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Abstract. Let Δ(x) denote the error term in the Dirichlet divisor problem,
and E(T ) the error term in the asymptotic formula for the mean square of
|ζ( 1

2
+ it)|. If E∗(t) = E(t)−2πΔ∗(t/2π) with Δ∗(x) = −Δ(x)+2Δ(2x)−

− 1
2
Δ(4x) and we set

T∫

0

E∗(t) dt = 3πT/4 +R(T ), then we obtain

T+H∫

T

(E∗(t))2 dt� HT 1/3 log3 T

and

HT log3 T �
T+H∫

T

R2(t) dt� HT log3 T,

for T 2/3+ε
� H � T .

1. Introduction and statement of results

This paper is the continuation of the author’s works [6], [7], where the
analogy between the Riemann zeta-function ζ(s) and the divisor problem was
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investigated. As usual, let the error term in the classical Dirichlet divisor
problem be

(1.1) Δ(x) =
∑
n�x

d(n) − x(log x+ 2γ − 1),

and

(1.2) E(T ) =

T∫
0

|ζ( 12 + it)|2 dt − T

(
log

( T

2π

)
+ 2γ − 1

)
,

where d(n) is the number of divisors of n, ζ(s) is the Riemann zeta-function,
and γ = −Γ′(1) = 0.577215 . . . is Euler’s constant. In view of F.V. Atkinson’s
classical explicit formula for E(T ) (see [1] and [3, Chapter 15]) it was known
long ago that there are analogies between Δ(x) and E(T ). However, if one
wants to stress the analogy between ζ2(s) and the divisor function, then instead
of the error-term function Δ(x) it is more exact to work with the modified
function Δ∗(x) (see M. Jutila [8], [9] and T. Meurman [10]), where

Δ∗(x) : = −Δ(x) + 2Δ(2x) − 1
2Δ(4x) =

= 1
2

∑
n�4x

(−1)nd(n) − x(log x+ 2γ − 1),(1.3)

since it turns out that Δ∗(x) is a better analogue of E(T ) than Δ(x). Namely,
M. Jutila (op. cit.) investigated both the local and global behaviour of the
difference

E∗(t) := E(t) − 2πΔ∗
( t

2π

)
,

and in particular in [9] he proved that

(1.4)

T+H∫
T

(E∗(t))2 dt �ε HT 1/3 log3 T + T 1+ε (1 � H � T ).

Here and later ε denotes positive constants which are arbitrarily small, but
are not necessarily the same ones at each occurrence, while a �ε b (same as
a = Oε(b)) means that the �–constant depends on ε. The significance of (1.4)
is that, in view of (see e.g., [3])

(1.5)

T∫
0

(Δ∗(t))2 dt ∼ AT 3/2,
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(1.6)

T∫
0

E2(t) dt ∼ BT 3/2 (A,B > 0, T → ∞),

it transpires that E∗(t) is in the mean square sense of a lower order of magnitude
than either Δ∗(t) or E(t).

In [7] the author sharpened (1.4) (in the case when H = T ) to the asymp-
totic formula

(1.7)

T∫
0

(E∗(t))2 dt = T 4/3P3(log T ) +Oε(T
7/6+ε),

where P3(y) is a polynomial of degree three in y with positive leading coefficient,
and all the coefficients may be evaluated explicitly. This, in particular, shows
that (1.4) may be complemented with the lower bound

(1.8)

T+H∫
T

(E∗(t))2 dt � HT 1/3 log3 T (T 5/6+ε
� H � T ).

It seems likely that the error term in (1.7) is Oε(T
1+ε), but this seems difficult

to prove.

In [6] the author investigated higher moments of E∗(t), and e.g., in the
second part of [6] he proved that

(1.9)

T∫
0

(E∗(t))5 dt �ε T 2+ε;

but neither (1.4) nor (1.9) seem to imply each other.

In part III of [6] the error-term function R(T ) was introduced by the relation

(1.10)

T∫
0

E∗(t) dt =
3π

4
T +R(T ).

It was shown, by using an estimate for two-dimensional exponential sums, that

(1.11) R(T ) = Oε(T
593/912+ε),

593

912
= 0.6502129 . . . .

