Theorem. Assume that a non-negative integer k, a complex number K and
an arithmetical function f : N → C satisfy the equation

f(n2 +m2 + k) = f2(n) + f2(m) +K for every n,m ∈ N.

Key words and phrases: Arithmetical functions, functional equation.
2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.
https://doi.org/10.71352/ac.49.285

https://doi.org/10.71352/ac.49.285


286 B.M.M. Khanh

Then one of the following assertions holds:

a) f(n) = ±χ2(n), f(n2 +m2 + k) = χ2(n) + χ2(m)− 1 and

2 � k, K = −1,

b) f(n) = ±χ2(n+ 1), f(n2 +m2 + k) = χ2(n+ 1) + χ2(m+ 1)− 1 and

2 | k, K = −1,

c) f(n) =
ε(n)

4
(1−

√
−8K + 1),

d) f(n) =
ε(n)

4
(1 +

√
−8K + 1),

e) f(n) =
ε(n)

4
a(n)

√
−8χ3(n) + 9 and K = −7

8
for k ≡ 1 (mod 3),

f) f(n) = ε(n)b(n)χ3(n) and K = −1 for k ≡ 2 (mod 3),

g) f(n) =
ε(n)

4
b(n)

√
−8χ3(n) + 9 and K = −3

8
for k ≡ 0 (mod 3).

h) f(n) = ε(n)n,

where χ2(n) (mod 2), χ3(n) (mod 3) are principal Dirichlet characters, ε(n) ∈
∈ {−1, 1} and ε(n2 + m2 + k) = 1 for every n,m ∈ N, a(n), b(n) are peri-
odic sequences (mod 3) with a(1) = 1, a(2) = a(3) = −1, b(1) = b(3) = 1,
b(2) = −1.

2. Lemmas

Assume that a non-negative integer k, a complex number K and an arith-
metical function f : N → C satisfy the equation

(2.1) f(n2 +m2 + k) = f2(n) + f2(m) +K for every n,m ∈ N.

Lemma 1. Let F (n) := f2(n). Then

F (�+ 12) = F (�+ 9) + F (�+ 8) + F (�+ 7)−
− F (�+ 5)− F (�+ 4)− F (�+ 3) + F (�)

(2.2)

holds for every � ∈ N and

(2.3)




F (7) = 2F (5)− F (1),

F (8) = 2F (5) + F (4)− 2F (1),

F (9) = F (6) + 2F (5)− F (2)− F (1),
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(2.3)




F (10) = F (6) + 3F (5)− F (3)− 2F (1),

F (11) = F (6) + 4F (5)− F (3)− F (2)− 2F (1),

F (12) = F (6) + 4F (5) + F (4)− F (2)− 4F (1).

Proof. We infer from (2.1) and the next relations

(2n+1)2+(n−2)2 = (2n−1)2+(n+2)2, (2n+3)2+(n−6)2 = (2n−3)2+(n+6)2

that
f
[
(2n+ 1)2 + (n− 2)2 + k

]
= f

[
(2n− 1)2 + (n+ 2)2 + k

]

and
f
[
(2n+ 3)2 + (n− 6)2 + k

]
= f

[
(2n− 3)2 + (n+ 6)2 + k

]
.

These imply that

F (2n+ 1) + F (n− 2) = F (2n− 1) + F (n+ 2)

and
F (2n+ 3) + F (n− 6) = F (2n− 3) + F (n+ 6).

We infer from the last relations that

F (n+ 6)− F (n− 6) = F (2n+ 3)− F (2n− 3) =

=
[
F (2n+ 3)− F (2n+ 1)

]
+

[
F (2n+ 1)− F (2n− 1)

]
+

+
[
F (2n− 1)− F (2n− 3)

]
=

=
[
F (n+ 3)− F (n− 1)

]
+

[
F (n+ 2)− F (n− 2)

]
+

+
[
F (n+ 1)− F (n− 3)

]
,

consequently

F (n+ 6) = F (n+ 3) + F (n+ 2) + F (n+ 1)− F (n− 1)−
−F (n− 2)− F (n− 3) + F (n− 6).

This with m = �+ 6 proves (2.2).

