A NOTE ON DIVISION RINGS WITH INVOLUTION

Dau Thi Hue (Ho Chi Minh City, Vietnam)

Communicated by Bui Minh Phong

(Received 7 October 2024; accepted 10 November 2024)

Abstract. In this note, we investigate the structure of division rings with involution. It is shown that if we impose a suitable condition on some subset of symmetric elements then the algebraic structure of a division ring is effected.

1. Introduction

Let R be an associative ring with identity $1 \neq 0$. Recall that an *involution* on R is a map $* : R \to R$ which satisfies the following conditions for all elements x and y in R:

- (i) $(x+y)^* = x^* + y^*$,
- (ii) $(xy)^* = y^*x^*$,
- (iii) $(x^{\star})^{\star} = x.$

Let R be such a ring, and let Z(R) denote the center of R. It is straightforward to check that Z(R) is preserved under the involution \star . The restriction of \star to Z(R) is therefore an automorphism which is either the identity or of order 2. Accordingly, an involution which leaves the elements of Z(R) fixed is

Key words and phrases: Symplectic involution, commuting involution, scalar involution, quaternion division algebra.

²⁰¹⁰ Mathematics Subject Classification: 16K20, 16K40, 16W10. https://doi.org/10.71352/ac.58.101124

Published online: 8 March 2025

called an *involution of the first kind*. An involution whose restriction to the center is an automorphism of order 2 is called *involution of the second kind*. Throughout this note, we only investigate rings with involutions of the first kind.

Recall that the set of *symmetric* elements, the set of *traces*, and the set of *norms* of R are defined as follows:

$$R_{+} = \{x \in R \mid x^{\star} = x\},\$$

$$T_{R} = \{x + x^{\star} \mid x \in R\},\$$

$$N_{R} = \{xx^{\star} \mid x \in R\}.$$

Clearly that the sets T_R and N_R both are contained in R_+ .

In a series of his papers (see e.g. [4]-[6]), Chacron has considered the following conditions for a ring R with involution \star :

- (C1) $x^*x = xx^*$, for all $x \in R$.
- (C2) For each x in R, there exists a positive integer N depending on x such that $d_x^N(x^*) = 0$, where $d_x : R \to R$ is a map given by $y \mapsto yx xy$, and d_x^N is the N-th power of d_x under composition.
- (C3) For each x in R, there exists a positive integer N depending on x such that $x^*x^N = x^Nx^*$.
- (C4) $x + x^*$ is central for all $x \in R$.
- (C5) xx^* is central for all $x \in R$.

In accordance with [10, Propostion 2.6], if the involution \star satisfies (C1), (C4) or (C5), then it is said to be *commuting*, *symplectic* or *scalar* respectively, while (C2) and (C3) are called *local power commuting condition* and *local Engel condition* respectively. The relationships between these conditions are imposed on the following implications which are obvious:

$$(C5) \implies (C4) \implies (C1) \implies (C2) \text{ and } (C3).$$

Over the past few years, there have been many works devoted to the study of certain rings with involutions satisfying some of these conditions. It was shown in [5, Theorem 4.7] that if R is a semiprime ring satisfying a polynomial identity, then the conditions (C1), (C2), and (C3) are equivalent. If R is a semiprime ring instead, then it was proved in [4, Theorem 2.3] that (C1), (C4) and (C5) are equivalent. At the other extreme, it was shown in [6, Theorem 2.13] that in case R is a non-commutative simple ring which is algebraic over its center, then (C2) is equivalent to (C4) and R must be a quaternion algebra over its center.

There are close relationships between the conditions introduced by Chacron and the conditions on the set T_R of traces and on the set N_R of norms of R. It is clear that \star satisfies (C4) if and only if $T_R \subseteq Z(R)$, while \star satisfies (C5) if and only if $N_R \subseteq Z(R)$. Thus, in view of [6, Theorem 2.13], if R is a noncommutative simple ring algebraic over Z(R) such that $T_R \subseteq Z(R)$, then R is a quaternion algebra over its center. This fact particularly says, in some sense, that the condition $T_R \subseteq Z(R)$, or equivalently that \star satisfies (C4), is really a strong condition which imposes a special structure on the whole R.

