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Abstract. Aymone introduced the weighted prime number race, which
reflects the magnitudes of the primes. We discuss the distribution of prime
numbers in reside classes from some perspective of probability theory, using
a weighted counting function.

1. Introduction and main result

It is known as Chebyshev’s bias that there tend to be more primes of the
form 4k + 3 than of the form 4k + 1 (k ∈ Z). This phenomenon lasts up to
a certain number, but in fact the following phenomenon occurs: Denote by
π(x, q, a) the number of primes p ≤ x such that p ≡ a (mod q). The function

π(x, 4, 1)− π(x, 4, 3)

changes its sign infinitely many times. Let χ4 be the real and non-principal
Dirichlet character mod 4, that is,

χ4(n) =


1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4),

0 if n is even.
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Then we have

π(x, 4, 1)− π(x, 4, 3) =
∑

p≤x:prime

χ4(p).

Throughout this paper, let χ be a real and non-principal Dirichlet character
modulo q. Aymone [2] discussed whether for some 0 ≤ σ < 1 the weighted
counting function ∑

p≤x:prime

χ(p)

pσ

changes sign only for a finite number of integers x ≥ 1 using conditions based
on the Dirichlet L-function. Furthermore, Aoki and Koyama [3] introduced the
waited counting function

πs(x, q, a) =
∑

p≤x:prime
p≡a(mod q)

1

ps
(s ≥ 0).

Note that π(x, q, a) = πs(x, q, a) if s = 0. The sign-changes of

π(x, q, 1)− π(x, q, l)

is studied in a series of papers [6, 7, 8] by Knapowski and Turán, where l ̸≡ 1
(mod q). Denote by Nq(l) the number of solutions for x2 ≡ l (mod q). Kátai [4]
proved that if L(s, χ) ̸= 0 for s ∈ (0, 1) and if l1 ̸≡ l2(mod q) and Nq(l1) =
= Nq(l2), then

lim sup
x→∞

(π(x, q, l1)− π(x, q, l2)) log x√
x

> 0.

Kátai [5] also states the following fact in (4.6):

π(x+ h, q, a)− π(x, q, a) =
1

φ(q)
· h

log x
+O

(
h

log2 x

)
for every fixed q ≥ 3, and (a, q) = 1, where φ is the Euler totient function. For
these facts, we are interested in the distribution of large primes. We focus on
the arithmetic functions

Π+
q (x) :=

∑
n>x

Λ(n)(1 + χ(n))

2nσ log n
,(1.1)

Π−
q (x) :=

∑
n>x

Λ(n)(1− χ(n))

2nσ log n
(1.2)
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for σ > 1. Here Λ denotes the von Mangoldt function which is defined as
follows:

Λ(n) =

{
log p if n = pm for some prime p and some m ≥ 1,

0 otherwise

for every integer n ≥ 1. The meaning of (1.1) and (1.2) is as follows: Let q = 4
and χ = χ4.

Π+
4 (x)−Π−

4 (x) =
∑
n>x

n≡1(mod 4)

Λ(n)

nσ log n
−

∑
n>x

n≡3(mod 4)

Λ(n)

nσ log n
=

=
∑
n>x

Λ(n)χ4(n)

nσ log n
=

=
∑

p>x:prime

χ4(p)

pσ
+

∞∑
m=2

∑
pm>x
p:prime

χ4(p
m)

mpmσ
.

Hence we investigate the asymptotic behavior of∑
n>x

Λ(n)χ(n)

nσ log n
.

We introduce the Möbius function µ: µ(1) = 1. For n > 1, we write n =
= pa1

1 pa2
2 · · · pak

k , where p1, p2, . . . , pk denote distinct prime numbers, then

µ(n) =

{
(−1)k if a1 = a2 = · · · = ak = 1,

0 otherwise.

In addition, we write

A(n) =
∑
d|n

χ(d), B(n) =
∑
d|n

µ(d)χ(d).

We note that A(n) and B(n) are nonnegative and multiplicative and non-
negativity will be proved in the proof of Lemma 3.1 of Section 3. The Dirichlet

series
∞∑

n=1
A(n)n−s and

∞∑
n=1

B(n)n−s are calculated in Corollaries 2.1 and 2.2

of Section 2. We state our main theorem:

Theorem 1.1. Assume σ > 1.

