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Abstract. Given an integer q ≥ 2, let Aq := {0, 1, . . . , q − 1} be the set
of base q digits. We say that α = a1 . . . ak, where each ai ∈ Aq, is a
word of length λ(α) = k. Let H(1), H(2), . . . be a sequence of nonnegative
integers and given a sequence of words α1, α2, . . ., we examine under which
conditions the number 0.α

H(1)
1 α

H(2)
2 . . . is a normal number in base q (where

αr
j = αj . . . αj︸ ︷︷ ︸

r times

).

1. Introduction

Fix an integer q ≥ 2 and let Aq := {0, 1, . . . , q − 1} be the set of base q
digits. We say that α = a1 . . . ak, where each ai ∈ Aq, is a word of length
λ(α) = k.

Let β = α1α2 . . . be an infinite concatenation of words αi’s, which we write

as β = j1j2 . . ., where each ji ∈ Aq. Then, ξ = ξ(β) :=

∞∑
ν=1

jν
qν

is a q-ary normal
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number if the sequence of fractional parts {qkξ}k≥1 is uniformly distributed in
[0, 1] (see Theorem 8.1 in Kuipers and Niederreiter [3]).

Over the past decade, we created several new families of normal numbers [2].

Here, we expose a new approach for creating normal numbers. To do so,
we first let H(1), H(2), H(3), . . . be a sequence of natural numbers and then,
given a sequence of words α1, α2, . . ., we examine under which conditions the

number 0.α
H(1)
1 α

H(2)
2 . . . (where αr

j = αj . . . αj︸ ︷︷ ︸
r times

) is a normal number in base q.

2. Background results

In a 1994 paper, Bassily [1] generalized to polynomials a result which orig-
inally applied only to the sum of digits function. To explain his result, we
introduce additional notation. Let q and Aq be as above. Then, every nonneg-
ative integer n can be written as

n =

∞∑
r=0

ar(n)q
r, where each ar(n) ∈ Aq.

Clearly, the above sum is finite, since ar(n) = 0 if r > (log n)/(log q). Bassily
investigated digital functions α(n) which depend on the digital blocks of length
k. More precisely, given k ∈ N and a function Fk : Ak

q → R which satisfies the
condition Fk(0, . . . , 0) = 0, consider the function

α(n) :=

∞∑
j=0

Fk (aj(n), aj+1(n), . . . , aj+k−1(n)) ,

that is, a kind of generalisation of the sum of digits function. Further setting

M :=
1

qk

∑
(b0,...,bk−1)∈Ak

q

Fk(b0, . . . , bk−1),

Bassily showed [1] that

α(n) = (1 + o(1))M
log n

log q
(n → ∞),

except perhaps on a set of density 0. Let π(x) stand for the number of primes
not exceeding x. In his paper, Bassily also proved the following theorem.

Theorem A. (Bassily) Let q ≥ 2 be a fixed integer. Let P (x) = crx
r + · · ·+

+ c1x + c0 be a polynomial with integer coefficients taking on positive values
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for all x > 0 and such that gcd(cr, q) = 1. Then,

∑
n≤x

(
α(P (n))−Mr

log x

log q

)2

≪ x log x,

∑
p≤x

(
α(P (p))−Mr

log x

log q

)2

≪ π(x) log x.

Let q and P (x) be as in the statement of Theorem A, and further let 2 =
= p1 < p2 < · · · be the sequence of all primes. Moreover, let η1 and η2 be the
real numbers whose q-ary expansions are given by

η1 = 0.P (1)P (2)P (3)P (4) . . . P (n) . . . ,

η2 = 0.P (2)P (3)P (5)P (7) . . . P (pn) . . . ,

where n stands for the concatenation of the base q digits of n. Bassily proved
that η1 and η2 are normal numbers in base q.