In this note, we consider the case when R = D is a division ring, and the influence of some subsets of the sets T_D and N_D on the structure of D. Let G be a non-central subgroup of the multiplicative group D^{\times} of D. This means that G is not contained in the center F of D. For such a subgroup G, let us consider the sets T_G and N_G , defined as follows:

$$T_G = \{x + x^* \mid x \in G\} \text{ and } N_G = \{xx^* \mid x \in G\}.$$

From [3], it can be seen that if we impose suitable conditions on the set $T_G \cup N_G$ then the algebraic structure of whole D is effected. For instance, [3, Corollary 5.6] says that if $T_G \cup N_G$ is contained in the center F of D, then D is a quaternion division algebra over F and \star is of the symplectic type, provided G is a non-central normal subgroup of D^{\times} . Here, we consider the case when G is a non-central subnormal subgroup of D^{\times} , and we obtain the same result provided either $T_G \subseteq F$ or $N_G \subseteq F$. Moreover, we show the following equivalences:

$$T_G \subseteq F \iff N_G \subseteq F \iff T_D \subseteq F \iff N_D \subseteq F.$$

Throughout this note, if X is either a ring or a group then Z(X) stands for the center of X. An element $x \in X$ is said to be *central* if $x \in Z(X)$; otherwise x is *non-central*. A subset S of X is *non-central* if and only if there is at least one non-central element in S.

2. Division rings with involution

Let D be a division ring with involution \star and center F. In this section, we investigate the structure of D under the influence of a condition imposed on some subset of symmetric elements of D. The main result is Theorem 2.2, which generalizes [3, Corollary 5.6].

Since finite-dimensional central simple algebras play a crucial role in our investigation, let us firstly establish the necessary background by recalling some fundamental facts about these algebras. Let A be a finite-dimensional central simple algebra over a field F. Then, by the well-known Wedderburn-Artin

Theorem, there is a unique integer r and a unique up to isomorphism division ring D with center F such that $A \cong M_r(D)$. It is known that the dimension of D over F is a square; that is, $[D:F] = k^2$, for some integer $k \ge 1$. It follows that $[A:F] = r^2k^2$, and hence [A:F] is also a square. Accordingly, the *degree* of A is defined to be $\deg(A) = \sqrt{[A:F]}$. Let A be such an F-algebra with involution \star . As F is invariant under \star , it can be checked that the set of traces $T_A = \{x + x^* \mid x \in A\}$ of A is a F-subspace of A, while the set of norms $N_A = \{xx^* \mid x \in A\}$ is not. The dimension $[T_A:F]$ of T_A over F is given in the following lemma.

Lemma 2.1. Let A be a finite-dimensional central simple F-algebra of degree m with involution \star , and $d = [T_A : F]$. Then, either $d = \frac{m(m+1)}{2}$ or $d = \frac{m(m-1)}{2}$.

Proof. This lemma is an immediate corollary of [10, Proposition 2.6].

The evaluation of the dimensions above shows that the *F*-subspace T_A is significantly large in *A*. As noted in the introduction, N_A is a subset of A_+ , but it is not an *F*-subspace. However, there is the connection between N_A and the *F*-subspace T_A . A straightforward calculation shows that if $N_A \subseteq Z(A)$, then $T_A \subseteq Z(A)$ as well. Indeed, for any $x \in A$, we have

$$(1+x)(1+x)^{\star} = (1+x)(1+x^{\star}) = 1 + x + x^{\star} + xx^{\star}.$$

Because both $(1+x)(1+x)^*$ and xx^* are contained in Z(A), we get $x + x^* \in Z(A)$, yielding that $T_A \subseteq Z(A)$. This implies that N_A , despite not being a subspace, significantly influences to the structure of A.

Corollary 2.1. Let D be a centrally finite division ring with center F, n a positive integer, and \star an involution on $M_n(D)$. If $T_{M_n(D)} \subseteq F$, then either

- (i) n = 1, and D = F or D is a quaternion division algebra over F, or
- (ii) n = 2, and D = F and \star is the ordinary symplectic involution on $M_2(F)$; that is, the involution \star is given by:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Proof. Let $[D:F] = k^2$, for some integer $k \ge 1$. It follows that $A := M_n(D)$ is a *F*-central simple algebra of degree m := kn. In view of Lemma 2.1, there are two possible cases:

Case 1. $[T_A : F] = \frac{m(m+1)}{2}$. In this case, the involution \star must be of orthogonal type. Moreover, as $T_A \subseteq F$, we get that $\frac{m(m+1)}{2} = 1$, from which it follows that m = 1. This means that n = k = 1, and so A = D = F.

Case 2. $[T_A:F] = \frac{m(m-1)}{2}$. As in Case 1, the condition $T_A \subseteq F$ implies that $\frac{m(m-1)}{2} = 1$. It follows that m = 2, which means that n = 2 and k = 1, or else n = 1 and k = 2.