In the order to prove (2.3), we note from (2.1) that

(2.4) If x2 + y2 = u2 + v2, then F(x) + F(y) = F(u) + F(v).

Applications of (2.4) in the cases

(x, y, u, v) ∈
{
(5, 5, 7, 1), (7, 4, 8, 1), (7, 6, 9, 2),

(9, 7, 11, 3), (9, 8, 12, 1), (10, 5, 11, 2)
}

prove that (2.3) holds for F (7), F (8), F (9), F (11), F (12) and F (10).

Thus, (2.3) and Lemma 1 is proved. �
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Lemma 2. Assume that the function F : N → C satisfy (2.2) and (2.3). Let

A :=
1

120

(
F (6) + 4F (5)− F (3)− F (2)− 3F (1)

)
,

Γ2 :=
−1

8

(
F (6)− 4F (5) + 4F (4)− F (3) + 3F (2)− 3F (1)

)
,

Γ3 :=
−1

3

(
F (6)− 2F (5) + 2F (3)− F (2)

)
,

Γ4 :=
1

4

(
F (6)− 2F (4)− F (3) + F (2) + F (1)

)
,

Γ5 :=
1

5

(
F (6)− F (5)− F (3)− F (2) + 2F (1)

)
,

Γ :=
1

4

(
F (6)− 4F (5) + 2F (4) + 3F (3) + F (2) + F (1)

)
,

Bk :=Γ2χ2(k) + Γ3χ3(k) + Γ4χ4(k − 1) + Γ5χ5(k) + Γ,

where χ2(k) (mod 2), χ3(k) (mod 3) are the principal Dirichlet characters and
χ4(k) (mod 4), χ5(k) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

χ2(0) = 0, χ2(1) = 1, χ3(0) = 0, χ3(1) = χ3(2) = 1,

χ4(0) = χ4(2) = 0, χ4(1) = 1, χ4(3) = −1,

χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

Then we have

(2.5) F (�) = A�2 +B� for every � ∈ N.

Proof. The proof is very similar to that of Lemma 2 in [4]. Here we omit the
proof. �

3. Proof of the Theorem

Assume that a non-negative integer k, a complex number K and an arith-
metical function f : N → C satisfy the equation (2.1). Let F (n) := f2(n) for
every n ∈ N. From (2.1) and Lemma 2, we have

(3.1) F (n2 +m2 + k) = (F (n) + F (m) +K)2

and

(3.2) F (�) = f2(�) = A�2 +B� for every � ∈ N,
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where
B� := Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(�− 1) + Γ5χ5(�) + Γ.

Lemma 3. We have
A ∈ {0, 1}.

Proof. We obtain from (3.1) and (3.2) that

(3.3) A(n2 +m2 + k)2 +Bn2+m2+k =
(
A(n2 +m2) +Bn +Bm +K

)2

for every n,m ∈ N. Since

|B�| ≤ |Γ2|+ |Γ3|+ |Γ4|+ |Γ5|+ |Γ| for every � ∈ N

and
n2 +m2 + k → ∞ as n,m → ∞,

we infer from (3.3) that

A = lim
n,m→∞

[
A
(
1 +

k

n2 +m2 + k

)2

+
Bn2+m2+k

(n2 +m2 + k)2

]
=

= lim
n,m→∞

[(
A+

−k +Bn +Bm +K

n2 +m2 + k

)2]
= A2.

Therefore, we have A ∈ {0, 1}. Lemma 3 is proved. �

Lemma 4. Assume that A = 1, i.e.

F (�) = f2(�) = �2 +B� for every � ∈ N,

then

Bm = 0, f(m) = ±m and f(n2 +m2 + k) = n2 +m2 + k

for every n,m ∈ N.

