https://doi.org/10.71352/ac.40.321
On some mean square estimates for the
zeta-function in short intervals
Abstract. Let \(\Delta(x)\) denote the error term in the Dirichlet divisor problem, and \(E(T)\) the error term in the asymptotic formula for the mean square of \(|\zeta(\frac{1}{2}+it)|\). If \(E^*(t) = E(t) - 2\pi\Delta^*(t/2\pi)\) with \(\Delta^*(x) = -\Delta(x) + 2\Delta(2x) - \frac{1}{2}\Delta(4x)\) and we set \(\int\limits_0^T E^*(t){\,\rm d} t = 3\pi T/4 + R(T)\), then we obtain $$ \int\limits_T^{T+H}(E^*(t))^2{\,\rm d} t \gg HT^{1/3}\log^3T $$ and $$ HT\log^3T \ll \int\limits_T^{T+H}R^2(t){\,\rm d} t \ll HT\log^3T, $$ for \(T^{2/3+\varepsilon}\le H \le T\).
Full text PDF