MULTIPLICATIVE FUNCTIONS WITH SMALL INCREMENT I.

Karl-Heinz Indlekofer (Paderborn, Germany) Imre Kátai and Bui Minh Phong

(Budapest, Hungary)

Communicated by Jean-Marie De Koninck (Received July 28, 2016; accepted November 14, 2016)

Abstract. We prove that if f is a completely multiplicative function and

$$\sum_{n \le x} \frac{|f(n+1) - f(n)|}{n} = O(\log x),$$

then either

$$\sum_{n \le x} \frac{|f(n)|}{n} = O(\log x) \quad \text{or} \quad f(n) = n^{\sigma + it} \quad 0 < \sigma \le 1, t \in \mathbb{R}.$$

1. Introduction

Let, as usual, \mathbb{N} , \mathbb{R} , \mathbb{C} be the set of positive integers, real and complex numbers, respectively. Let \mathcal{M} , \mathcal{M}^* be the set of complex-valued multiplicative (completely multiplicative) functions. We say that $f \in \mathcal{M}_1$ (resp. \mathcal{M}_1^*), if $f \in \mathcal{M}$ (resp. \mathcal{M}^*) and |f(n)| = 1 for every $n \in \mathbb{N}$. Let \mathcal{A} , \mathcal{A}^* be the set of real-valued additive (completely additive) functions.

Key words and phrases: Multiplicative function, a Dirichlet character, small increment. 2010 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64. https://doi.org/10.71352/ac.45.261 Let E be the set of those arithmetical function e(n) $(n \in \mathbb{N})$, for which

(1.1)
$$\sup_{x \ge 1} \frac{1}{\log x} \sum_{n \le x} \frac{|e(n)|}{n} < \infty.$$

Our purpose in this short paper is to prove the next assertion.

Theorem 1. Let $f \in \mathcal{M}^*$, $\delta(n) = f(n+1) - f(n)$ $(n \in \mathbb{N})$. Assume that $\delta \in E$ and that $f \notin E$. Then

$$f(n) = n^{\sigma + it}, \quad 0 < \sigma \le 1, t \in \mathbb{R}.$$

The proof is based upon an important theorem due to O. Klurman which is cited now as

Lemma 1. (O. Klurman [4]) If $f \in \mathcal{M}_1$ and

(1.2)
$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|f(n+1) - f(n)|}{n} = 0,$$

then

$$f(n) = n^{it} \quad (n \in \mathbb{N}), \quad \tau \in \mathbb{R}.$$

A weaker assertion has been proved in [3], namely that, if $f \in \mathcal{M}$ and

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} |f(n+1) - f(n)| = 0,$$

then either

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} |f(n)| = 0 \quad \text{or} \quad f(n) = n^{\sigma + it} \quad 0 < \sigma \le 1, t \in \mathbb{R}.$$

Remark 1. O. Klurman proved Lemma 1 for $f \in \mathcal{M}_1^*$, but using the method of Mauclaire and Murata [5] one can prove that if (1.2) holds for $f \in \mathcal{M}_1$, then $f \in \mathcal{M}_1^*$.

Remark 2. In [1] and [6] the following assertion has been proved. Assume that $f, g \in \mathcal{M}$, for which

$$\sum_{n \le x} |g(n+K) - f(n)| = O(x),$$

where K is an arbitrary positive integer. Then, either

$$\sum_{n\leq x} |g(n)| = O(x) \quad \text{and} \quad \sum_{n\leq x} |f(n)| = O(x),$$

or

$$f(n) = n^s U(n), g(n) = n^s V(n) \quad 0 < \operatorname{Re} s \le 1,$$

furthermore

$$V(n+K) = U(n)$$
 for every $n \in \mathbb{N}$.

Lemma 2. If $f \in \mathcal{M}^*$ and (1.2) holds, then either

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|f(n)|}{n} = 0,$$

or

$$f(n) = n^{\sigma + it} \quad (n \in \mathbb{N}), \quad 0 < \sigma \le 1, t \in \mathbb{R}.$$

Proof. Let

$$\Delta_K f(n) = \max_{|k| \le K} |f(n+k) - f(n)|.$$

From (1.2) we have that

(1.3)
$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|\Delta_K f(n)|}{n} = 0$$

for every fixed K.