It was also proved that

(1.12)

T∫
0

R2(t) dt = T 2p3(log T ) +Oε(T
11/6+ε),
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where p3(y) is a cubic polynomial in y with positive leading coefficient, whose
all coefficients may be explicitly evaluated, and

(1.13)

T∫
0

R4(t) dt �ε T
3+ε.

The asymptotic formula (1.12) bears resemblance to (1.7), and it is proved
by a similar technique. The exponents in the error terms are, in both cases,
less than the exponent of T in the main term by 1/6. From (1.7) one obtains
that E∗(T ) = Ω(T 1/6(log T )3/2), which shows that E∗(T ) cannot be too small
(f = Ω(g) means that f = o(g) does not hold). Likewise, (1.12) yields

(1.14) R(T ) = Ω
(
T 1/2(log T )3/2

)
.

It seems plausible that the error term in (1.12) should be Oε(T
5/3+ε), while

(1.14) leads one to suppose that

(1.15) R(T ) = Oε(T
1/2+ε)

holds.

The aim of this paper to prove the following results.

Theorem 1. For T 2/3+ε
� H � T we have

(1.16)

T+H∫
T

(E∗(t))2 dt � HT 1/3 log3 T.

Note that (1.16) improves the range of H for which (1.8) holds.

Theorem 2. For T 2/3+ε
� H � T we have

(1.17)

T+H∫
T

R2(t) dt � HT log3 T,

and, for T ε
� H � T ,

(1.18)

T+H∫
T

R2(t) dt �ε HT log3 T + T 5/3+ε.
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The range for which (1.17) holds improves on the range for which (1.12) holds.

Corollary. If H = T 2/3+ε, then every interval [T, T +H] (T � T0) contains
points t1, t2 such that, for some positive constants A,B > 0,

(1.19) |E∗(t1)| > At
1/6
1 log3/2 t1, |R(t2)| > Bt

1/2
2 log3/2 t2.

Note that this result follows from the asymptotic formulas (1.7) and (1.12),
but in the poorer range T 5/6+ε

� H � T . It would be interesting to find large
positive and large negative values for which the analogues of (1.19) hold. This
was done in [4] for E(t) and Δ(x), where it was shown that there exist two
positive constants C,D such that, for T � T1, every interval [T, T + C

√
T ]

contains points t3, t4, t5, t6 such that

(1.20) E(t3) > D
√
t3, E(t4) < −D

√
t4, Δ(t5) > D

√
t5, Δ(t6) < −D

√
t6.

It would be interesting to obtain the analogue of (1.19) for large positive and
negative values of E∗(t) and R(t), like we have it in (1.20) for E(t) and Δ(t),
but this seems difficult.

2. The necessary lemmas

In this section we shall state the lemmas which are necessary for the proof
of our theorems. The first two are Atkinson’s classical explicit formula for
E(t) (see e.g., [2] or [3]) and the Voronoï-type formula for Δ∗(x), which is the
analogue of the classical truncated Voronoï formula for Δ(x) (see [10]). The
third is an asymptotic formula involving d2(n).

Lemma 1. Let 0 < A < A′ be any two fixed constants such that AT < N <
< A′T , and let N ′ = N ′(T ) = T/(2π) +N/2 − (N2/4 +NT/(2π))1/2. Then

(2.1) E(T ) = Σ1(T ) + Σ2(T ) +O(log2 T ),

where

(2.2) Σ1(T ) = 21/2(T/(2π))1/4
∑
n�N

(−1)nd(n)n−3/4e(T, n) cos(f(T, n)),

(2.3) Σ2(T ) = −2
∑
n�N ′

d(n)

n1/2(log T/(2πn))
cos

(
T log

( T

2πn

)
− T +

1

4
π

)
,
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with

f(T, n) = 2Tarsinh
(√

πn/(2T )
)
+
√
2πnT + π2n2 − 1

4π =

= − 1
4π + 2

√
2πnT + 1

6

√
2π3n3/2T−1/2+

+ a5n
5/2T−3/2 + a7n

7/2T−5/2 + . . . ,

(2.4)

e(T, n) = (1 + πn/(2T ))−1/4
{
(2T/πn)1/2arsinh

(√
πn/(2T )

)}−1

=

= 1 +O(n/T ) (1 � n < T ),
(2.5)

and arsinhx = log(x+
√
1 + x2 ).