(i) There is a positive constant C0 such that

C0

∑
n>x

1

nσ
−

∑
n>x

B(n)

nσ
≤

∑
n>x

Λ(n)χ(n)

nσ log n
≤

∑
n>x

A(n)

nσ
− C0

∑
n>x

1

nσ

for all positive integers x.
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(ii) There is a positive constant C1 such that

C1

∑
n>x

A(n)

nσ
−

∑
n>x

1

nσ
≤

∑
n>x

Λ(n)χ(n)

nσ log n
≤

∑
n>x

1

nσ
− C1

∑
n>x

B(n)

nσ

for all positive integers x.

Corollary 1.1. Assume σ > 1. We have(
C0

σ − 1
+ o(1)

)
1

xσ−1
−

∑
n>x

B(n)

nσ
≤

∑
p>x

p:prime

χ(p)

pσ
≤

≤
∑
n>x

A(n)

nσ
−
(

C0

σ − 1
+ o(1)

)
1

xσ−1

as x → ∞. Here C0 is a constant in Theorem 1.1.

We remark that there are a lot of studies on the tails of infinitely divisible
distributions. For example, see [10], [11], [13] and [14]. Furthermore, see
Sato’s book [12] for infinitely divisible distributions. Terminology follows Sato’s
book [12].

2. Dirichlet L-function

We consider the Dirichlet L-function

L(s, χ) =

∞∑
n=1

χ(n)

ns

for s = σ + it with σ > 1. Note that L(s, χ) ̸= 0 for σ > 1.

Lemma 2.1. Assume σ > 1. We have

L(σ − it, χ)

L(σ, χ)
=

∞∑
n=1

χ(n)

nσL(σ, χ)
eit logn =

= exp

[ ∞∑
n=2

(eit logn − 1)
χ(n)Λ(n)

nσ log n

]
.

Remark 2.1. If χ(n) takes negative values, L(σ−it,χ)
L(σ,χ) is not a characteristic

function of an infinitely divisible distribution.
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Proof. The first equation is obvious. We see from Example 2 of [1, p.239] that

L(σ − it, χ) = exp

[ ∞∑
n=2

eit lognχ(n)Λ(n)

nσ log n

]

for all t ∈ R. Hence the second equation holds. ■

The following lemma holds in the same way as Lemma 2.1.

Lemma 2.2. Assume σ > 1. We have

L(σ, χ)

L(σ − it, χ)
=

∞∑
n=1

µ(n)χ(n)L(σ, χ)

nσ
eit logn =

= exp

[ ∞∑
n=2

(eit logn − 1)
−χ(n)Λ(n)

nσ log n

]
.

Let σ > 1. As stated in [15], the Riemann zeta distribution Ψ is an infinitely
divisible distribution whose characteristic function is represented as

Ψ̂(t) =

∫
R

eituΨ(du) =(2.1)

= exp

[ ∞∑
n=2

(eit logn − 1)
Λ(n)

nσ log n

]
=

= exp

 ∞∫
0

(eitu − 1)Π(du)

 ,

where the Lévy measure Π is as follows:

Π(du) =

∞∑
n=2

Λ(n)

nσ log n
δlogn(du).

Here δa represents the probability measure concentrated at a, that is,

δa(B) =

{
1 if a ∈ B,

0 otherwise

for any Borel set B in R. Using the Riemann zeta function ζ(s), we have

Ψ̂(t) =
ζ(σ − it)

ζ(σ)
, t ∈ R.
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Hence we have

Ψ̂(t) =
1

ζ(σ)

∞∑
n=1

1

nσ
eit logn.

This means that

Ψ(dx) =
1

ζ(σ)

∞∑
n=1

1

nσ
δlogn(dx).

See Lin and Hu [9] for the Riemann zeta distribution.

In this section, we investigate the following two functions:

Ψ̂+(t) := Ψ̂(t) · L(σ − it, χ)

L(σ, χ)
,

Ψ̂−(t) := Ψ̂(t) · L(σ, χ)

L(σ − it, χ)
.

We show that these become characteristic functions of infinitely divisible dis-
tributions. The convolution for two finite measures H1 and H2 on R is defined
by

H1 ∗H2(B) =

∫
R

H1(B − x)H2(dx)

for any Borel set B in R.

Theorem 2.1. Assume σ > 1. We have

Ψ̂+(t) =

∞∫
0

eitx
1

ζ(σ)L(σ, χ)

∞∑
n=1

A(n)

nσ
δlogn(dx) =

= exp

[ ∞∑
n=2

(eit logn − 1)
(1 + χ(n))Λ(n)

nσ log n

]
.