Case 2.1. n = 2 and k = 1. In this case, we have D = F and so $A \cong M_2(F)$. By [4, Theorem 2.3], the involution \star is scalar.

Assume that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in A$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$. Since \star is a symplectic and scalar, it follows that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} \in F$, and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} \in F$. Therefore,

$$\begin{pmatrix} a+m & b+n \\ c+p & d+q \end{pmatrix} \in F$$

and

$$\begin{pmatrix} am-bc & -ab+bq \\ cm-cd & -cb+dq \end{pmatrix} \in F,$$

which implies that b + n = c + p = -ab + bq = cm - cd = 0. Hence, n = -b, p = -c, q = a, m = d, and we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\star} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Case 2.2. n = 1 and k = 2. It follows that A = D and [D : F] = 4, which means that A is a quaternion algebra over F. The proof of the corollary is now complete.

The following lemma follows immediately from [4, Theorem 2.3].

Lemma 2.2. Let A be an unital semi-prime ring with center Z, and \star be an involution on A. Then, $T_A \subseteq Z$ if and only if $N_A \subseteq Z$.

Lemma 2.3. Let D be a division ring with center F, n a positive integer, and \star an involution on $M_n(D)$. If $T_{M_n(D)} \subseteq F$, then D is centrally finite. Consequently, either assertion (i) or (ii) of Corollary 2.1 holds for D.

Proof. In view of Lemma 2.2, the involution \star is both symplectic and scalar. Hence, for each $a \in M_n(D)$, the elements $s := a^* + a$ and $p := a^*a$ are both contained in F. It is straightforward to check that $a^2 - sa + p = 0$. This shows that the matrix ring $M_n(D)$ is algebraic of bounded degree 2, and so is D. By the famous result of Jacobson [8, Theorem 7], D is finite dimensional over F as desired.

Lemma 2.4. Let R be a ring with involution \star , G a subgroup of R^{\times} . Let Z[G] be the subring of R generated by G over the center Z of R. If $T_G \subseteq Z$, then the restriction of \star to Z[G] is a symplectic involution on Z[G].

Proof. Take an arbitrary element $x \in Z[G]$, and write it in the form

$$x = a_1g_1 + a_2g_2 + \dots + a_ng_n,$$

where $a_i \in Z$ and $g_i \in G$. Because \star leaves fixed elements in Z, it follows that

$$x + x^{\star} = a_1(g_1 + g_1^{\star}) + a_2(g_2 + g_2^{\star}) + \dots + a_n(g_n + g_n^{\star}).$$

As $T_G \subseteq Z$, we conclude that $g_i + g_i^* \in Z$ for all $i \in \{1, \ldots, n\}$, and so $x + x^* \in Z$, which implies that $x^* \in Z[G]$. Hence, the restriction of * to Z[G] is also an involution on Z[G] which is clearly symplectic.

Lemma 2.5. Let D be a division ring with center F, and H a subset of D^{\times} . For an element $g \in D$, let F(g) be the subfield of D generated by g over F. If $h^{-1}gh \in F(g)$ for any $h \in H$, then F(g) is H-invariant.

Proof. Every element in F(g) can be written in the form $a(g)b(g)^{-1}$, where a(t), b(t) are two polynomials in F[t] such that $b(g) \neq 0$. For any $0 \neq h \in H$, we have

$$h^{-1}a(g)b(g)^{-1}h = (h^{-1}a(g)h)(h^{-1}b(g)^{-1}h) = (h^{-1}a(g)h)(hb(g)h^{-1})^{-1}.$$

Write

$$a(g) = a_0 + a_1g + \dots + a_ng^n,$$

$$b(g) = b_0 + b_1g + \dots + b_mg^m,$$

where $a_i, b_j \in F$ for all $0 \leq i \leq n$ and $0 \leq j \leq m$. Because $h^{-1}gh \in F(g)$, it is easily checked that the elements $h^{-1}a(g)h$ and $hb(g)h^{-1}$ belong to F(g). It follows that $h^{-1}a(g)b(g)^{-1}h \in F(g)$, and the proof of the lemma is proved.

Lemma 2.6. Let D be a division ring with center F, G non-central subnormal subgroup of D^{\times} , and \star an involution on D. Then, $N_G \subseteq F$ if and only if \star is scalar.