Lemma 2. (see [3, Chapter 15]). We have, for 1 � N � x,

(2.6) Δ∗(x) =
1

π
√
2
x

1
4

∑
n�N

(−1)nd(n)n−
3
4 cos(4π

√
nx− 1

4π)+Oε(x
1
2+εN− 1

2 ).

Lemma 3. For a > − 1
2 a constant we have

(2.7)
∑
n�x

d2(n)na = xa+1P3(log x; a) +Oε(x
a+1/2+ε),

where P3(y; a) is a polynomial of degree three in y whose coefficients depend
on a, and whose leading coefficient equals 1/(π2(a+ 1)). All the coefficients of
P3(y; a) may be explicitly evaluated.

This is a standard result, for a proof see e.g., Lemma 3 of [7].

The next lemma brings forth a formula for
∫ T

0
E(t) dt, which is closely

related to F.V. Atkinson’s classical explicit formula for E(T ) (see [1] or e.g.,
Chapter 15 of [3] or Chapter 2 of [5]). This is due to J.L. Hafner and the author
[2] (see also Chapter 3 of [5]).

LEMMA 4. We have

(2.8)

T∫
0

E(t) dt = πT +
1

2

(2T
π

)3/4 ∑
n�T

(−1)nd(n)n−5/4e2(T, n) sin f(T, n)−

−2
∑

n�c0T

d(n)n−1/2
(
log

T

2πn

)−2

sin

(
T log

( T

2πn

)
− T +

1

4
π

)
+

+O(T 1/4),
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where c0 = 1
2π + 1

2 −
√

1
4 + 1

2π , and for 1 � n � T ,

e2(T, n) =
(
1 +

πn

T

)−1/4
{(

2T

πn

)1/2

ar sinh
(πn
2T

)1/2
}−1/2

=

= 1 + b1
n

T
+ b2

( n

T

)2

+ . . . ,

f(T, n) = 2Tar sinh
(√

πn/(2T )
)
+
√
2πnT + π2n2 − 1

4π =

= − 1
4π + 2

√
2πnT + a3n

3/2T−1/2+

+ a5n
5/2T−3/2 + a7n

7/2T−5/2 + . . . .

(2.9)

We also need a formula for the integral of Δ∗(x). From a classical result of
G.F. Voronoï [10] (this also easily follows from pp. 90-91 of [3]) we have

X∫
0

Δ(x) dx =
X

4
+

X3/4

2
√
2π2

∞∑
n=1

d(n)n−5/4 sin(4π
√
nX − 1

4π) +O(X1/4).

To relate the above integral to the one of Δ∗(x) we proceed as on pp. 472–473
of [3], using (1.3) and (1.10). In this way we are led to

Lemma 5. We have

(2.10)

T∫
0

Δ∗(t) dt = −T

8
+

T 3/4

2
√
2π2

∑
n�T 2

(−1)nd(n)n−5/4 sin(4π
√
nT − 1

4π)

+O(T 1/4).

3. Proof of Theorem 1

We use Lemma 1 and Lemma 2 with N = T to deduce that, for T � t �
� T +H, T 2/3+ε � H � T ,

(3.1) E∗(t) := S1(t) + S2(t) + S3(t),
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where

S1(t) :=
√
2

(
t

2π

)1/4 ∑
n�T

(−1)nd(n)n−3/4

{
e(t, n) cos f(t, n)−

− cos(
√
8πnt − 1

4π)

}
,

S2(t) := −2
∑
n�N ′

d(n)n−1/2

(
log

t

2πn

)−1

cos

(
t log

t

2πn
− t+

π

4

)
,

S3(t) := Oε(T
ε),

(3.2)

and N ′ = t/(2π) + t/2 −
√
T 2/4 + tT/(2π). We have, similarly as in [7],

(3.3)
T+H∫
T

{
S2
2(t) + S2

3(t)
}
dt �ε HT ε,

since S2(t) is in fact quite analogous to the sum representing ζ2( 12 + it). There-
fore

T+H∫
T

(E∗(t))2 dt =

=

T+H∫
T

{
S2
1(t) + S2

2(t) + S2
3(t) + 2S1(t)S2(t)+

+ 2S1(t)S3(t) + 2S2(t)S3(t)
}
dt =

=

T+H∫
T

S2
1(t) dt+Oε(HT 1/6+ε).