Remark 2.2. The probability distribution Ψ+ defined by Ψ̂+(t) is an infinitely
divisible distribution.

Proof. From (2.1) and Lemma 2.1, it follows that

Ψ̂+(t) = exp

[ ∞∑
n=2

(eit logn − 1)
(1 + χ(n))Λ(n)

nσ log n

]
.
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Set

ν+(dx) :=

∞∑
n=1

χ(n)

nσL(σ, χ)
δlogn(dx)

for any Borel set B in R. Then it follows that

Ψ̂(t) · L(σ − it, χ)

L(σ, χ)
=

∫
R

eitxΨ ∗ ν+(dx).

Here we have

Ψ ∗ ν+(B) =

∫
R

ν+(B − x)Ψ(dx) =

=
1

ζ(σ)

∞∑
m=1

1

mσ

∞∑
n=1

χ(n)

nσL(σ, χ)

∫
R

δlogn(B − x)δlogm(dx) =

=
1

ζ(σ)

∞∑
m=1

1

mσ

∞∑
n=1

χ(n)

nσL(σ, χ)
δlogn+logm(B).

Hence we obtain that

Ψ̂+(t) = Ψ̂(t) · L(σ − it, χ)

L(σ, χ)
=

=
1

ζ(σ)

∞∑
m=1

1

mσ

∞∑
n=1

χ(n)

nσL(σ, χ)

∫
R

eitxδlogn+logm(dx) =

=
1

ζ(σ)L(σ, χ)

∞∑
m=1

∞∑
n=1

χ(n)

(mn)σ
eit log(mn) =

=
1

ζ(σ)L(σ, χ)

∞∑
k=1

∑
n|k

χ(n)

kσ
eit log k.

This implies the first equality holds. ■

Corollary 2.1. We have

∞∑
n=1

A(n)

ns
= ζ(s)L(s, χ)

for s = σ + it with σ > 1.

Proof. The corollary is obvious from Theorem 2.1. ■
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Theorem 2.2. Assume σ > 1. We have

Ψ̂−(t) =

∞∫
0

eitx
L(σ, χ)

ζ(σ)

∞∑
n=1

B(n)

nσ
δlogn(dx) =

= exp

[ ∞∑
n=2

(eit logn − 1)
(1− χ(n))Λ(n)

nσ log n

]
.

Remark 2.3. The probability distribution Ψ− defined by Ψ̂−(t) is an infinitely
divisible distribution.

Proof. From (2.1) and Lemma 2.2, it follows that

Ψ̂−(t) = exp

[ ∞∑
n=2

(eit logn − 1)
(1− χ(n))Λ(n)

nσ log n

]
.

Set

ν−(B) = L(σ, χ)

∞∑
n=1

µ(n)χ(n)

nσ
δlogn(B)

for any Borel set B in R. Similarly to the proof of Theorem 2.1, we obtain that

Ψ ∗ ν−(B) =
L(σ, χ)

ζ(σ)

∞∑
m=1

1

mσ

∞∑
n=1

µ(n)χ(n)

nσ
δlogn+logm(B) =

=
L(σ, χ)

ζ(σ)

∞∑
m=1

∞∑
n=1

µ(n)χ(n)

(mn)σ
δlog(nm)(B) =

=
L(σ, χ)

ζ(σ)

∞∑
k=1

∑
n|k

µ(n)χ(n)

kσ
δlog k(B).

Hence the first equality holds. ■

Corollary 2.2. We have

∞∑
n=1

B(n)

ns
= ζ(s)L(s, χ)−1

for s = σ + it with σ > 1.

Proof. The corollary is obvious form Theorem 2.2. ■



A weighted prime number race 9

3. Proof of Theorem 1.1

First, we make preparations for proving Theorem 1.1.

Lemma 3.1. For any positive integer x, we have

Π+
q (x) ≤

∑
n>x

A(n)

2nσ
and Π−

q (x) ≤
∑
n>x

B(n)

2nσ
.

