ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 41 (2013)

https://doi.org/10.71352/ac.41.261

Divisor function \(\tau_3(\omega)\) in arithmetic progression

A.S. Radova and S.P. Varbanets

Abstract. We constructed the asymptotic formula over the ring of the Gaussian integers for summatory function of the divisor function \(d_3(\omega)\) in an arithmetic progression \(N(\omega)\equiv\ell\pmod{q}\) which is non-trivial for \(q\leq{x}^{\frac{2}{7}-\varepsilon}\).

Full text PDF
Journal cover