ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 45 (2016)

https://doi.org/10.71352/ac.45.261

Multiplicative functions with small increment I.

Karl-Heinz Indlekofer, Imre Kátai and Bui Minh Phong

Abstract. We prove that if \(f\) is a completely multiplicative function and $$ \sum_{n\le x}{{\vert f(n+1)-f(n)\vert}\over n} =O(\log x), $$ then either $$ \sum_{n\le x}{{\vert f(n)\vert}\over n} =O(\log x)\quad\text{or}\quad f(n)=n^{\sigma+it}\quad 0<\sigma\le 1, t\in{\mathbb R} $$

Full text PDF
Journal cover