Proof. Let p be prime. Notice that

A(pm) =
∑
d|pm

χ(d) = 1 +

m∑
n=1

χ(p)n,

B(pm) =
∑
d|pm

µ(d)χ(d) = µ(1)χ(1) + µ(p)χ(p) = 1− χ(p)

for m ≥ 1. Since B(n) are multiplicative, we see from this that B(n) ≥ 0.
The fact that A(n) ≥ 0 is stated in Theorem 6.19 of [1]. First, we prove the
first inequality. If χ(p) = 0, then A(pm) = 1 = 1 + χ(p)m. If χ(p) = 1, then
A(pm) = m + 1 ≥ 1 + χ(p)m. Let χ(p) = −1. If m is odd, then A(pm) = 0 =
= 1 + χ(p)m. If m is even, then

A(pm) = 1 =
1 + χ(p)m

2
≥ 1 + χ(p)m

m
.

These imply that

(1 + χ(pm))Λ(pm)

pmσ log pm
=

1 + χ(p)m

pmσm
≤ A(pm)

pmσ
.

Hence the first inequality holds. Secondly, we prove the second inequality. We
obtain that

(1− χ(pm))Λ(pm)

pmσ log pm
=

(1− χ(p))(1 + χ(p) + · · ·+ χ(p)m−1)

pmσm
=

=
1− χ(p)

pmσ
· 1 + χ(p) + · · ·+ χ(p)m−1

m
≤

≤ 1− χ(p)

pmσ
=

B(pm)

pmσ
,

Hence the second inequality holds. ■
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Here we set

Π+(du) =

∞∑
n=2

(1 + χ(n))Λ(n)

nσ log n
δlogn(du),

Π−(du) =

∞∑
n=2

(1− χ(n))Λ(n)

nσ log n
δlogn(du).

In addition, we set λ1 = Π+((0,∞)), λ2 = Π−((0,∞)), ρ+(du) = λ−1
1 Π+(du),

and ρ−(du) = λ−1
2 Π−(du). Let K > 0 and define finite measures R+

λ1
and R−

λ2

by

R+
λ1
(du) = K−1e−λ1

∞∑
n=1

λn
1

n!
ρn∗+ (du),(3.1)

R−
λ2
(du) = K−1e−λ2

∞∑
n=1

λn
2

n!
ρn∗− (du)(3.2)

on (0,∞). Here ρn∗+ and ρn∗− denote the n-fold convolutions of ρ+ and ρ−,

respectively. For any finite measure H, we denote by H the tail of H, that is,

H(x) = H({u : u > x}).

Lemma 3.2. For x ≥ 0, we have

KR+
λ1
(x) = Ψ+(x) and KR−

λ2
(x) = Ψ−(x).

Proof. By virtue of Theorems 2.1 and 2.2, we obtain that

Ψ+(du) = e−λ1

∞∑
n=0

λn
1

n!
ρn∗+ (du),

Ψ−(du) = e−λ2

∞∑
n=0

λn
2

n!
ρn∗− (du),

where ρ0∗+ and ρ0∗− are understood to be δ0. The equations (3.1) and (3.2) tell
us that the lemma holds. ■

Take λ0 such that λ0 > max{λ1, λ2, log 2} and take K > 0 such that
Keλ0 < 1. We define new finite measures R+

λ0
and R−

λ0
by

R+
λ0
(du) = K−1e−λ0

∞∑
n=1

λn
0

n!
ρn∗+ (du),

R−
λ0
(du) = K−1e−λ0

∞∑
n=1

λn
0

n!
ρn∗− (du)

on (0,∞). We can obtain similar lemmas to Lemmas 2.3 and 2.4 of [15]:
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Lemma 3.3. For k ≥ 1 and l ≥ 1, we have

(R+
λ0
)(k+l)∗(x) ≥ (K−1(1− e−λ0))l · (R+

λ0
)k∗(x),

(R−
λ0
)(k+l)∗(x) ≥ (K−1(1− e−λ0))l · (R−

λ0
)k∗(x)

and

(R+
λ0
)k∗(x) ≥

(
K−1(1− e−λ0)

)k−1 ·R+
λ0
(x),

(R−
λ0
)k∗(x) ≥

(
K−1(1− e−λ0)

)k−1 ·R−
λ0
(x).

