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Abstract. Aymone introduced the weighted prime number race, which
reflects the magnitudes of the primes. We discuss the distribution of
prime numbers in reside classes from some perspective of probability
theory, using a weighted counting function.

1. Introduction and main result

It is known as Chebyshev’s bias that there tend to be more primes of the
form 4k + 3 than of the form 4k + 1 (k € Z). This phenomenon lasts up to
a certain number, but in fact the following phenomenon occurs: Denote by
m(x,q,a) the number of primes p < z such that p = a (mod ¢). The function

m(x,4,1) — w(x,4,3)

changes its sign infinitely many times. Let x4 be the real and non-principal
Dirichlet character mod 4, that is,

1 ifn=1 (mod4),
xa(n) =< —1 ifn =3 (mod 4),

0 if n is even.
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Then we have
w(x,4,1) — 7(x,4,3) = Z x4(p).
p<x:prime

Throughout this paper, let x be a real and non-principal Dirichlet character
modulo ¢g. Aymone [2] discussed whether for some 0 < o < 1 the weighted
counting function

3 x(p)

o
p<x:prime p

changes sign only for a finite number of integers x > 1 using conditions based
on the Dirichlet L-function. Furthermore, Aoki and Koyama [3] introduced the
waited counting function

ms(x,q,a) = Z is (s >0).

p<ax:prime
p=a(mod q)

Note that 7(x,q,a) = 7s(z,q,a) if s = 0. The sign-changes of

7T(.’E, q, 1) - 71'(1’, q, l)

is studied in a series of papers [6, 7, 8] by Knapowski and Turén, where [ £ 1
(mod ¢). Denote by N,(I) the number of solutions for % = [ (mod ¢). Kétai [4]
proved that if L(s,x) # 0 for s € (0,1) and if l; # l3(mod ¢q) and Ny(l1) =
= Nq(lg), then

lim sup (Tr(x, q, ll) — 7'1'(1‘7 q, lz)) log x
Katai [5] also states the following fact in (4.6):
1 h h
w(x+ h,q,a) —7(x,q,a) = . +0
( 0 @) =) ¢(q) logz <log2x>

for every fixed ¢ > 3, and (a,q) = 1, where ¢ is the Euler totient function. For
these facts, we are interested in the distribution of large primes. We focus on
the arithmetic functions

(1.1) M) = 3 A +x(n)

> 0.

= 2n° logn
(12 1 (a) = Y 0 ()

for 0 > 1. Here A denotes the von Mangoldt function which is defined as
follows:

logp if n = p™ for some prime p and some m > 1,
A(n) =

0 otherwise
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for every integer n > 1. The meaning of (1.1) and (1.2) is as follows: Let ¢ = 4
and x = x4.

M- = Y S s A

~ n%logn ~ nlogn
n>x n>x
n=1(mod 4) n=3(mod 4)
_ Z A(n)xa(n) _
= n’ logn
> -y ub
p>x:prime pe m=2 pm>m mpma

p:prime

Hence we investigate the asymptotic behavior of

A(n)x(n
3 (n)x(n)

nologn
n>x D)

We introduce the Mobius function p: w(1) = 1. For n > 1, we write n =

=pi'ps? - - pp*, where pi, pa, ..., p denote distinct prime numbers, then
(71)]C ifa1:a2:~~:ak:1,
p(n) = .
0 otherwise.

In addition, we write
n)=>_x(d), B(n)=>_ ud)x(d)
d|n d|n

We note that A(n) and B(n) are nonnegative and multiplicative and non-
negammty will be proved i 1n the proof of Lemma 3.1 of Section 3. The Dirichlet
series Z A(n)n—* and Z B(n)n~* are calculated in Corollaries 2.1 and 2.2

n=1 n=1
of Section 2. We state our main theorem:

Theorem 1.1. Assume o > 1.

(i) There is a positive constant Cy such that

A(n) 1
COZ*_Z ne <T;; n"logn _;7_002777

n>x n>x n>x

for all positive integers x.
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(ii) There is a positive constant Cy such that

N I DI PSR

n>x n>x n>x

for all positive integers x.
Corollary 1.1. Assume o > 1. We have
Co 1 B(n) x(p)
1 — < <
<0—1+0( )) o1 Z ne = Z P’ =

n>x p>x
p:prime

<

-~
S
|
VR
Q

|| &2
L

+
S
=
N———
8

T)—l

na
n>x

as x — o0o. Here Cy is a constant in Theorem 1.1.

We remark that there are a lot of studies on the tails of infinitely divisible
distributions. For example, see [10], [11], [13] and [14]. Furthermore, see
Sato’s book [12] for infinitely divisible distributions. Terminology follows Sato’s
book [12].