Proof. From (3.3) we obtain that

(n2 +m2 + k)2 +Bn2+m2+k−

−
(
(n2 +m2) +Bn +Bm +K

)2

=

= 2(k −Bn −Bm −K)n2 +W (n,m) = 0,

(3.4)

holds for every n,m ∈ N, where

W (n,m) := Bn2+m2+k + (m2 + k)2 − (m2 +Bn +Bm +K)2.(3.5)
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Now let m ∈ N be fixed, n ∈ N, n ≡ a (mod 60) with some a ∈ N,
0 ≤ a < 60. Since the sequence {B�}∞0 is periodic (mod 60), we have

|W (n,m)| = |W (a,m)| < ∞

and so we obtain from (3.4) that

k −Ba −K −Bm = lim
n→∞

n≡a (mod 60)

−W (n,m)

2n2
= 0

and
W (a,m) = 0

hold for each a,m ∈ N. It follows from these that

Bm = k −Ba −K = c for every m ∈ N

and

W (a,m) := c+ (m2 + k)2 − (m2 + 2c+K)2 = 0 for every m ∈ N,

where c ∈ C is some fixed constant. These show that

(3.6) k −K = 2c and c+ k2 − (2c+K)2 = 0.

Finally, we obtain from the last relations that

k = 2c+K and 0 = c+ k2 − (2c+K)2 = c+ k2 − k2 = c.

Thus we have

Bm = c = 0 and F (m) = m2 for every m ∈ N

and from (3.6) we have k = K. Thus, in the case A = 1, we proved that

f2(m) = m2, f(n) = ±m

and
f(n2 +m2 + k) = f2(n) + f2(m) +K = n2 +m2 + k

for every n,m ∈ N. Lemma 4 is proved. �

Lemma 5. Assume that A = 0. Then

(3.7) Γ4 = 0,

where Γ4 is defined in Lemma 2.
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Proof. We infer from the fact A = 0 and from (3.1), (3.2) that

(3.8) Bn2+m2+k = (Bn +Bm +K)2 for every n,m ∈ N.

Since {B�}∞0 is periodic (mod 60), therefore

B22+22+k = B82+22+k and B22+22+k = B82+82+k,

which with (3.8) imply that

(B2 +B2 +K)2 = (B8 +B2 +K)2 and (B2 +B2 +K)2 = (B8 +B8 +K)2.

Consequently

(3.9) (B2 −B8)
(
3B2 +B8 + 2K

)
= 0

and

(3.10) 4(B2 −B8)
(
B2 +B8 +K

)
= 0.

Since

B2 = Γ3 + Γ4 − Γ5 + Γ and B8 = Γ3 − Γ4 − Γ5 + Γ,

we have Γ4 = 0 if B2 = B8. Assume now that B2 − B8 �= 0. Then we infer
from (3.9) and (3.10) that

3B2 +B8 + 2K = 0 and B2 +B8 +K = 0,

consequently

B2 = B8.

This contradicts to the assumption B2 −B8 �= 0. Thus, Γ4 = 0 follows and the
proof of Lemma 5 is completed. �

Lemma 6. Assume that A = 0, Γ4 = 0 and Γ2 �= 0. Then K = −1, further-
more either

2 � k, f(n) = ±χ2(n) and f(n2 +m2 + k) = χ2(n) + χ2(m)− 1

or

2 | k, f(n) = ±χ2(n+ 1) and

f(n2 +m2 + k) = χ2(n+ 1) + χ2(m+ 1)− 1

for every n,m ∈ N.
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Proof. Assume that A = 0, Γ4 = 0 and Γ2 �= 0. Then

(3.11) Bk := Γ2χ2(k) + Γ3χ3(k) + Γ5χ5(k) + Γ for every k ∈ N,

and

(3.12) Bn = Bm if n ≡ m (mod 30).

It is clear from (3.12) that if n2 +m2 ≡ u2 + v2 (mod 30), then

n2 +m2 + k ≡ u2 + v2 + k (mod 30) and Bn2+m2+k = Bu2+v2+k.

Let

E(n,m, u, v) := (Bn +Bm +K)2 − (Bu +Bv +K)2 =

= (Bn +Bm −Bu −Bv)(Bn +Bm +Bu +Bv + 2K).
(3.13)

We obtain from the above relations and from (3.8) that

(3.14) If n2 +m2 ≡ u2 + v2 (mod 30), then E(n,m, u, v) = 0.

With the help of a computer and Maple program, we find those positive
integers n,m, u, v such that n2 +m2 ≡ u2 + v2 (mod 30), therefore we obtain
the equations E(n,m, u, v) = 0.