Moreover, fix k ∈ N and a word γ ∈ Ak
q , that is, a word made of k base q

digits. Then, given an arbitrary word β made of base q digits, we define ωγ(β)
as the number of occurrences of the subword γ in the word β. Bassily showed
that if

(2.1) Γk := {γ = b1b2 . . . bk : bi ∈ Aq for i = 1, . . . , k},

then,

∑
n≤x

max
γ∈Γk

(
ωγ(P (n))− r

qk
log x

log q

)2

≪ x log x,(2.2)

∑
p≤x

max
γ∈Γk

(
ωγ(P (p))− r

qk
log x

log q

)2

≪ π(x) log x.(2.3)

Now, before we state our main results, we introduce two new functions as
follows. Given an arithmetic function H : N → N ∪ {0}, consider the two
functions

sH(x) :=
∑
n≤x

H2(n)

/(∑
n≤x

H(n)

)2

and

tH(x) :=
∑
p≤x

H2(p)

/(∑
p≤x

H(p)

)2

.
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3. The main results

Theorem 1. Let q ≥ 2 be a fixed integer. Let P (x) = crx
r+ · · ·+ c1x+ c0 be a

polynomial with integer coefficients taking on nonnegative values for all x > 0
and such that gcd (cr, q) = 1. Let H(1), H(2), H(3), . . . be a sequence of natural
numbers satisfying the condition

(3.1) lim
x→∞

sH(x) · x

log x
= 0.

Then, the number

(3.2) η1 := 0.P (1)
H(1)

P (2)
H(2)

P (3)
H(3)

P (4)
H(4)

. . .

is a q-normal number.

Theorem 2. Let q, P (x) and H(n) be as in Theorem 1. Assuming that

(3.3) lim
x→∞

tH(x) · x

log2 x
= 0,

then,

(3.4) η2 := 0.P (2)
H(2)

P (3)
H(3)

P (5)
H(5)

P (7)
H(7)

. . .

is a q-normal number.

4. Some preliminary results

We start with a classic result in analytic number theory. As is common,
ζ(s) stands for the Riemann Zeta Function.

Proposition 1. Let f be an arithmetic function and let t be a positive real
number. Assume that, for every real s > 1,

∞∑
n=1

f(n)

ns
= ζt(s)

∞∑
n=1

g(n)

ns
,

where g is such that

∞∑
n=1

g(n)

n
converges absolutely. Then,

∑
n≤x

f(n) = (c+ o(1))x logt−1 x (x → ∞),

where c =
1

Γ(t)

∞∑
n−1

g(n)

n
.
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Proof. This is a particular case of Theorem 2 in the 1954 paper of Atle Sel-
berg [5]. ■

Let ϕ stand for the Euler totient function. The following is often called the
prime number theorem for arithmetic progressions.

Proposition 2. Given two coprime integers k ≥ 1 and ℓ, let π(x; k, ℓ) :=
:= #{p ≤ x : p ≡ ℓ (mod k)}. Then,

π(x; k, ℓ) = (1 + o(1))
1

ϕ(k)

x

log x
(x → ∞).

Proof. See Theorems 5.11 and 5.14 in the book of Narkiewicz [4]. ■

We now recall a 1961 result of Wirsing [6] which we state as a proposition.

Proposition 3. Let f(n) be a real valued non negative multiplicative function
satisfying f(pν) ≤ c1c

ν
2 for all prime powers pν , ν ≥ 2, for some positive

constant c1 and c2, with c2 < 2. Assuming that there exists a positive constant
τ for which ∑

p≤x

f(p) = (τ + o(1))
x

log x
(x → ∞),

then, as x → ∞,

∑
n≤x

f(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1 +

f(p)

p
+

f(p2)

p2
+ · · ·

)
,

where γ stands for the Euler-Mascheroni constant and Γ(r) is the Gamma
function.

The next proposition is an immediate application of Proposition 3.

Proposition 4. Let f be a completely multiplicative function such that f(p) ∈
∈ {0, 1} for all primes p. Assume that there exists a real number δ ∈ (0, 1)
such that ∑

p≤x

f(p) = (δ + o(1))
x

log x
(x → ∞).

Then, as x → ∞,

∑
n≤x

f(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1− f(p)

p

)−1

.
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5. Proof of Theorem 1

Letting Γk be the set defined in (2.1), in order to prove that η1 is a q-normal
number, it is sufficient to prove that

(5.1)

∑
n≤x

H(n) · max
γ∈Γk

∣∣∣∣ωγ(P (n))− r

qk
log x

log q

∣∣∣∣ =
= o

(
(log x) ·

∑
n≤x

H(n)

)
(x → ∞).