Lemma 3.4. Let m ≥ 2. For x ≥ 0, we have

λ0ρ+(x) =

m∑
k=1

(Keλ0)2k−1

2k − 1
(R+

λ0
)(2k−1)∗(x) +

∞∑
k=1

(Keλ0)2k

2(m+ k)− 1
S+(k, x),

λ0ρ−(x) =

m∑
k=1

(Keλ0)2k−1

2k − 1
(R−

λ0
)(2k−1)∗(x) +

∞∑
k=1

(Keλ0)2k

2(m+ k)− 1
S−(k, x),

where

S+(k, x) = (Keλ0)2m−1(R+
λ0
)(2(m+k)−1)∗(x)− 2(m+ k)− 1

2k
(R+

λ0
)(2k)∗(x),

S−(k, x) = (Keλ0)2m−1(R−
λ0
)(2(m+k)−1)∗(x)− 2(m+ k)− 1

2k
(R−

λ0
)(2k)∗(x).

The following theorem can be proved in the same way as Theorem 1.1 of
[15]. The proof is omitted.

Theorem 3.1. Assume σ > 1. There is a positive constant C2 such that

C2

∑
n>x

A(n)

nσ
≤ Π+

q (x) =
∑
n>x

(1 + χ(n))Λ(n)

2nσ log n
≤

∑
n>x

A(n)

2nσ
,(3.3)

C2

∑
n>x

B(n)

nσ
≤ Π−

q (x) =
∑
n>x

(1− χ(n))Λ(n)

2nσ log n
≤

∑
n>x

B(n)

2nσ
(3.4)

for all positive integers x.

Now we proof Theorem 1.1. From (3.3) and (3.4) it follows that∑
n>x

Λ(n)

nσ log n
−

∑
n>x

B(n)

nσ
≤

∑
n>x

χ(n)Λ(n)

nσ log n
≤

∑
n>x

A(n)

nσ
−

∑
n>x

Λ(n)

nσ log n
,

2C2

∑
n>x

A(n)

nσ
−

∑
n>x

Λ(n)

nσ log n
≤

∑
n>x

χ(n)Λ(n)

nσ log n
≤

≤
∑
n>x

Λ(n)

nσ log n
− 2C2

∑
n>x

B(n)

nσ
.

Using Theorem 1.1 of [15], we obtain the theorem. ■
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Finally, we prove Corollary 1.1. We have∑
n>x

Λ(n)χ(n)

nσ log n
=

∑
p>x

χ(p)

pσ
+

∞∑
m=2

∑
pm>x

χ(pm)

mpmσ
.

The second term is calculated as follows:∣∣∣∣∣
∞∑

m=2

∑
pm>x

χ(pm)

mpmσ

∣∣∣∣∣ ≤
∞∑

m=2

∑
p>[x1/m]

1

mpmσ
=

=

[log2 x]∑
m=2

∑
p>[x1/m]

1

mpmσ
+

∞∑
m=[log2 x]+1

∑
p>[x1/m]

1

mpmσ

for x ≥ 4. Then we obtain that

[log2 x]∑
m=2

∑
p>[x1/m]

1

mpmσ
≤

[log2 x]∑
m=2

1

m

∞∑
n=[x1/m]+1

1

nmσ
≤

≤
[log2 x]∑
m=2

1

m

 1

([x1/m] + 1)mσ
+

∞∫
[x1/m]+1

du

umσ

 ≤

≤
[log2 x]∑
m=2

1

m

{
1

xσ
+

1

mσ − 1
· 1

([x1/m] + 1)mσ−1

}
≤

≤
[log2 x]∑
m=2

1

m
· mσ

mσ − 1

1

xσ−2−1 ≤

≤ σ

σ − 2−1
· log log2 x

xσ−2−1 .

Furthermore, we have

∞∑
m=[log2 x]+1

∑
p>[x1/m]

1

mpmσ
≤

∞∑
m=[log2 x]+1

∑
p:prime

1

pmσ
≤

≤
∞∑

m=[log2 x]+1

 1

2mσ
+

∞∫
2

du

umσ

 =

=

∞∑
m=[log2 x]+1

mσ + 1

mσ − 1
· 1

2mσ
≤

≤ σ + 1

σ − 1
· 1

1− 2−σ
· 1

xσ
.
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Hence we obtain that∣∣∣∣∣
∞∑

m=2

∑
pm>x

χ(pm)

mpmσ

∣∣∣∣∣ ≤
{

σ

σ − 1
· log log2 x

x1/2
+

σ + 1

(σ − 1)(1− 2−σ)
· 1
x

}
1

xσ−1

for x ≥ 4. It follows from Theorem 1.1 (i) that

∑
p>x:prime

χ(p)

pσ
≥ C0

∑
n>x

1

nσ
−

∑
n>x

B(n)

nσ
−

∞∑
m=2

∑
pm>x

χ(n)Λ(n)

nσ log n
,

∑
p>x:prime

χ(p)

pσ
≤

∑
n>x

A(n)

nσ
− C0

∑
n>x

1

nσ
−

∞∑
m=2

∑
pm>x

χ(n)Λ(n)

nσ log n
.