It is clear from (3.11) that




B1 = Γ2 + Γ3 + Γ5 + Γ,

B2 = Γ3 − Γ5 + Γ,

B3 = Γ2 − Γ5 + Γ,

B4 = Γ3 + Γ5 + Γ,

B5 = Γ2 + Γ3 + Γ,

B6 = Γ5 + Γ.

By using (3.13), we infer from these and from the following relations




E(1, 1, 4, 4) = 4Γ2(2Γ + 2Γ5 + 2Γ3 + Γ2 +K) = 0,

E(1, 5, 4, 10) = 4Γ2(2Γ + Γ5 + 2Γ3 + Γ2 +K) = 0,

E(1, 3, 2, 6) = 4Γ2(2Γ + Γ3 + Γ2 +K) = 0

that 


2Γ + 2Γ5 + 2Γ3 + Γ2 +K = 0,

2Γ + Γ5 + 2Γ3 + Γ2 +K = 0,

2Γ + Γ3 + Γ2 +K = 0.
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Solve these equations to get

Γ3 = 0,Γ5 = 0 and Γ2 = −(2Γ +K).

Therefore the sequence Bn = Γ2χ2(n) + Γ is periodic (mod 2) and

B1 = Γ2 + Γ = −(Γ +K) and B2 = Γ.

On the other hand, we obtain from (3.8) that

Bk = (2Γ +K)2 and Bk+1 = 0.

Thus, two possibilities exist: either

(a) B1 = Bk and B2 = Bk+1 = 0

or
(b) B1 = Bk+1 = 0 and B2 = Bk.

Case (a). Assume that Bk = B1 and Bk+1 = B2. Then k ≡ 1 (mod 2) and
{
Bk −B1 = (2Γ +K)2 + (Γ +K) = 0,

Bk+1 −B2 = 0− Γ = 0.

Since Γ2 = −(2Γ +K) �= 0, the above system implies that Γ = 0 and K = −1.
Consequently

B1 = 1, B2 = 0 and F (n) = Bn = χ2(n)

and
f(n2 +m2 + k) = χ2(n) + χ2(m)− 1, k ≡ 1 (mod 2).

Case (b). Assume that Bk = B2 and Bk+1 = B1. Then
{
Bk −B2 = (2Γ +K)2 − Γ = 0,

Bk+1 −B1 = 0 + (Γ +K) = 0.

These imply that Γ = −K and 0 = (2Γ +K)2 − Γ = K2 +K. Since

Γ2 = −(2Γ +K) = −(−2K +K) = K �= 0,

the relationK2+K = 0 givesK = −1, and so Γ = −K = 1 , Γ2 = −(2Γ+K) =
= −(2− 1) = −1. Thus, we have proved that

B1 = −(Γ +K) = 0, B2 = Γ = 1 and F (n) = Bn = χ2(n+ 1).

Thus all assertions of Lemma 6 are proved. �
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Lemma 7. Assume that A = 0, Γ4 = 0 and Γ2 = 0. Then one of the following
assertions holds:

(A) f(n) = ε(n)
1±

√
−8K + 1

4
,

(B) f(n) =
ε(n)

4
a(n)

√
−8χ3(n) + 9 and K = −7

8
for k ≡ 1 (mod 3),

(C) f(n) = ε(n)b(n)χ3(n) and K = −1 for k ≡ 2 (mod 3),

(D) f(n) =
ε(n)

4
b(n)

√
−8χ3(n) + 9 and K = −3

8
for k ≡ 0 (mod 3),

where χ3(n) (mod 3) is a principal Dirichlet character, ε(n) ∈ {−1, 1} and
ε(n2 + m2 + k) = 1 for every n,m ∈ N, a(n), b(n) are periodic sequences
(mod 3) with a(1) = 1, a(2) = a(3) = −1, b(1) = b(3) = 1, b(2) = −1.

Proof. Assume that Γ2 = 0 and Γ4 = 0. Then the sequence

Bk = Γ3χ3(k) + Γ5χ5(k) + Γ for every k ∈ N

is periodic (mod 15). The elements of sequence are:

(3.15)




B1 = B4 = B11 = B14 = Γ3 + Γ5 + Γ

B2 = B7 = B8 = B13 = Γ3 − Γ5 + Γ

B3 = B12 = −Γ5 + Γ

B5 = B10 = Γ3 + Γ

B6 = B9 = Γ5 + Γ

B15 = Γ.

