ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 49 (2019)

https://doi.org/10.71352/ac.49.279

On additive arithmetical functions with values in topological groups IV.

Imre Kátai and Bui Minh Phong

Abstract. We prove that if \(G\) is an additively written Abelian topological group with the translation invariant metric \(\rho\) and $$ {1\over {\log x}}\sum_{n\le x} {\rho(\psi(n+1),\varphi(n))\over n}\to 0\quad (x\to \infty), $$ where \(\psi, \varphi: {\mathbb N}\to G\) are completely additive functions, then \(\varphi(n)=\psi(n)\) \((\forall n\in {\mathbb N})\), and the extension \(\varphi :{\mathbb R}_x\to G\) is a continuous homomorphism, where \({\mathbb R}_x\) is the multiplicative group of positive real numbers.
We also prove that if $$ {1\over {\log x}}\sum_{n\le x} {\rho(\psi([\sqrt{2}n]), \varphi(n)+A)\over n}\to 0\quad (x\to \infty), $$ then \(\varphi(n)=\psi(n)\ (\forall n\in{\mathbb N})\), and the extension \(\varphi=\psi :{\mathbb R}_x\to G\) is a continuous homomorphism, with \(\psi(\sqrt{2})=A\).

Full text PDF
Journal cover