Hence the corollary holds. ■

4. Remark on Theorem 3.1

In [15], we discussed about the Dirichlet series

F (s) =

∞∑
n=1

f(n)

ns
,

for s = σ + it with σ > σa. Then we assumed that f(n) ≥ 0 for any n and
f(n) > 0 for some n ≥ 2. Now we suppose that F (s) converges absolutely for
σ > σa = 1. If F (s) ̸= 0 for σ > σ0 ≥ 1, then Theorem 11.14 of [1] tells us that

F (σ − it)

F (σ)
= exp

[ ∞∑
n=2

(eit logn − 1)
(f ′ ◦ f−1)(n)

nσ log n

]
(4.1)

for σ > σ0. Here f−1 is the Dirichlet inverse of f and f ′(n) = f(n) log n
and f ′ ◦ f−1 denotes the Dirichlet convolution of f ′ and f−1. Our method
depends on the characteristic function of an infinitely divisible distribution for
(4.1). So we required f(n) to be completely multiplicative in Theorem 3.1 of
[15]. If f(n) is not completely multiplicative, there exists an example such
that (4.1) is not a characteristic function of an infinitely divisible distribution
as follows: Let d(n) be the number of divisors of n, that is, d(n) =

∑
d|n 1.

We consider f(n) = d(n)3. Then f(n) is multiplicative, but it’s not com-
pletely multiplicative. Furthermore, it follows from Theorem 13.12 of [1] that
f(n) = o(nδ) for every δ > 0. Hence the Dirichlet series F (s) converges abso-
lutely for σ > 1.

Lemma 4.1. If f(n) = d(n)3, then we have f ′ ◦ f−1(4) < 0.
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Proof. We see from Theorem 2.8 of [1] that

f−1(2) = − 1

f(1)

∑
d|2
d<2

f

(
2

d

)
f−1(d) = −f(2) = −8.

Hence we obtain that

f ′ ◦ f−1(4) =
∑
d|4

(f(d) log d)f−1

(
4

d

)
= −10 log 2 < 0.

The lemma holds. ■

Set

Π(B) =

∫
B

∞∑
m=2

f ′ ◦ f−1(n)

nσ log n
δlogn(du)

for any Borel set B in R. Lemma 4.1 implies that if f(n) = d(n)3, Π is not a
measure. Hence the following proposition holds:

Proposition 4.1. If f(n) = d(n)3, then F (σ−it)F (σ)−1 is not a characteristic
function of an infinitely divisible distribution.

Remark. The arithmetic function d(n)3 is not completely multiplicative.

In this paper, we discuss two cases

F (s) =

∞∑
n=1

A(n)

ns
and F (s) =

∞∑
n=1

B(n)

ns
.

See Theorems 2.1 and 2.2, Corollaries 2.1 and 2.2.

Proposition 4.2. The arithmetic functions A(n) and B(n) are not completely
multiplicative.

Proof. Since χ is non-principal, there is a prime number p such that χ(p) = −1.
Then

A(p2) = 1 + χ(p) + χ(p)2 ̸= (1 + χ(p))2 = A(p)2,

B(p2) = 1− χ(p) ̸= (1− χ(p))2 = B(p)2.

Hence the lemma holds. ■

Proposition 4.2 insists that we do not know whether (f ′ ◦ f−1)(n) ≥ 0 for
any n ≥ 2. Hence Theorems 2.1 and 2.2 do not tell us that

(A′ ◦A−1)(n) = 1 + χ(n),(4.2)

(B′ ◦B−1)(n) = 1− χ(n)(4.3)
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for n ≥ 2 from the point of view of probability theory. However, from the point
of view of Dirichlet series, we can obtain (4.2). Indeed, we have

∞∑
n=2

(1 + χ(n))Λ(n)

ns log n
=

∞∑
n=2

(f ′ ◦ f−1)(n)

ns log n

for s = σ+ it with σ > 1. It follows from Theorem 11.3 of [1] that (4.2) holds.
Similarly, (4.3) holds.

Hence, in this paper, we deal with an example that could not be handled
in Theorem 3.1 of [15].
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