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Abstract. In this paper we consider the Ap weights and weighted dyadic
Hardy spaces. We investigate the convergence of Fejér means of Walsh–
Fourier series. We prove that, under some conditions, the maximal opera-
tor of the Fejér means is bounded from the weighted dyadic Hardy space
Hp(w) to Lp(w). This implies almost everywhere convergence of the Fejér
means.

1. Introduction

We investigate the convergence of the Fejér means of Walsh–Fourier series.
It was proved by Fine [3] that the Fejér means σn(f) converge to f almost
everywhere if f ∈ L1. Schipp [11] obtained the same result by proving the
weak type inequality of the maximal operator σ∗ of the Fejér means. Next
Fujii [4] showed that σ∗ is bounded from the dyadic Hardy space H1 to L1 (see
also Schipp and Simon [12]). Later the author [18] proved that σ∗ is bounded
from Hp to Lp for 1/2 < p < ∞.

In this paper, we generalize these results to weighted spaces. We introduce
the concept of Ap weights. With the help of the weighted Lp(w)-norm of the
dyadic maximal function, we introduce the weighted dyadic Hardy spaces and
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give their atomic decomposition. Using the atomic decomposition, we verify
a sufficient condition for an operator to be bounded from the weighted dyadic
Hardy space Hp(w) to Lp(w).

In the next section, we prove that the maximal Fejér operator σ∗ is bounded
from Hp(w) to Lp(w) if w satisfies some conditions. Finally, we obtain the
almost everywhere and norm convergence of the Fejér means to the function.

Throughout this paper, let C denote a positive constant which may vary
from line to line, but is independent of the main parameters. We use the symbol
f ≲ g to denote that there exists a positive constant C such that f ≤ Cg. For
any subset E of [0, 1), we use 1E to denote its characteristic function. For
1 ≤ p ≤ ∞, the dual index p′ is defined by 1

p + 1
p′ = 1.

2. Walsh system

In this paper let w be a strictly positive integrable weight function. The
weighted space Lp(w) is equipped with the norm (or quasinorm)

∥f∥Lp(w) :=

 1∫
0

|f |pw dλ

1/p

(0 < p < ∞)

with the usual modification for p = ∞, where λ is the Lebesgue measure. For
a set I, we use the notation

w(I) :=

∫
I

w dλ.(2.1)

The Rademacher functions are defined by

r(x) :=

{
1, if x ∈ [0, 1

2 );
−1, if x ∈ [ 12 , 1),

and
rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The product system generated by the Rademacher functions is the Walsh sys-
tem:

wn :=

∞∏
k=0

rk
nk (n ∈ N),

where

n =

∞∑
k=0

nk2
k, (0 ≤ nk < 2).
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By a dyadic interval, we mean one of the form [k2−n, (k + 1)2−n) for some
k, n ∈ N and 0 ≤ k < 2n. For any given n ∈ N and x ∈ [0, 1), denote by
In(x) the dyadic interval of length 2−n which contains x. For any n ∈ N, the
σ-algebra generated by the dyadic intervals {In(x) : x ∈ [0, 1)} is denoted by
Fn. It is clear that, for any n ∈ N, rn is Fn+1 measurable.

Let us denote by En the conditional expectation operator with respect to Fn

and the Lebesgue measure. A sequence (fn, n ∈ N) is called a dyadic martingale
if fn is Fn measurable and En−1(fn) = fn−1 (n ∈ N). If f ∈ L1[0, 1), for any
n ∈ N, the number

f̂(n) :=

1∫
0

fwn dλ

is called the nth Walsh–Fourier coefficient of f . We can extend this definition
to martingales as follows. If f := (fk)k∈N is a martingale, then

f̂(n) := lim
k→∞

1∫
0

fkwn dλ (n ∈ N).

3. Weighted dyadic Hardy spaces

The definition of Ap weights for martingales was introduced by Izumisawa
and Kazamaki in [8] as follows.

Definition 3.1. Let q ∈ [1,∞). A weight w is said to satisfy the Aq condition
(briefly w ∈ Aq) if there exists a positive constantK such that, when q ∈ (1,∞),

sup
n∈N

En(w)
[
En

(
w− 1

q−1

)]q−1

≤ K

and, when q = 1,

sup
n∈N

En(w)

w
≤ K.

w is said to satisfy A∞ (briefly w ∈ A∞) if w ∈ Aq for some q ∈ [1,∞).