By using (3.8) and (3.15) we have

(3.16)




Bk+1 = B12+152+k = (Γ3 + Γ5 + 2Γ +K)2

Bk+2 = B12+12+k = (2Γ3 + 2Γ5 + 2Γ +K)2

Bk+3 = B32+32+k = (−2Γ5 + 2Γ +K)2

Bk+4 = B22+152+k = (Γ3 − Γ5 + 2Γ +K)2

Bk+5 = B12+22+k = (2Γ3 + 2Γ +K)2

Bk+6 = B152+62+k = (Γ5 + 2Γ +K)2

Since the sequence {B�}∞0 is periodic (mod 15), we have

B16 = B1, B17 = B2, B18 = B3, B19 = B4, B20 = B5.

Let I be the set of 15 different 6 consecutive elements of sequence {B�}∞0 , i.e

I :=
{
(B1, B2, B3, B4, B5, B6), (B2, B3, B4, B5, B6, B7), . . . ,

(B15, B1, B2, B3, B4, B5).
}
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It is obvious that

(
Bk+1, Bk+2, Bk+3, Bk+4, Bk+5, Bk+6

)
∈ I,

which with (3.15) and (3.16) give 15 system of equations. By using the com-
putations with Maple, we solve these systems and we have 4 solutions:

(A) Γ3 = 0, Γ5 = 0 and Γ =
−4K + 1±

√
−8K + 1

8
for every n ∈ N,

(B) Γ3 = −1

2
, Γ5 = 0, Γ =

9

16
and K = −7

8
for k ≡ 1 (mod 3),

(C) Γ3 = 1, Γ5 = 0, Γ = 0 and K = −1 for k ≡ 2 (mod 3),

(D) Γ3 = −1

2
, Γ5 = 0, Γ =

9

16
and K = −3

8
for k ≡ 0 (mod 3).

In the case (A) we infer from

Γ =
−4K + 1±

√
−8K + 1

8
=

(
1±

√
−8K + 1

4

)2

,

and

f2(n) = Bn = Γ =

(
1±

√
−8K + 1

4

)2

that

f(n) = ±
(
1±

√
−8K + 1

4

)
,

and so

f(n2 +m2 + k) = f2(n) + f2(m) +K = 2Γ +K =
1±

√
−8K + 1

4
.

Thus in the cases (A)–(D) we have

(A) f(n) = ε(n)
1±

√
−8K + 1

4
,

(B) f(n) =
ε(n)

4
a(n)

√
−8χ3(n) + 9 and K = −7

8
for k ≡ 1 (mod 3),

(C) f(n) = ε(n)b(n)χ3(n) and K = −1 for k ≡ 2 (mod 3),

(D) f(n) =
ε(n)

4
b(n)

√
−8χ3(n) + 9 and K = −3

8
for k ≡ 0 (mod 3).

Thus, Lemma 7 is proved. �
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Proof of the Theorem. Our theorem follows from Lemma 4, Lemma 6 and
Lemma 7. �

Remarks. I. Kátai and B. M. Phong posed the following conjecture:

Conjecture. (I. Kátai and B. M. Phong [2]) Assume that the number D ∈ N
and the arithmetical function f : N → C satisfy the equation

f(n2 +Dm2) = f2(n) +Df2(m) for every n,m ∈ N.

Then one of the following assertions holds:

a) f(n) = 0 for every n ∈ N,

b) f(n) =
ε(n)

D + 1
for every n ∈ N,

c) f(n) = ε(n)n for every n ∈ N,

where E := {n2 + Dm2|n,m ∈ N}, ε(n) = 1 if n ∈ E and ε(n) ∈ {−1, 1} if
n ∈ N \ E.

This conjecture is proved in our paper [4]. Some special cases of this result
have been proven in [3], [5], [6] and [7].

In a next article we determine all functions f, g : N → C for which for which
f(n2 +Dm2 + k) = g2(n) +Dg2(m) +K is satisfied for all n,m ∈ N, where a
non-negative integer k, D ∈ N and K ∈ C are given.
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Hungary
mbuiminh@yahoo.com