Indeed, we need to show that for most integers n ≤ x, the number of occurrences

of P (n) in the words γ = b1 . . . bk ∈ Ak
q is asymptotic to

r

qk

⌊
log n

log q

⌋ (
which for

large n ≤ x is asymptotic to r
qk

log x
log q

)
. By proving (5.1), we will have shown

that the largest possible difference between ωγ(P (n)) and r
qk

log x
log q is on average

o(log x), which is sufficient to show that η1 is a q-normal number.

Now, using the Cauchy–Schwarz inequality, the Bassily result (2.2) and
finally the condition (3.1), we obtain that∑

n≤x

H(n) · max
γ∈Γk

∣∣∣∣ωγ(P (n))− r

qk
log x

log q

∣∣∣∣ ≤ √∑
n≤x

H2(n) · x log x ≤

≤

√√√√x log x · sH(x) ·
(∑

n≤x

H(n)

)2

=

=
√

x log x ·
√
sH(x) ·

∑
n≤x

H(n) =

= o

(
(log x) ·

∑
n≤x

H(n)

)
(x → ∞),

thus establishing (5.1) and completing the proof of Theorem 1. ■

6. Proof of Theorem 2

Theorem 2 will follow if we can prove that

(6.1)
∑
p≤x

H(p)max
j∈Γk

∣∣∣∣ωγ(P (p))− r

qk
log x

log q

∣∣∣∣ = o

(
log x ·

∑
p≤x

H(p)

)
(x → ∞).



New families of normal numbers constructed from existing ones 7

Proceeding esentially as in the proof of Theorem 1, one can see that (6.1) is a
consequence of (3.3), from which the proof of Theorem 2 follows. ■

7. Applications

We now identify some particular types of functions H(n) for which Theo-
rems 1 and 2 apply.

7.1. Choosing H(n) to be a polynomial

Let Q(x) ∈ R[x] be a polynomial of degree d ≥ 1, and set H(n) := ⌊|Q(n)|⌋
for each n ∈ N. In this case,∑

n≤N

H(n) ≈ Nd+1 and
∑
n≤x

H2(n) ≈
∑
n≤x

n2d ∼ x2d+1.

Hence, ∑
n≤x

H(n)

2

≈

∑
n≤x

nd

2

≈ (xd+1)2 = x2d+2,

from which it follows that condition (3.1) is satisfied, implying that the corre-
sponding real number defined by (3.2) is indeed a normal number in base q.

Following essentially the same kind of reasoning, one easily sees that the
conditions of Theorem 2 are also satisfied and therefore that the corresponding
real number defined by (3.4) is a normal number in base q.

7.2. Choosing H(n) to be a multiplicative function

Let H0 be an arithmetic multiplicative function such that H0(p) = w for all
primes p, where 1 < w < 2, and also such that H0(p

r) < r + 1 for each prime
power pr. Then, set H(n) := ⌊H0(n)⌋ for every n ∈ N. In order to show that
condition (3.1) holds, we will prove that

(7.1) lim
x→∞

SH0
(x) · x

log x
= 0.

and

(7.2) lim
x→∞

sH0(x)

sH(x)
= 1.

First observe that for ℜs > 1,

∞∑
n=1

H0(n)

ns
=

∏
p

1 +
w

ps
+
∑
r≥2

H0(p
r)

prs

 = ζ(s)wA1(s),
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∞∑
n=1

H2
0 (n)

ns
= ζ(s)w

2

A2(s),

where A1(s) and A2(s) are two holomorphic functions bounded in the half
plane ℜs > 1 − δ, where δ > 0 is a suitable small number, with A1(1) ̸= 0
and A2(1) ̸= 0. Then, it follows from Proposition 1 that there exist positive
constants c1 and c2 such that, as x → ∞,∑

n≤x

H0(n) = (1 + o(1))c1x log
w−1 x,

∑
n≤x

H2
0 (n) = (1 + o(1))c2x log

w2−1 x,

from which it follows that

sH0
(x) = (1 + o(1))

c2x log
w2−1 x

c21x
2 log2(w−1) x

=

= (1 + o(1))
c2
c21

log(w−1)2 x

x
(x → ∞).

(7.3)

Since (w − 1)2 < 1, it is clear that (7.3) implies condition (7.1). On the other
hand, since H(n) = H0(n) +O(1), it follows that

H2(n) = H2
0 (n) +O(H0(n)) +O(1),

which combined with (7.3) implies (7.2). From this, condition (3.1) is proved.