Now, we give the following definition of the reverse Hölder inequality.

Definition 3.2. Let q ∈ (1,∞]. A weight w is said to satisfy the Rq condition
(briefly w ∈ Rq) if there exists a positive constantK such that, when q ∈ (1,∞),

sup
n∈N

[En (w
q)]

1
q [En(w)]

−1 ≤ K
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and, when q = ∞,
sup
n∈N

w [En(w)]
−1 ≤ K.

w is said to satisfy R1 (briefly w ∈ R1) if w ∈ Rq for some q ∈ (1,∞].

For any p, q ∈ (1,∞) with p ≤ q, we have A1 ⊂ Ap ⊂ Aq ⊂ A∞ and
R∞ ⊂ Rq ⊂ Rp ⊂ R1. So we can introduce the indices q(w) and r(w) as
follows

q(w) := inf {q ∈ [1,∞) : w ∈ Aq}
and

r(w) := sup {q ∈ (1,∞] : w ∈ Rq} .

Let dλ̂ := wdλ. By Long [9, p. 229], we find that, for any measurable set A,

λ(A) = 0 ⇐⇒ λ̂(A) = 0.

The following lemmas can be found in Doléans-Dade and Meyer [2] and
Long [9] (see also Xie et al. [22]).

Lemma 3.1. Let J ⊂ I two dyadic intervals. If 1 ≤ q < ∞ and w ∈ Aq, then(
λ(J)

λ(I)

)q

≲
w(J)

w(I)
.

If 1 < q ≤ ∞ and w ∈ Rq, then(
w(J)

w(I)

)q′

≲
λ(J)

λ(I)
.

Note that w(I) is defined in (2.1). If w ∈ Aq, then w satisfies the reverse
Hölder’s inequality and w ∈ Aq−ε for some ε > 0.

Lemma 3.2.

(i) If 1 ≤ q < ∞ and w ∈ Aq, then there exists ϵ > 0 such that w ∈ R1+ϵ.

(ii) If 1 < q < ∞ and w ∈ Aq, then there exists ε > 0 such that w ∈ Aq−ε.

We define the maximal operator of the dyadic martingale f = (fn, n ∈ N)
by

f∗ := sup
n∈N

|fn|.

The weighted dyadic Hardy space Hp(w) (0 < p < ∞) consists of all dyadic
martingales f = (fn, n ∈ N) for which

∥f∥Hp(w) := ∥f∗∥Lp(w) < ∞.
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For w = 1, we write again Hp. It is known (see e.g. Weisz [19]) that

Hp ∼ Lp (1 < p ≤ ∞),

where ∼ denotes the equivalence of spaces and norms. For weighted Hardy
spaces, we can formulate this theorem as follows (see Long [9], Xie et al. [22],
Weisz [21]).

Theorem 3.1.

(i) If w ∈ A∞ and q(w) < p < ∞, then

Hp(w) ∼ Lp(w).

(ii) If w ∈ A1 and f ∈ L1(w), then

sup
ρ>0

ρw(f∗ > ρ) ≤ C ∥f∥L1(w) .

Here w(f∗ > ρ) denotes w({x ∈ [0, 1) : f∗(x) > ρ}) (see (2.1)). The atomic
decomposition provides a useful characterization of Hardy spaces. First we
introduce the concept of atoms.

Definition 3.3. A bounded function a is a weighted dyadic p-atom if there
exists a dyadic interval I ⊂ [0, 1) such that

(a) supp a ⊂ I,

(b) ∥a∥∞ ≤ w(I)−1/p,

(c)
∫
I

a(x) dx = 0.

The atomic decomposition of the Hardy space Hp(w) means that every
function (more exactly, martingale) from the Hardy space can be decomposed
into the sum of atoms. The following theorem was shown in Weisz [21].

Theorem 3.2. Let 0 < p ≤ 1 and w ∈ A∞. A martingale f is in Hp(w) if
and only if there exist a sequence (µk) of real numbers and a sequence (ak) of
weighted dyadic p-atoms such that

fn =
∑
k∈Z

µka
k
n a.e., n ∈ N.

Moreover,

∥f∥Hp(w) ∼ inf

(∑
k∈Z

|µk|p
)1/p

,

where the infimum is taken over all decompositions of f as above.
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The next result gives a sufficient condition for an operator to be bounded
from Hp(w) to Lp(w) (see Weisz [21]). For the unweighted case see Weisz [19]
and, for p0 = 1, Schipp, Wade, Simon and Pál [13] and Móricz, Schipp and
Wade [10].