(3.4)

Here we used (3.3), (1.4) and the Cauchy-Schwarz inequality for integrals to
deduce that

T+H∫
T

S1(t)S2(t) dt �

⎧⎨⎩
T+H∫
T

S2
1(t) dt

T+H∫
T

S2
2(t) dt

⎫⎬⎭
1/2

�

�ε

(
HT εHT 1/3 log3 T

)1/2

�ε HT 1/6+ε.
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Now we write

S1(t) = S4(t) + S5(t),

S4(t) :=
√
2

(
t

2π

)1/4 ∑
n�T 1/2−ε

(−1)nd(n)n−3/4

{
e(t, n) cos f(t, n)−

− cos(
√
8πnt − 1

4π)

}
,

S5(t) :=
√
2

(
t

2π

)1/4 ∑
T 1/2−ε<n�T

(−1)nd(n)n−3/4

{
e(t, n) cos f(t, n)−

− cos(
√
8πnt − 1

4π)

}
.

We obtain, following the proof of (1.4),

T+H∫
T

S2
1(t) dt =

T+H∫
T

{
S2
4(t) + S2

5(t) + 2S4(t)S5(t)
}
dt.

In view of (1.4) we have

(3.5)
T+H∫
T

S2
4(t) dt �ε HT 1/3+ε (T 2/3+ε

� H � T ).

To estimate the mean square of S5(t), we split the sum into subsums with the
range of summation K < n � K ′

� 2K,T 1/2−ε
� K � T . Note that the mean

square bound (c �= 0)

(3.6)
T+H∫
T

∣∣∣ ∑
K<k�K′�2K

(−1)kd(k)e
√
ckti

∣∣∣2 dt =
= H

∑
K<k�2K

d2(k) +
∑

K<m 
=n�2K

(−1)m+nd(m)d(n)

T+H∫
T

e
√
ct(
√
m−√n)i dt �

� HK log3 T +
√
T

∑
K<m 
=n�2K

d(m)d(n)

|
√
m −

√
n| �ε

�ε HK log3 T + T 1/2+ε
∑

K<m 
=n�2K

K1/2

|m − n| �ε

�ε T
ε(HK + T 1/2K3/2)
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holds for 1 � K � TC (C > 0), where we used the standard first derivative
test for exponential sums (see Lemma 2.1 of [3]) and Lemma 3. The same
bound also holds if in the exponential we have f(t, k) (cf. (2.4)) instead of√
ctk, as shown e.g., in the derivation of the mean square formula for E(t) in

Chapter 15 of [3]. Using (3.6) it follows that

(3.7)
T+H∫
T

S2
5(t) dt �ε T 1/2+ε(HT−1/4 + T 1/2) = HT 1/4+ε + T 1+ε

holds for T 2/3+ε
� H � T . Consequently using (3.5), (3.7) and the Cauchy-

Schwarz inequality we obtain

T+H∫
T

S4(t)S5(t) dt �ε T ε(HT 7/24 +H1/2T 2/3).

Therefore, for T 2/3+ε
� H � T , we have shown that

(3.8)
T+H∫
T

S2
1(t) dt =

T+H∫
T

S2
4(t) dt+Oε

(
T ε(HT 7/24 +H1/2T 2/3)

)
.

The integral on the right-hand side of (3.8) is equal to√
2

π

∑
n�T 1/2−ε

d2(n)n−3/2

T+H∫
T

t1/2
(
e(t, n) cos f(t, n) − cos(

√
8πnt − π/4)

)2

dt+

+

√
2

π

∑
1�m 
=n�T 1/2−ε

(−1)m+nd(m)d(n)(mn)−3/4×

×
T+H∫
T

t1/2
(
e(t,m) cos f(t,m) − . . .

)(
e(t, n) cos f(t, n) − . . .)

)
dt.

In this expression we first replace the factors e(t,m) and e(t, n) by 1, and it is
seen that the total error made in this process is Oε(HT 1/4+ε), since e(t, n) =
= 1 + O(n/t) and m,n � T 1/2−ε. Consider now the sum over m �= n. If both
m and n are � T 1/3−ε, then observe that Taylor’s formula gives

(3.9) sin f(t,m) − sin(2
√
2πmt − π/4) =

∞∑
k=1

(y − y0)
k

k!
sin(y0 +

1
2kπ)

y = f(t,m), y0 = 2
√
2πmt − π/4, y − y0 = d3m

3/2t−1/2 + d5m
5/2t−3/2 + . . . ,
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and similarly for sin f(t, n). Therefore the total contribution of these terms, by
the first derivative test, will be

� T
∑

m 
=n�T 1/3−ε

d(m)d(n)(mn)3/4T−1 · 1

|
√
m −

√
n| �ε

�ε T
ε

∑
m 
=n�T 1/3−ε

(mn)3/4(
√
m+

√
n)

|m − n| �ε T
ε

∑
m�T 1/3−ε

m2 �ε T
1+ε.

