ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 38 (2012)

https://doi.org/10.71352/ac.38.269

On the values of arithmetic functions in short intervals

K. Chakraborty, I. Kátai and Bui Minh Phong

Abstract. In this short paper the following assertion is proved. For positive integer \(d\) and \(c>0\) let \(J_c(N) = [N,~N+c\sqrt{N}]\) and \({\cal K}_d =\{n\in {\Bbb N}~\vert~(n,d)=1\}\). Let \(1 < N_1 < N_2 < \cdots\) be an infinite sequence of integers and \(\ell_1,\ell_2,\cdots\) be integers coprime to \(d\). Assume that \(f\) and \(g\) are completely additive functions defined on \({\cal K}_d\), for which \(f(n) = g(n)\) if \(n {\equiv} \ell_j\pmod d\), \(n\in J_c(N_j)\) \((j=1,2,\cdots )\). If \(c>2d\), then \(f(n)=g(n)\) identically on \({\cal K}_d\).

Full text PDF
Journal cover