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Abstract. This paper presents a discussion of Haar spectra for General-
ized Boolean bent functions. The definition and multiresolution feature
of Haar coefficients and their organization into packets provides a deeper
insight into bent functions and their properties. It is shown that manip-
ulation of packets of Haar coefficients for binary bent functions leads to
the Generalized Boolean bent functions. The presentation is restricted
to functions in n = 4 variables, since in this case a direct examination of
examples is easily realisable. Possibilities for a straightforward extension
to functions of a larger number of variables are illustrated by examples
for n = 6.

1. Introduction

Bent functions are important mathematical, more concretely, combinato-
rial objects that are interesting not just because imposing various challenging
theoretical tasks, such as methods of their construction, study of properties,
enumeration, and related issues, but also due to their practical applications,
notably in cryptography, but also in related areas [1], [6], [24].

Bent functions are a subset of Boolean functions with particular properties.
They are defined as the most non-linear Boolean functions, since they are at
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the farthest possible Hamming distance from all affine Boolean functions. Due
to this feature, bent functions are resistant to linear and differential attacks,
which makes them useful in cryptography [1], [6], [24]. For instance, bent
functions are used in constructing low correlation sequences, then in the design
of substitution boxes (S-boxes) in block ciphers like AES or DES. See, for
instance [7]. They are also useful in constructing error-correcting codes with
good distance properties.

Various generalizations of bent functions have been studied after the con-
cept was published in [10] in connection with the notions as the generalized
nonlinearity for functions that are relevant to generalized linear cryptanalysis.
We refer to [23] for a review of various related concepts. They are useful for
the same reasons as the binary bent functions, but in the context of non-binary
systems, such as, for example, Quaternary DS-CDMA Systems, construction
of quaternary sequences with low correlation, quantum error-correcting codes,
etc. See, for instance [14], [15].

In this paper, we consider a particular generalization of binary bent func-
tions called Generalized Boolean bent functions. The term Boolean refers to
the domain of the functions, i.e., they are functions in binary variables. The
term generalized refers to the range, meaning that functions take values in a
set of q elements. As mentioned above, an example interesting for practical ap-
plications is when q = 4 with these four values conveniently interpreted as the
first four non-negative integers allowing a simple binary encoding of quaternary
values.

We consider the Haar spectra of the Generalized Boolean functions for q = 4
with the motivation that the multiresolution feature of the Haar transform
will provide a further insight into properties of these functions. This idea
comes from the property that the Haar coefficients are computed over subsets
of function values and the sizes of these subsets correspond to the sizes of
patterns of values appearing in function vectors of linear Boolean functions.
Such patterns should be avoided in the function vectors of bent functions to
provide maximal non-linearity which is the main feature of bent functions.
Therefore, analysis of Haar spectra and packets of Haar coefficients in the
definition of the Haar transform can be useful in dealing with bent functions.
In the present considerations, we show that Generalized Boolean bent functions
for q = 4 can be constructed by manipulating packets of coefficients in the Haar
spectra of binary bent functions.
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2. Binary bent functions

As is usually done, we assume that a function f defined at 2n points is
represented by its function vector F = [f0, f1, . . . , f2n−1]T specifying the value
which f takes at each point. In the case of binary Boolean functions and Gener-
alized Boolean functions these values are in {0, 1} and {0, 1, 2, 3}, respectively.
When convenient, Boolean functions are also expressed by the positive polarity
Reed-Muller expressions.

Boolean functions are defined as mappings Zn
2 → Z2, where Z2 is the ring

of non-negative integers smaller than 2, and n denotes the number of variables.
Binary bent functions are a particular subset of Boolean functions, and since
they exists just for an even number of variables [1], in what follows we assume
that n is an even number.

Binary bent functions are defined as the most nonlinear Boolean functions
in the sense that they are at the farthest possible distance of 2(n−1) − 2(n/2−1)

from all affine functions [10]. Recall that affine functions are defined as linear
Boolean functions, i.e., Boolean variables and their EXOR sums, plus comple-
ments of linear functions which means adding to each linear function the con-
stant 1. The distance of objects in the space of Boolean functions is measured
in terms of the Hamming distance that is defined as the number of places, i.e.,
positions in the function vectors, where the compared functions have different
values.

In the spectral domain, bent functions are defined as functions having flat
Walsh spectrum, see definition of the Walsh transform below, which means
that for a bent function all the Walsh coefficients have absolute value equal
2n/2, where n is the number of variables. Binary bent functions must have a
strictly specified number of non-zero values, either ρ1(n) = 2(n−1) − 2(n/2−1)

or ρ2(n) = 2(n−1) + 2(n/2−1), which is a necessary, but not sufficient condition
for bentness. In this respect, the set of all bent functions can be split into two
subsets of functions that are logic complements of each other [6], [24].