Proof. The "if" part is clear. Now, assume that $N_G \subseteq F$. To prove $N_D \subseteq F$, it suffices to show that $N_{D^{\times}} \subseteq F$. Because G is subnormal in D^{\times} , there exist a smallest integer $r \geq 1$ and a series of subgroups

$$G = G_r \trianglelefteq G_{r-1} \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G_0 = D^{\times},$$

in which G_i is normal in G_{i-1} for all $1 \leq i \leq r$. For each i, we claim that if $N_{G_i} \subseteq F$ then $N_{G_{i-1}} \subseteq F$. Assume by contrary that $N_{G_{i-1}} \not\subseteq F$. Fix an element $g \in G_i \setminus F$. For any $x \in G_{i-1}$, since $x^{-1}gx \in G_i$, we have

$$a := x^{-1}gxx^{\star}g^{\star}(x^{\star})^{-1} = (x^{-1}gx)(x^{-1}gx)^{\star} \in F,$$

which implies that

(1)
$$gxx^{\star}g^{\star} = axx^{\star}.$$

Since $N_{G_i} \subseteq F$ and $g \in G_i$, we have $b = gg^* \in F$. Replace $g^* = bg^{-1}$ in (1), we get $bgxx^*g^{-1} = axx^*$, which implies that

$$(xx^{\star})^{-1}gxx^{\star} = b^{-1}ag \in F(g).$$

Because x was chosen arbitrarily in G_{i-1} , in view of Lemma 2.5, the last equation shows that the subfield F(g) is $N_{G_{i-1}}$ -invariant. Let N be the subgroup of D^{\times} generated by $N_{G_{i-1}}$. Then, F(g) is N-invariant, and so it is $N \cap G_{i-1}$ -invariant. Observe that $N \cap G_{i-1}$ is subnormal in G_{i-1} , and so it is subnormal in D^{\times} . Because $N_{G_{i-1}}$ is non-central, N is also non-central, and in view of [11, 14.4.5], $N \cap G_{i-1}$ is a non-central subnormal subgroup of D^{\times} . In view of [12, Theorem 1], it follows that either $F(g) \subseteq F$ or F(g) = D. The first case cannot occur because $g \notin F$. If the second case occurs, then D is non-commutative, a contradiction. Thus, the claim is shown. Now, by induction on r, we conclude that $N_D \subseteq F$, and so \star is scalar.

Proposition 2.1. Let D be a division ring with center F, and G a subgroup of D^{\times} such that F(G) = D. Let \star be an involution on D. If $T_G \subseteq F$, then D is a centrally finite division ring.

Proof. Assume that $T_G \subseteq F$. Let F[G] be the subring of D generated by G over F. According to Lemma 2.4, we conclude that the restriction of \star to F[G] is an symplectic involution on F[G]. Hence, by [4, Theorem 2.3], the restriction of \star to F[G] is scalar. So, for each $a \in F[G]$, we have $aa^{\star} \in Z(F[G]) \subseteq C_D(G)$, where $C_D(G)$ is the centralizer of G in D. Since F(G) = D, $C_D(G) = C_D(D) = F$, and so, $aa^{\star} \in F$. If we set $s := a^{\star} + a$ and $p := a^{\star}a$, then s and p are both in F. It is straightforward to check that $a^2 - sa + p = 0$, from which it follows that a satisfies the polynomial $x^2 - sx + p \in F[x]$. This shows that the prime ring F[G] is algebraic of bound degree 2 over the field F, and by [9, Theorem 3], F[G] satisfies a polynomial identity. By [1, Lemma 1], F[G] has a division ring of quotients, consisting of all elements of the form sr^{-1} , where $r, s \in F[G]$ and $r \neq 0$, which coincides with F(G) = D. According to [1, Theorem 1], we conclude that D = F(G) satisfies a polynomial identity, and so $[D:F] < \infty$ by [9, Theorem 1].

We are now ready to prove our main theorem.

Theorem 2.2. Let D be a division ring with center F, and \star an involution on D. If G is a non-central subnormal subgroup of D^{\times} , then the following assertions are equivalent:

- (i) $T_G \subseteq F$,
- (ii) $T_D \subseteq F$,
- (iii) $N_D \subseteq F$,
- (iv) $N_G \subseteq F$.

Moreover, if one of these conditions holds then D is a quaternion division algebra over F, and \star is symplectic.