Assume first that there exists such a prime power $Q = q^{\ell}$ for which $|f(Q)| = \rho < 1$.

Let

$$n = Qn_1 + a_0, \quad \text{if} \quad 0 \le a_0 < Q, q \nmid n_1$$

and

$$n = (a_0 + Q) + Q(n_1 - 1), \quad \text{if} \quad 0 \le a_0 < Q, q \mid n_1.$$

Then

$$|f(n)| \le |\Delta_K f(n)| + \rho |f(n_1)|$$

in the first case, and

$$|f(n)| \le |\Delta_K f(n)| + \rho |f(n_1)| + |\Delta_K f(n_1)|$$

in the second case. Thus

$$s(x) := \sum_{n \le x} \frac{|f(n)|}{n} \le \rho \sum_{\substack{n_1 \le \frac{x}{Q} \\ q \nmid n_1}} \frac{|f(n_1)|}{n_1} + \rho \sum_{\substack{n_1 \le \frac{x}{Q} \\ q \mid n_1}} \frac{|f(n_1)|}{n_1} + \epsilon(x) \log x,$$

where $\epsilon(x) \searrow 0$ as $x \to \infty$.

Thus

(1.4)
$$s(x) \le \rho s(\frac{x}{Q}) + \epsilon(x) \log x$$

for every $x \ge Q$. This implies that $|f(n)| \ge 1$ for every $n \in \mathbb{N}$.

If $Q^r \leq x < Q^{r+1}$, then

$$s(x) < \rho^{r-1}s(Q) + \sum_{\ell=0}^{r-1} \rho^{\ell} \epsilon(\frac{x}{Q^{\ell}}) \log \frac{x}{Q^{\ell}},$$

consequently

$$\frac{s(x)}{\log x} \to 0 \quad (x \to \infty).$$

Let us assume now that $F(n) = |f(n)| \ge 1$ $(n \in \mathbb{N})$. Let $u(n) = \log F(n)$. Then $u(n) \ge 0$, $u \in \mathcal{A}^*$,

$$|u(n+1) - u(n)| \le |F(n+1) - F(n)| \le |f(n+1) - f(n)|,$$

consequently

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|u(n+1) - u(n)|}{n} = 0.$$

Hence, applying a theorem of Kátai [2] we obtain that $u(n) = \sigma \log n$. Then

$$F(n) = n^{\sigma}, F(n+1) - F(n) = \sigma n^{\sigma-1} + O(n^{\sigma-2})$$

and

$$\sum_{n \le x} \frac{|F(n+1) - F(n)|}{n} = o(\log x)$$

implies that $\sigma < 1$. Let $f(n) = n^{\sigma}g(n), g \in \mathcal{M}_1^*$. If $g \in \mathcal{M}_1^*$, then

$$\liminf_{x \to \infty} \frac{1}{\log x} \sum_{n \le x} \frac{|g(n+1) - g(n)|}{n} = 0,$$

and Lemma 1 implies Lemma 2.

2. Proof of Theorem 1

Let

$$h(x) = \sum_{n \le x} \frac{|f(n)|}{n}.$$

Assume first that there exists a prime q such that $|f(q)| = \rho < 1$. From (1.1) we obtain that

$$\sum_{n \le x} \frac{|\Delta_K f(n)|}{n} = O(\log x),$$

if K is fixed, and so

$$h(x) \le \sum_{n \le x} \frac{q|f(q)||f(n_1)|}{qn_1} + O(\log x).$$

Then

$$h(x) \le \rho h(\frac{x}{q}) + B \log x \quad (x \ge 2q),$$

whence we obtain that $h(x) = O(\log x), f \in E$.

We can assume that $|f(q)| \ge 1$ holds for every prime q.

Let F(n) := |f(n)|. Then $F(n+1) - F(n) \in E$. Let q_1, q_2 be primes, $F(q_1) = q_1^{\lambda_1}, F(q_2) = q_2^{\lambda_2}$. We shall prove that $\lambda_1 = \lambda_2$.