If, say, m � T 1/3−ε, T 1/3−ε < n � T 1/2−ε, then the contribution is a multiple
of ∑

m�T 1/3−ε

(−1)md(m)m3/4
∑

T 1/3−ε<n�T 1/2−ε

(−1)nd(n)n−3/4×

×
T+H∫
T

e±i
√
8πmt

(
e±if(t,n) − e±i

√
8πnt

)
dt.

The contribution of terms with two square roots in the exponential is, by the
first derivative test,

�
∑

m�T 1/3−ε

d(m)m3/4
∑

T 1/3−ε<n�T 1/2−ε

d(n)n−3/4 T 1/2

|
√
m −

√
n|

�ε T
3/4+ε

∑
T 1/3−ε<n�T 1/2−ε

d(n)n−1/2 �ε T
1+ε.

(3.10)

The remaining case of interest is when we have the exponential factor

exp
(
iF (t,m, n)

)
, F (t,m, n) :=

√
8πmt − f(t, n),

when

d

dt
F (t,m, n) =

√
2πm

t
− 2ar sinh

√
πn

2t
=

=

√
2π

t
(
√
m −

√
n ) + a3n

3/2t−3/2 + a5n
5/2t−5/2 + . . . .

But as, for m �= n and m,n � T 1/2−ε,

|
√
m −

√
n|√

t
=

|m − n|
|
√
m+

√
n|

√
t
�

1

(
√
m+

√
n)

√
t
� tεn3/2

t
√
t

,
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then again by the first derivative test we obtain a contribution which is, simi-
larly to (3.8), �ε T 1+ε. Finally, the same argument shows that the contribu-
tion, when T 1/3−ε < m �= n � T 1/2−ε, is

� T 1/2
∑

T 1/3−ε<m�T 1/2−ε

d(m)m−3/4×

×
∑

T 1/3−ε<n�T 1/2−ε,n 
=m

d(n)n−3/4

√
T

|
√
m −

√
n| �ε

�ε T
1+ε

∑
T 1/3−ε<m 
=n�T 1/2−ε

(mn)−3/4(
√
m+

√
n)

|m − n| �ε

�ε T
1+ε

∑
T 1/3−ε<m�T 1/2−ε

m−1 log T �ε T
1+ε.

From (3.8) and the preceding estimates it follows that, for T 2/3+ε
� H � T ,

(3.11)

T+H∫
T

(E∗(t))2 dt = Oε(HT 7/24+ε +H1/2T 2/3+ε + T 1+ε)+

+

√
2

π

∑
n�T 1/2−ε

d2(n)

n3/2

T+H∫
T

t1/2
{
cos f(t, n) − cos(

√
8πnt − π/4)

}2

dt.

Since the integrand on the right-hand side of (3.11) is non-negative, it is not
difficult to deduce (1.16) of Theorem 1 from (3.11). To manage the cosines in
(3.11) we use the elementary identity

(cosα − cosβ)2 = 1 − cos(α − β) + { 1
2 cos 2α+ 1

2 cos 2β − cos(α+ β)}

with α = f(t, n), β =
√
8πnt − 1

4π. By the first derivative test it is seen that
the terms coming from curly braces contribute � T to (3.11). Furthermore, in
view of