Hence, it follows that the conditions of Theorem 1 is satisfied, so that the
corresponding real number defined by (3.2) is a normal number in base q.

Similarly, one can show that the conditions of Theorem 2 are satisfied and
therefore that the corresponding real number defined by (3.4) is also a normal
number in base q.

7.3. Choosing H(n) as completely multiplicative functions

7.3.1. Considering sets of integers whose prime factors are all con-
gruent to 1 mod D

Fix an integer D ≥ 3 and consider the completely multiplicative function
H(n) defined on primes p by

H(p) :=

{
1 if p ≡ 1 (mod D),
0 otherwise.
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Applying Proposition 4 with f(n) = H(n), we find that, as x → ∞,

(7.4)
∑
n≤x

H(n) =

(
eγr

Γ(r)
+ o(1)

)
x

log x

∏
p≤x

(
1− f(p)

p

)−1

.

Now, setting ℘0 := {p ∈ ℘ : f(p) = H(p) = 1}, we have that, in light of
Proposition 2,

(7.5)
∑
p≤x
p∈℘0

1 =
∑
p≤x

p≡1 (mod D)

1 = (1 + o(1))
1

ϕ(D)

x

log x
,

so that, as x → ∞,

(7.6)
∑
p≤x
p∈℘0

1

p
=

1

ϕ(D)
log log x+ C1 + o(1)

for some constant C1. Hence, using (7.6), we have, as x → ∞,

∏
p≤x

(
1− f(p)

p

)−1

=
∏
p≤x
p∈℘0

(
1− 1

p

)−1

= exp

{
−

∑
p≤x
p∈℘0

log

(
1− 1

p

)}
=

= exp

{∑
p≤x
p∈℘0

1

p
+ C2 + o(1)

}
=

= exp

{
1

ϕ(D)
log log x+ C3 + o(1)

}
=

= (C4 + o(1))(log x)1/ϕ(D)(7.7)

for some constants C2, C3 and C4 > 0.

Using (7.7) in (7.4), we obtain that∑
n≤x

H(n) =

(
C4e

γr

Γ(r)
+ o(1)

)
x

(log x)1−1/ϕ(D)
(x → ∞),

from which it follows, setting C =
C4e

γr

Γ(r)
and using the trivial fact that in this

case H(n)2 = H(n), that

sH(x) =

∑
n≤x H

2(n)(∑
n≤x H(n)

)2 = (1+o(1))
(log x)1−1/ϕ(D)

Cx
= o

(
log x

x

)
(x → ∞),
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implying that condition (3.1) of Theorem 1 is satisfied. On the other hand,
to see that the conditions of Theorem 2 are satisfied, we first observe that
H(p)2 = H(p) for all primes p and that it follows from (7.5) that∑

p≤x

H(p) = (1 + o(1))
1

ϕ(D)

x

log x
(x → ∞),

from which we have that

tH(x) =
1∑

p≤x H(p)
= (1 + o(1))

ϕ(D) log x

x
= o

(
log2 x

x

)
(x → ∞),

as required. It is then easy to conclude that the conditions of Theorem 2 are
satisfied.

The conditions of both Theorems 1 and 2 having been verified for this
particular function H, we may therefore conclude that the corresponding real
numbers defined by (3.2) and (3.4) are normal numbers in base q.

7.3.2. Considering sets of integers generated by particular subsets
of primes

Let ℘ be a set of primes for which there exists a positive constant δ < 1
satisfying

#{p ≤ x : p ∈ ℘} = (δ + o(1))
x

log x
(x → ∞).

Then, consider the completely multiplicative functionH(n) defined on primes
p by

H(p) :=

{
1 if p ∈ ℘,
0 otherwise.

Proceeding in a manner similar to the one used in the preceding subsection,
we obtain that ∑

n≤x

H(n) = (A+ o(1))
x

(log x)1−δ
(x → ∞),

where A is a computable constant which depends on δ.

Again, proceeding as in preceding subsection, one will reach the conclusion
that with this particular functionH(n), the corresponding real numbers defined
by (3.2) and (3.4) are normal numbers in base q.

Acknowlegment. The authors are grateful to the referee for pointing out
some discrepancies and for making various valuable suggestions.
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