Let X be a martingale space and Y a measurable function space. An
operator T : X → Y is said to be a σ-sublinear operator if, for any complex
number α, ∣∣∣∣∣T

( ∞∑
k=1

fk

)∣∣∣∣∣ ≤
∞∑
k=1

|T (fk)| and |T (αf)| = |α||T (f)|.

Theorem 3.3. Let w ∈ A∞. Suppose that V is a σ-sublinear operator and

(3.1)

∫
[0,1)\I

|V a|p0w dλ ≤ Cp0

for all weighted dyadic p0-atoms a and for some fixed 0 < p0 ≤ 1, where the
interval I is the support of the atom. If V is bounded from Lp1

(w) to Lp1
(w)

for some 1 < p1 ≤ ∞, then

∥V f∥Lp(w) ≤ Cp∥f∥Hp(w) (f ∈ Hp(w))

for all p0 ≤ p ≤ p1. Moreover, if w ∈ A1 and p0 < 1, then the operator V is of
weak type (1, 1), i.e., if f ∈ L1(w), then

sup
ρ>0

ρw(|V f | > ρ) ≤ C∥f∥L1(w).

4. Fejér summability of Walsh–Fourier series

Denote by snf the nth partial sum of the Walsh–Fourier series of a martin-
gale f , namely,

sn(f) :=

n−1∑
k=0

f̂(k)wk (n ∈ N).

If f ∈ L1, then

sn(f)(x) =

1∫
0

f(t)Dn(x+̇t) dt (n ∈ N),

where +̇ denotes the dyadic addition and

Dn(u) :=

n−1∑
k=0

wk(u)
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is the nth Walsh-Dirichlet kernel (see, for example, Schipp, Wade, Simon and
Pál [13]).

It is easy to see that, for any martingale f = (fn),

s2n(f) = fn (n ∈ N).

Hence, by the martingale convergence theorem, we know that, for 1 ≤ p < ∞
and f ∈ Lp,

lim
n→∞

s2n(f) = f in the Lp-norm.

This result was generalized (see e.g. Schipp et al. [13, Theorem 4.1]). More
precisely, it was proved that, for any 1 < p < ∞ and f ∈ Lp,

lim
n→∞

sn(f) = f in the Lp-norm.

The generalization of this theorem to the Lp(w) spaces can be found in [21, 22].

Theorem 4.1. If w ∈ A∞ and q(w) < p < ∞ then,

sup
n∈N

∥sn(f)∥Lp(w) ≤ Cp ∥f∥Lp(w) (f ∈ Lp(w)).

Corollary 4.1. If w ∈ A∞, q(w) < p < ∞ and f ∈ Lp(w), then

lim
n→∞

sn(f) = f in the Lp(w)-norm.

The inequality of Theorem 4.1 and the convergence in Corollary 4.1 do not
hold for p = 1 or p = ∞. With the help of some summability methods they can
be generalized for these endpoint cases. Obviously, summability means have
better convergence properties than the original Fourier series. Summability is
intensively studied in the literature. We refer at this time only to the books
Stein and Weiss [16], Butzer and Nessel [1], Trigub and Belinsky [17], Grafakos
[7] and Weisz [19, 20] and the references therein.

In this paper we consider the Fejér means defined by

σn(f)(x) :=
1

n

n−1∑
k=0

skf(x) =

n∑
j=0

(
1− j

n

)
f̂(j)wj(x) =

1∫
0

f(x− u)Kn(u) du,

where the Fejér kernels are given by

Kn(u) :=

n∑
j=0

(
1− j

n

)
wj(u) =

1

n

n−1∑
k=0

Dk(u).
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It is known (see [13, Theorem 1.16]) that

D2k(x) =

{
2k when x ∈ [0, 2−k),
0 when x ∈ [2−k, 1)

and

|Kn(x)| ≤
N−1∑
j=0

2j−N
N−1∑
i=j

[
D2i(x) +D2i

(
x+̇2−j−1

)]
,(4.1)

where x ∈ [0, 1), n ∈ N and N is a positive integer such that 2N−1 ≤ n < 2N .

Theorem 4.1 and Corollary 4.1 imply the next results.

Corollary 4.2. If w ∈ A∞ and q(w) < p < ∞ then,

sup
n∈N

∥σn(f)∥Lp(w) ≤ Cp ∥f∥Lp(w) (f ∈ Lp(w)).