1 − cos γ = 2 sin2( 12γ), | sinx| � 2

π
|x| (|x| � π/2),

it is seen that the sum on the right-hand side of (3.11) is

√
8

π

∑
n�T 1/2−ε

d2(n)n−3/2

T+H∫
T

t1/2 sin2
(
a3n

3/2t−1/2 + a5n
5/2t−3/2 + · · ·

)
dt+

+Oε(T
1+ε) �



On zeta estimates in short intervals 333

�
∑

n�T 1/3

d2(n)n−3/2

T+H∫
T

t1/2n3t−1 dt+Oε(T
1+ε) �

� C1T
−1/2H

∑
n�T 1/3

d2(n)n3/2 +Oε(T
1+ε) �

� C2T
−1/2HT 5/6 log3 T +Oε(T

1+ε) � 1
2C2HT 1/3 log3 T

for T 2/3+ε
� H � T . Since all the O-terms in (3.11) are o(HT 1/3 log3 T ) in

this range, it means that we have proved (1.16) of Theorem 1. �

4. Proof of Theorem 2

Combining Lemma 4 and Lemma 5 we obtain, with c0 as in (2.8),

(4.1) R(T ) =
1

2

(
2T

π

)3/4 ∑
T<n�T 2

(−1)n+1d(n)n−5/4 sin(2π
√
2nT − 1

4π)+

+
1

2

(
2T

π

)3/4 ∑
n�T

(−1)nd(n)n−5/4
{
e2(T, n) sin f(T, n) − sin(2π

√
2nT − 1

4π)
}

−

−2
∑

n�c0T

d(n)n−1/2
(
log

T

2πn

)−2

sin

(
T log

( T

2πn

)
− T + 1

4π

)
+O(T 1/4).

This gives, since the estimation of
∑

n�N ′ · · · is similar (see e.g., [3]) to the
estimation of

ζ2( 12 + it) = O(t1/3),

(4.2) R(T ) = O(T 1/2 log T )+

+
1

2

(2T
π

)3/4 ∑
n�T

(−1)nd(n)n−5/4
{
e2(T, n) sin f(T, n) − sin(2

√
2πnT − π/4)

}
.

We further simplify (4.2) by estimating trivially the portion of the sum for
which n > T 1/2−ε and then using e2(T, n) = 1 +O(n/T ). We obtain

(4.3) R(T ) = Oε(T
1/2+ε)+

+
1

2

(2T
π

)3/4 ∑
n�T 1/2−ε

(−1)nd(n)n−5/4
{
sin f(T, n) − sin(2

√
2πnT − π/4)

}
=

=
1

2

(2T
π

)3/4

(s1(T ) + s2(T )) +Oε(T
1/2+ε),
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say, where in s1 summation is over n � T 1/3−ε, and in s2 summation is over n
such that T 1/3−ε < n � T 1/2−ε.

Now we replace T by t and suppose that T � t � T +H,T 2/3+ε
� H � T .

We prove first (1.18) of Theorem 2. In s1(t) we use (3.9), and in s2(t) we
consider separately the contributions coming from sin f(t, n) and sin(

√
8πnt−

−π/4). In both cases we use (3.6), since it was mentioned that the argument
also works for f(t, n) in the exponential. Thus we are led to the estimation of
the integrals (K � T 1/3−ε)

I1(K) :=

T+H∫
T

T 1/2
∣∣∣ ∑
K<n�K′�2K

(−1)nd(n)n1/4ei
√
8πnt

∣∣∣2 dt �ε

�ε max
K�T 1/3−ε

T 1/2+ε(HK3/2 + T 1/2K2) �ε T
1+εH + T 5/3+ε

and (T 1/3−ε � K � T 1/2−ε)

I2(K) :=

T+H∫
T

T 3/2
∣∣∣ ∑
K<n�K′�2K

(−1)nd(n)n−5/4ei
√
8πnt

∣∣∣2 dt �ε

�ε max
T 1/3−ε�K�T 1/2−ε

T 3/2+ε(HK−3/2 + T 1/2K−1) �ε T
1+εH + T 5/3+ε,

while the integral

I3(K) :=

T+H∫
T

T 3/2
∣∣∣ ∑
K<n�K′�2K

(−1)nd(n)n−5/4eif(t,n)
∣∣∣2 dt

is estimated analogously as I2(K). Since

T+H∫
T

R2(t) dt �ε HT 1+ε + log T max
K�T 1/3−ε

I1(K)+

+ log T max
T 1/3−ε�K�T 1/2−ε

(
I2(K) + I3(K)

)
,

the bound (1.18) follows.

The proof of (1.17) is carried out by using (4.3) and (1.18), and is analogous
to the proof of Theorem 1, only somewhat less involved. The sum corresponding
to S4(t) in the proof of Theorem 1 (cf. (3.5)) is the main term on the right-hand
side of (4.3). There is no need to repeat the details.
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