Assume indirectly that $\lambda_1 < \lambda_2$.

It is clear that

$$h(x) = q_1^{\lambda_1} h(\frac{x}{q_1}) + B_1 \log x, \quad B_1 \text{ is bounded},$$

$$h(x) = q_2^{\lambda_2} h(\frac{x}{q_2}) + B_2 \log x, \quad B_2 \quad \text{is bounded.}$$

Hence

$$h(x) = q_1^{k_1\lambda_1}h(\frac{x}{q_1^{k_1}}) + O(q_1^{k_1\lambda_1}\log x)$$

and

$$h(x) = q_2^{k_2\lambda_2}h(\frac{x}{q_2^{k_2}}) + O(q_2^{k_2\lambda_2}\log x).$$

If k_1, k_2 are appropriately chosen, then

$$q_2^{k_2} < q_1^{k_1} < q_2^{k_2+1}, q_1^{k_1\lambda_1} < \frac{1}{4}q_2^{k_2\lambda_2},$$

 \mathbf{SO}

$$h(\frac{x}{q_1^{k_1}}) = h(x)q_1^{-k_1\lambda_1} + O(\log x)$$

and

$$h(\frac{x}{q_2^{k_2}}) = h(x)q_2^{-k_2\lambda_2} + O(\log x),$$

consequently

$$0 \le h(\frac{x}{q_2^{k_2}}) - h(\frac{x}{q_1^{k_1}}) = \Big(\frac{1}{q_2^{k_2\lambda_2}} - \frac{1}{q_1^{k_1\lambda_1}}\Big)h(x) + O(\log x),$$

whence

$$-\frac{3}{4}h(x) + O(q_1^{k_1\lambda_1}\log x) \ge 0.$$

Thus $h(x) = O(\log x)$, which contradicts to our assumption.

Hence we have $F(n) = n^{\lambda}$. If $\lambda = 0$, then $f \in E$. Since $F(n+1) - F(n) \in E$, we obtain that $0 < \lambda \leq 1$. Let

$$f(n) = n^{\lambda} U(n), U \in \mathcal{M}_1^*.$$

Then

$$|U(n+1) - U(n)| = \left|\frac{f(n+1)}{(n+1)^{\lambda}} - \frac{f(n)}{(n)^{\lambda}}\right| \le \frac{|f(n+1) - f(n)|}{n^{\lambda}} + \left|1 - (1 + \frac{1}{n})^{\lambda}\right|.$$

Thus

$$\sum_{n \le x} \frac{|U(n+1) - U(n)|}{n} \le \sum_{n \le x} \frac{|f(n+1) - f(n)|}{n^{\lambda + 1}} + c \sum_{n \le x} \frac{1}{n^2}$$

the right hand side is bounded as $x \to \infty$. The conditions of Lemma 1 hold for U, thus $U(n) = n^{it}, t \in \mathbb{R}$.

This completes the proof of Theorem 1.

References

- Indlekofer, K.-H. and I. Kátai, On some pairs of multiplicative functions, Annales Univ. Sci. Budapest, Sect. Math., 31 (1988), 129–134.
- [2] Kátai I., On additive functions, Publicationes Mathematicae, 25 (1978), 251–257.

- [3] Klurman, O., Correlations of multiplicative functions and applications, arXiv:1603.08453v1 [math.NT] 28 Mar 2016.
- [4] Klurman, O., The proof is given in a letter to I. Kátai and B. M. Phong, 2016.
- [5] Mauclaire, J.-L. and L. Murata, On the regularity of arithmetic multiplicative functions, *Proc. Japan Acad.* 56 (1980), 438–440.
- [6] Phong, B.M., On some pairs of multiplicative functions with small increments, Ann. Univ. Sci. Budapest. Sect. Comput., 28 (2008), 97–106.

K.-H. Indlekofer

Faculty of Informatics Electrical Faculty of Informatics University of Paderborn D-33098 Paderborn Warburger Str. 100 Germany k-heinz@uni-paderborn.de

I. Kátai and B. M. Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary katai@inf.elte.hu bui@inf.elte.hu