Corollary 4.3. If w ∈ A∞, q(w) < p < ∞ and f ∈ Lp(w), then

lim
n→∞

σn(f) = f in the Lp(w)-norm.

Now let us investigate maximal operator of the Fejér means:

σ∗(f) := sup
n∈N

|σn(f)| .

Applying Theorem 3.3, we can generalize the previous results to the Lp(w)
spaces and to the maximal operator.

Theorem 4.2. Suppose that w ∈ A∞ is a weight and

max

{
q(w)

2
,

[
q(w)− 1

r(w)′

]}
< 1.

If

max

{
q(w)

2
,

[
q(w)− 1

r(w)′

]}
< p < ∞,(4.2)

then, for any f ∈ Hp(w),

∥σ∗(f)∥Lp(w) ≤ C ∥f∥Hp(w) .

Moreover, if w ∈ A1 and f ∈ L1(w), then

sup
ρ>0

ρw(σ∗(f) > ρ) ≤ C∥f∥L1(w).
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Proof. For any f ∈ L∞(w),

∥σ∗(f)∥L∞(w) ≤ ∥f∥L∞(w) sup
n∈N

∥Kn∥1 = ∥f∥L∞(w) .(4.3)

Note that ∥f∥L∞(w) = ∥f∥L∞
.

In addition to the conditions of the theorem, suppose that p ≤ 1. We have
to prove (3.1) for σ∗(a), for p0 = p and for all weighted dyadic p-atoms a.

Denote the support of a by I and let λ(I) = 2−K (K ∈ N). Without loss
of generality we can suppose that I = [0, 2−K). It is easy to see that â(n) = 0
if n < 2K , so, in this case, σn(a) = 0. Therefore we assume that n ≥ 2K .

Let x ∈ Ic := [0, 1) \ I. If j ≥ K, then x+̇2−j−1 ̸∈ I. Hence, for x ̸∈ I and
i ≥ j ≥ K, we have

a(t)D2i(x+̇t) = a(t)D2i(x+̇t+̇2−j−1) = 0.

If 2N > n ≥ 2N−1, then N − 1 ≥ K. Henceforth, for x ̸∈ I,

|σn(a)(x)| ≤
N−1∑
j=0

2j−N
N−1∑
i=j

∫
I

|a(t)|
(
D2i(x+̇t) +D2i(x+̇t+̇2−j−1)

)
dt ≤

≤ Cw(I)−1/p2−K
K−1∑
j=0

2j
K−1∑
i=j

∫
I

(
D2i(x+̇t) +D2i(x+̇t+̇2−j−1)

)
dt+

+ Cw(I)−1/p
K−1∑
j=0

2j
∞∑

i=K

2−i

∫
I

(
D2i(x+̇t) +D2i(x+̇t+̇2−j−1)

)
dt =:

=: A1(x) +A2(x).

Note that the right hand side is independent of n. Using (4.1), we can verify
that for x ̸∈ I,∫

I

D2i(x+̇t+̇2−j−1) dt = 2i−K1[2−j−1,2−j−1+̇2−i)(x)

if j ≤ i ≤ K − 1, ∫
I

D2i(x+̇t) dt = 2i−K1[2−K ,2−i)(x)

if i ∈ N and ∫
I

D2i(x+̇t+̇2−j−1) dt = 1[2−j−1,2−j−1+̇2−K)(x)
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if i ≥ K. Therefore, for x ̸∈ I,∫
Ic

A1(x)
pw(x)dx ≲

≲ 2−2Kpw(I)−1
K−1∑
j=0

2jp
K−1∑
i=j

2ip
[
w([2−K , 2−i)) + w([2−j−1, 2−j−1 + 2−i))

]
.

Let L, J,K three dyadic intervals such that L, J ⊂ K. Moreover, let τ >
> q(w) and ρ < r(w). By Lemma 3.1, we conclude that

w(L)

w(J)
=

w(K)

w(J)

w(L)

w(K)
≲

[
λ(K)

λ(J)

]τ [
λ(L)

λ(K)

] 1
ρ′

.(4.4)

Let L = [2−K+s, 2−i) or L = [2−j−1, 2−j−1 + 2−i), J = I and K = [0, 2−j ].
From this it follows that

w([2−K , 2−i))

w(I)
+

w([2−j−1, 2−j−1 + 2−i))

w(I)
≲ 2−τ(j−K)2

(j−i) 1
ρ′ ,

where τ > q(w) and ρ < r(w). Consequently,∫
Ic

A1(x)
pw(x)dx ≲ 2−2Kp

K−1∑
j=0

2jp
K−1∑
i=j

2ip2−τ(j−K)2
(j−i) 1

ρ′ ≲

≲ 2K(τ−2p)
K−1∑
j=0

2j(p−τ+1/ρ′)
K−1∑
i=j

2i(p−1/ρ′).