2. Dirichlet L-function

We consider the Dirichlet L-function
— x(n)
L =
(5,%) nE:l e

for s = o + it with ¢ > 1. Note that L(s,x) # 0 for ¢ > 1.

Lemma 2.1. Assume o > 1. We have

L(U — Zt? X) _ - X(TL) eit logn __
L(o,x) 2 n?L(o, x) B

n=1

S
itlogn _ 1 X(?’l)A(?’l)
xp Lz_:z(e ) n? logn
L(o—it,x)

is not a characteristic
L(o,x)

Remark 2.1. If x(n) takes negative values,
function of an infinitely divisible distribution.

Proof. The first equation is obvious. We see from Example 2 of [1, p.239] that

Lo —it.x) = exp [z e XL
n=2

for all ¢ € R. Hence the second equation holds. |
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The following lemma holds in the same way as Lemma 2.1.

Lemma 2.2. Assume o > 1. We have

L(o, x) B 00 L(o, x) sitlogn _
= exp i(ei“og” — 1)M

nclogn
n=2 )

Let 0 > 1. Asstated in [15], the Riemann zeta distribution ¥ is an infinitely
divisible distribution whose characteristic function is represented as

(2.1) V) = /e“uqf(du) =

R

A(n)
_ itlogn _
P lz n" logn]

exp | [(e - 1)

0

where the Lévy measure II is as follows:

H(du):i An) 5 ().

s no logn

Here d,, represents the probability measure concentrated at a, that is,

1 ifaeB,
da(B) =

0 otherwise

for any Borel set B in R. Using the Riemann zeta function ((s), we have
~ — 1t
by == g

Hence we have

This means that
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See Lin and Hu [9] for the Riemann zeta distribution.

In this section, we investigate the following two functions:

R
T_(t) = 0(t) - ]m

We show that these become characteristic functions of infinitely divisible dis-
tributions. The convolution for two finite measures H; and Hs on R is defined

by

R

for any Borel set B in R.

Theorem 2.1. Assume o > 1. We have

o0

b = [ 1 — A(n) o
Vi) = / C(U)L(a,x); — dogn(de) =
= exp [Z(eitlogn _ 1)%7(2);\@)] .

n=2

Remark 2.2. The probability distribution ¥, defined by ¥ (¢) is an infinitely
divisible distribution.

Proof. From (2.1) and Lemma 2.1, it follows that

W (t) = exp n<logn

n=2

; [i(l _ (L xm)Am)

Set
vi(dz) = i ﬂélo n(dx)
= nL(o, x) &
for any Borel set B in R. Then it follows that

W(t)- L(Z(;Z:)X) = /eim\I! * vy (dx).
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Here we have

Uxv (B) = /zq.(B—x)W(dx) =
R
I & 1 & xn) /
= = Ologn(B — )010g m (dz) =
C(U)mz_:lm”;nf’L(a,x)R tog Jotog m ()
I &< 1 & x(n)
= TN —_— 60 n+logm B).
S S A e
Hence we obtain that
T T L(U_Zth)
U, (t) =
+< ) ( ) L(O’, X)
IR TR IR X(n)/m _
— ((o) mzzl me ; n°L(o, x) J " Olog n+logm (dz) =
1 — — X(n) it log(mn)
= e =
(VL) 2= 2 ()7
1 . X(TL) it log k
= e .
o) 252 e
This implies the first equality holds. |

Corollary 2.1. We have

> A s
n=1

for s =0+ it with o > 1.

Proof. The corollary is obvious from Theorem 2.1. |

Theorem 2.2. Assume o > 1. We have

oo

b ek SN B0
b)) = [t S T )

0 n=1

::emlfmﬁmn_uu—xm»Mm

nc logn
n=2 &)

Remark 2.3. The probability distribution ¥_ defined by ¥_ (t) is an infinitely
divisible distribution.
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Proof. From (2.1) and Lemma 2.2, it follows that

00 = o [ S even - 1y L XD
n=2

Set
v-(B) = Lo 3 M0 5 ()
n=1

for any Borel set B in R. Similarly to the proof of Theorem 2.1, we obtain that

_ Lo,x) v~ 1 < p(n)x(n) _
\I’*V—(B) - C(U) mzz:lﬁ;leogn—Hogm(B)—
_ L(o,x) v o H(m)x(n) _
) 22 e e (B)=
_ L(o:x) N~y mm)x(n)
() 22w )
Hence the first equality holds. |

Corollary 2.2. We have

S B0 s 0

nS

n=1

for s = o +it with o > 1.

Proof. The corollary is obvious form Theorem 2.2. |

3. Proof of Theorem 1.1

First, we make preparations for proving Theorem 1.1.