Proof. Firstly, we show that (i) \Leftrightarrow (ii). It is clear that (ii) implies (i). Now, assume $T_G \subseteq F$. Because G is a non-central subnormal subgroup of D^{\times} , according to a Stuth's result (see [12, Theorem 1]), we have F(G) = D, and so $[D:F] < \infty$ by Proposition 2.1. In view of [7, Lemma 2.3], it follows that D = F(G) = F[G], and by Lemma 2.4, \star is a symplectic involution on D. This implies that $T_D \subseteq F$, and so (ii) holds. The equivalence (ii) \Leftrightarrow (iii) follows from Lemma 2.2, while the implication (iii) \Rightarrow (iv) follows immediately from the fact that $N_G \subseteq N_D$. Finally, the implication (iv) \Rightarrow (iii) follows from Lemma 2.6.

To finish the proof of the theorem, assume that (ii) holds. Then, in view of Proposition 2.1, we get $[D : F] < \infty$. Hence, by Corollary 2.1, D is a quaternion division algebra over F, and \star is symplectic.

Corollary 2.2. Let D be a division ring with center F, \star an involution on D, and G a non-central subnormal subgroup of D^{\times} . Then, the conditions (C1)–(C5) are all equivalent for D, and these conditions are also equivalent to the followings conditions:

- (i) $x + x^*$ is central for all $x \in G$,
- (ii) xx^* is central for all $x \in G$.

Moreover, if one of these conditions holds then D is a quaternion division algebra over F.

Proof. The equivalences of (C1)–(C5) follow from [4] and [5]. By Theorem 2.2, the conditions (i) is equivalent to (C4), and the condition (ii) is equivalent to (C5).

We close the paper with an interesting question which we shall investigate in a near future.

Remark. Let D be a division ring with involution \star of the first kind, and K an arbitrary subfield of D which is unnecessary invariant under \star . If $T_D \cup N_D \subseteq K$, then every element $a \in D$ satisfies the quadratic equation $x^2 - sx + p = 0$, where $s = a + a^*$ and $p = a^*a$. This means that D is left algebraic of bound degree 2

over K. According to [2, Theorem 1.3], we get that D is a centrally finite division ring with center F, and $[D:F] \leq 4$; that is, D is either a field or a quaternion division ring. At this point, it is reasonable to ask if the main results of the current paper should be also true if we replace the center of D by an arbitrary its subfield?

References

- [1] Amitsur, S.A., On rings with identities, J. London Math. Soc, 30 (1955), 464–470. https://doi.org/10.1112/jlms/s1-30.4.464
- [2] Bell, J.P., V. Drensky and Y. Sharifi, Shirshov's theorem and division rings that are left algebraic over a subfield, J. Pure Appl. Algebra, 217 (2013), 1605–1610. https://doi.org/10.1016/j.jpaa.2012.11.015
- Bien, M.H., B.X. Hai and D.T. Hue, On the unit groups of rings with involution, Acta Math. Hungar, 166(2) (2022), 432-452. https://doi.org/10.1007/s10474-022-01223-4
- [4] Chacron, M., Commuting involution, Commun. Algebra, 44(9) (2016), 3951–3965. https://doi.org/10.1080/00927872.2015.1087546
- [5] Chacron, M., Involution satisfying a local Engel or power commuting condition, *Commun. Algebra*, 45(5) (2017), 2018–2028. https://doi.org/10.1080/00927872.2016.1226879
- [6] Chacron, M., More on involutions with local Engel or power commuting conditions, *Commun. Algebra*, 45(8) (2017), 3503-3514. https://doi.org/10.1080/00927872.2016.1237641
- Hai, B.X. and N.V. Thin, On locally nilpotent subgroups of GL₁(D), Commun. Algebra, 37 (2009), 712–718. https://doi.org/10.1080/00927870802255287
- [8] Jacobson, N., Structure theory for algebraic algebras of bounded degree, Ann. of Math, 46 (1945), 695–707. https://doi.org/10.2307/1969205
- [9] Kaplansky, I., Rings with a polynomial identity, Bull. Amer. Math. Soc, 54 (1948), 575–580.
 https://doi.org/10.1090/S0002-9904-1948-09049-8
- [10] Knus, M.-A., A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloquium Publications 44, 1998. https://doi.org/10.1090/coll/044
- [11] Scott, W.R., Group Theory, Dover Publications, Inc., New York, 1987.

[12] Stuth, C.J., A generalization of the Cartan-Brauer-Hua theorem, Proc. Amer. Math. Soc, 15 (1964), 211–217. https://doi.org/10.1090/S0002-9939-1964-0158899-0

Dau Thi Hue

Faculty of Mathematics and Computer Science University of Science Ho Chi Minh City Vietnam and Vietnam National University Ho Chi Minh City Vietnam dthue.sgddt@tphcm.gov.vn