If p < 1
r(φ1)′

, then we can choose ρ near enough to r(w) such that p < 1
ρ′ <

< 1
r(w)′ . Since p > q(w)/2, we can choose τ such that p > τ/2. Then

∫
Ic

A1(x)
pw(x)dx ≲ 2K(τ−2p)

K−1∑
j=0

2j(2p−τ) ≲ C.

On the other hand, if p ≥ 1
r(φ1)′

, then we can choose ρ such that 1
ρ′ < p.

Since p > q(w)− 1
r(w)′ , we can choose τ and ρ such that p > τ − 1

ρ′ . Then

∫
Ic

A1(x)
pw(x)dx ≲ 2K(τ−p−1/ρ′)

K−1∑
j=0

2j(p−τ+1/ρ′) ≲ C.
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Similarly, for x ̸∈ I,∫
Ic

A2(x)
pw(x)dx ≲ w(I)−1

K−1∑
j=0

2jp
∞∑

i=K

2−ipw([2−j−1, 2−j−1 + 2−K)).

Using (4.4) for L = [2−j−1, 2−j−1 + 2−K), J = I and K = [0, 2−j ], we have

w([2−j−1, 2−j−1 + 2−K))

w(I)
≲ 2−τ(j−K)2

(j−i) 1
ρ′ ,

where τ > q(w) and ρ < r(w). Therefore,∫
Ic

A2(x)
pw(x)dx ≲

K−1∑
j=0

2jp
∞∑

i=K

2−ip2−τ(j−K)2
(j−i) 1

ρ′ ≲

≲ 2−K(p−τ+1/ρ′)
K−1∑
j=0

2j(p−τ+1/ρ′) ≲ C.

In the last step we have used that we can choose τ and ρ such that p > τ − 1
ρ′

because of the condition p > q(w)− 1
r(w)′ .

Combining the above inequalities, we can establish that∫
Ic

|σ∗(a)|pw dλ ≤ Cp.

Now Theorem 3.3 finishes the proof for

max

{
q(w)

2
,

[
q(w)− 1

r(w)′

]}
< p ≤ 1.

For 1 < p < ∞, the theorem follows from (4.3) and from interpolation. ■

The first inequality of Theorem 4.2 was proved by Fujii [4] for w = p = 1
(see also Schipp and Simon [12]) and for w = 1 and 1/2 < p < ∞ by the
author [18, 19]. Unfortunately, the second condition of (4.2) is missing in [21].
Theorem 4.2 implies the following convergence results.

Corollary 4.4. Besides the conditions of Theorem 4.2, if f ∈ Hp(w), then
σn(f) converges almost everywhere on [0, 1) as well as in the Lp(w)-norm as
n → ∞. Moreover, if w ∈ A1 and f ∈ L1(w), then

lim
n→∞

σn(f) = f a.e.

Note that q(w) ≥ 1. If w = 1 and p ≤ 1/2, then σ∗ is not bounded anymore
(see Simon and Weisz [15], Simon [14] and Gát and Goginava [5, 6]). For
integrable functions and for the unweighted case, the convergence was proved
by Fine [3] and Schipp [11].
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of double Walsh-Fourier series, Trans. Amer. Math. Soc., 329 (1992),
131–140. https://doi.org/10.1090/S0002-9947-1992-1030510-8
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[18] Weisz, F., Cesàro summability of one- and two-dimensional Walsh-
Fourier series. Anal. Math., 22 (1996), 229–242.
https://doi.org/10.1007/BF02205221

[19] Weisz, F.,. Summability of Multi-dimensional Fourier Series and Hardy
Spaces, Mathematics and Its Applications. Kluwer Academic Publishers,
Dordrecht, Boston, London, 2002.
https://doi.org/10.1007/978-94-017-3183-6

[20] Weisz, F., Convergence and Summability of Fourier Transforms and
Hardy Spaces, Applied and Numerical Harmonic Analysis. Springer,
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