Lemma 3.1. For any positive integer x, we have

IL} (z) < Z % and 1, (z) < Z B;q(;z)

Proof. Let p be prime. Notice that

Ap™ = D oxd =1+ x»)"
d|p™ n=1
B(p™) = Y uld)x(d) = p(1)x(1) + up)x(@) =1 - x(p)

d|pm
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for m > 1. Since B(n) are multiplicative, we see from this that B(n) > 0.
The fact that A(n) > 0 is stated in Theorem 6.19 of [1]. First, we prove the
first inequality. If x(p) = 0, then A(p™) =1 =1+ x(p)™. If x(p) = 1, then
AP™)=m+1>1+ x(p)™. Let x(p) = —1. If m is odd, then A(p™) =0 =
=1+ x(p)™. If m is even, then

1 m 1 m
A(pm) — 1= + X(p) > + X(p> _
2 m

These imply that

A+ xE™)AP™) _ 1+x@)™ _ AR™)
pma 1ogpm pmam - pmo

Hence the first inequality holds. Secondly, we prove the second inequality. We
obtain that

(L=x(@™)A@E™)  _ Q=x@)I+x(@) +-+x@)™") _
pme log p™ - pmom a
_ 11X 14xm) 4+ x@™
pme m B
o Ll=x( _ B@")
- pm™ pme
Hence the second inequality holds. |

Here we set

H+(du) = Z no logn )5logn (du)
O_(du) = Z = logn( )510gn(du)

In addition, we set A; = IT; ((0,00)), Ao = II_((0,00)), py(du) = A7 T (du),
and p_(du) = Ay 'TI_(du). Let K > 0 and define finite measures R}\"l and Ry,

-1 - = )\n 7%
(3.1) Y (du) = K~'e™ ) “5pl(du),

n=1

(3.2) R;, (du) K~ te e Z A’ﬁ P (du)

n (0,00). Here p’t* and p™* denote the n-fold convolutions of py and p_,
respectively. For any finite measure H, we denote by H the tail of H, that is,

H(z) = H{u:u>z}).
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Lemma 3.2. For z > 0, we have

KR{ (z) =V (z) and KR; (z) = U_().
Proof. By virtue of Theorems 2.1 and 2.2, we obtain that
\If(d) _ 7)\1i)‘in*(d)
+(du) = e P (du),
n=0
U_(du) = e*)‘2i)\—g " (du)
- B < nl P= ’
n=

where pJ* and p% are understood to be dp. The equations (3.1) and (3.2) tell
us that the lemma holds. ]

Take Ao such that Ag > max{A;, A, log2} and take K > 0 such that
Ke* < 1. We define new finite measures R;\FO and Ry by

oo

-1_— A Tk
R = Ke Y e,
n=1
R— d _ K71 — Ao - )\8 n* d
W) = K3 M )
n=1

on (0,00). We can obtain similar lemmas to Lemmas 2.3 and 2.4 of [15]:

Lemma 3.3. For k> 1 andl > 1, we have
(R )F+Dx(z) > (K7'(1—e )" (RS )F*(x),
(R, )+ (x) > (K~'(1—e ) - (R, )*(2)

and
(RL (@) > (K'(1-e) " Rf (a),

(R )M (@) > (K '(1—e) " Ry (a).

Lemma 3.4. Let m > 2. For x > 0, we have

m e)\g 2k—1 0 e)\o 2k
©rre) = S B e )+ 3 BT g g,

£ 2k —1 £ 2(m+k;—1
o) = 3SR + 5 g S
where
Sulka) = (Keoyr (B )00 (a) — 2R = Wprans o
S (ko) = (Ked)m=I(Ry,)Cmh-Dx(z) - %( R ) (2)
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The following theorem can be proved in the same way as Theorem 1.1 of
[15]. The proof is omitted.

Theorem 3.1. Assume o > 1. There is a positive constant Cs such that

(33) CQZAé?)SHJ<I>=Z%<Z e
CRINCY SELUTFIEED D=t L0 LU gied

for all positive integers x.

Now we proof Theorem 1.1. From (3.3) and (3.4) it follows that

A(n B(n A(n
5 Aw —E R i E R LB PP

no logn no
n>x n>wx n>x n>wx
A(n) x(n)A(n)
2 — < _—r - <
2 Z Zn”logn - nlogn —
n>x n>x n>wx
A(n) B(n)
< — =2 —
S D i D Dl
n>x n>x
Using Theorem 1.1 of [15], we obtain the theorem. |

Finally, we prove Corollary 1.1. We have

> A _ gl 5 0T,

n>x p>x m=2pMm>x

The second term is calculated as follows:

ZZXW <Y ¥

m=2p">zx m=2p>| 1/m]
[log; =]
=Y Y DD
m=2 p>[zl/m] m=[log, z]+1 p>[z 1/m]

for x > 4. Then we obtain that

[log; ] log, 1 o) 1
D DS D E D D

m=2 p>[ l/m n:[z1/7”]+l
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[logy x]
1 1 du
< [ e —
- Z m ([xl/m] +1)ma + / umo
m=2
[21/m]+1
[log, =]
1 1 1
< D . <
- Z m{xa +ma—1 ([xl/m]+1)mal} —
m=2
[log, =] 1 mo 1
< — — <
m mo—1z7-2
m=2
< o . loglog, x
- o—2"1 go—27' 7
Furthermore, we have
= 1
>y DD PR
=[log, z]+1 p>[r1/"‘] m=(log, z]+1 p:prime
o 1 T4
u
< p—
- Z 21’7’LO' +/um0
m=[log, xz|+1 2
mo —1 2mo
m=[log, x]+1
< +1 . 1 ' i
- oc—1 1—-279 g°
Hence we obtain that
Z Z x(p { o loglog2x+ o+1 1} 1
ma - ) 1/2 _ __9—0 . o—1
=A™ o—1 xl/ (c—1D(1-2"°) z])=x

for x > 4. Tt follows from Theorem 1.1 (i) that

I CNENES SRS SR LI 91 D10k

p>x:prime p n>x n>x m=2p"m >z
x(p)
> DIEED DI logn -
p>x:iprime n>x n>z m=2pm>zx
Hence the corollary holds. |

4. Remark on Theorem 3.1

In [15], we discussed about the Dirichlet series

Zna’
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for s = o + it with ¢ > 0,. Then we assumed that f(n) > 0 for any n and
f(n) > 0 for some n > 2. Now we suppose that F(s) converges absolutely for
o >0, =1.If F(s) # 0 for 0 > 09 > 1, then Theorem 11.14 of [1] tells us that

n=2

for ¢ > 0¢. Here f~! is the Dirichlet inverse of f and f’(n) = f(n)logn
and f’ o f~! denotes the Dirichlet convolution of f’ and f~!. Our method
depends on the characteristic function of an infinitely divisible distribution for
(4.1). So we required f(n) to be completely multiplicative in Theorem 3.1 of
[15]. If f(n) is not completely multiplicative, there exists an example such
that (4.1) is not a characteristic function of an infinitely divisible distribution
as follows: Let d(n) be the number of divisors of n, that is, d(n) = > 4,1
We consider f(n) = d(n)3. Then f(n) is multiplicative, but it’s not com-
pletely multiplicative. Furthermore, it follows from Theorem 13.12 of [1] that
f(n) = o(n?) for every 6 > 0. Hence the Dirichlet series F(s) converges abso-
lutely for o > 1.

Lemma 4.1. If f(n) = d(n)3, then we have f' o f~1(4) < 0.

Proof. We see from Theorem 2.8 of [1] that

7@ Zf ( ) =—f(2)

d|2
d<2

|
|
90

Hence we obtain that

frof(4)

> (f(d)logd) " (3) = —10log2 < 0.

d|4

The lemma holds. |
Set

/Z fncr logn )610gn(du>
B m=2

for any Borel set B in R. Lemma 4.1 implies that if f(n) = d(n)3, II is not a
measure. Hence the following proposition holds:

Proposition 4.1. If f(n) = d(n)3, then F(oc—it)F (o)~ is not a characteristic
function of an infinitely divisible distribution.

Remark. The arithmetic function d(n)? is not completely multiplicative.
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In this paper, we discuss two cases

F(s)zz% and F(s)zZBn

See Theorems 2.1 and 2.2, Corollaries 2.1 and 2.2.

Proposition 4.2. The arithmetic functions A(n) and B(n) are not completely
multiplicative.

Proof. Since x is non-principal, there is a prime number p such that x(p) =
—1. Then

Ap*) =14 x(p) +x(p)* # 1+ ( )% = A(p)?,
B(p®) =1-x(p) # (1 —x(p))* =

Hence the lemma holds. |

Proposition 4.2 insists that we do not know whether (f’ o f=1)(n) > 0 for
any n > 2. Hence Theorems 2.1 and 2.2 do not tell us that

(4.2) (A" 0 A7) (n) = 1+ x(n),
(4.3) (B'oB ') (n)=1-x(n)

for n > 2 from the point of view of probability theory. However, from the point
of view of Dirichlet series, we can obtain (4.2). Indeed, we have

oo

(I+x(n)A (f" o f )
Z ns 1ogn zz: ns logn

n=2

for s = o 4 it with o > 1. It follows from Theorem 11.3 of [1] that (4.2) holds.
Similarly, (4.3) holds.

Hence, in this paper, we deal with an example that could not be handled
in Theorem 3.1 of [15].
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