3. Generalized Boolean bent functions

The Generalized Boolean bent functions are a particular extension of the
concept of binary bent functions [16], [17]. They are defined as mappings
Zn

2 → Zq, having flat Walsh spectra, where the symbol Zq stands for the ring
of integers smaller than q. Particularly interesting are Generalized Boolean
functions for q = 4. A reason for that is the easy encoding of four values by two
binary bits, i.e., (0, 1, 2, 3) → (00, 01, 10, 11). A Generalized Boolean function
is conveniently represented as f(x) = a(x) + 2b(x), x = (x1, x2, . . . , xn), where
a and b are Boolean functions defined by function vectors whose elements are
determined respectively by the first and second bits in the binary encoding of
quaternary values for the Generalized Boolean functions [16], [17].
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For clarity and simplicity of presentation, in the present considerations,
we discuss bent functions and Generalized Boolean bent functions just for the
cases n = 4, 6 for q = 2, and q = 4, respectively. Extension to larger even
values of n is rather straightforward since in the present considerations, we do
not exploit directly the restriction on the number of variables, except to make
the experiments feasible and their analysis manageable for all possible bent
functions which in the case n = 4 is 896 functions. Examples of functions for
n = 6 are provided to illustrate the ways of extensions.

4. Walsh and Haar transforms

The Walsh transform serves to define bent functions, while in this paper, the
Haar transform is used to explore their properties. These transforms are defined
in terms of the Walsh functions [25], and Haar functions [2], respectively. For
processing discrete functions, we use discrete versions of these transforms, see,
for instance, [3], [4], [5], [13], [18], [22].

In matrix notation, the discrete Walsh transform is defined by the (2n ×2n)
transform matrix

W(n) =
n⊗

i=1
W(1), W(1) =

[
1 1
1 −1

]
,

where ⊗ denotes the Kronecker product of matrices.
We use the non-normalized Haar transform defined in matrix notation as

the (2n × 2n) matrix

H(n) =

 H(n − 1) ⊗
[

1 1
]

I(n − 1) ⊗
[

1 −1
]

 ,

where H(0) = [1], and I(n) is the (2n × 2n) identity matrix with I(0) = [1].
The Walsh functions take two values ±1, while the Haar functions take three

values, −1, 0, 1. By following the original approach introduced by A. Haar [2],
the Haar functions are ordered by the number of non-zero values and the set of
2n Haar functions is split into packets of functions having identical number of
non-zero values. It means that the Haar coefficients in the spectrum are also
arranged in packets, which is a feature that will be used later.

A function in n variables is specified by the vector F = [f0, f1, . . . , f2n−1]T
of function values. The Haar spectrum is represented by a vector of Haar
coefficients Sf,h = [s0, s1, . . . , s2n−1]T which is determined as

Sf,h = H(n)F.

The Walsh spectrum represented by a vector Wf,w = [w0, w1, . . . , w2n−1]T
is defined in the same way by using the Walsh transform matrix W(n) instead
of the Haar transform matrix H(n).
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When processing Boolean functions, it is a customary practice to use the
encoding (0, 1) → (1, −1) for Boolean values making in this way the functions
to be processed more compatible with the Walsh and Haar functions that are
the kernels of the Walsh and Haar transforms, respectively. For more details
about the Walsh and Haar transforms and their applications we refer to [3],
[4], [5], [11], [12], [13], [18], [22].

When defining Generalized Boolean bent function, we require that their
Walsh spectrum is flat, but computation is done over the function vectors
whose four function values are encoded as (0, 1, 2, 3) → (1, i, −1, −i) [16], [17].
Notice that this encoding maps the elements of Z4 to equidistant points on the
unit circle of the complex plane.

Regarding bentness, it is shown in [16] that the following two statements
are equivalent

1. The Generalized Boolean function f is bent in 2n variables.

2. Recall that f(x) = a(x) + 2b(x). The Boolean functions of 2n variables b
and c = a ⊕ b are both bent.

5. Haar spectra of bent functions

The Haar transform is a multiresolution transform in the sense that Haar
coefficients are computed over subsets of function values where the number
of elements in these subsets is different for coefficients in different packets of
Haar functions. This feature allows a deeper insight into possible relationships
between function values. Since the Haar functions, rows in the Haar transform
matrix, are arranged into packets with respect to the number of non-zero values
a Haar function takes, it is the same ordering with the Haar coefficients. They
are also arranged per packets in the same way as the Haar functions in the
Haar matrix. The number of packets is (n + 1).

Example 5.1. For n = 4, the Haar spectrum is arranged into packets as

Sh,f = [P1|P2|P3|P4|P5]T ,(5.1)
= [s0|s1|s2, s3|s4, s5, s6, s7|s8, s9, s10, s11, s12, s13, s14, s15]T ,

where si, i ∈ {0, 1, . . . , 15}, are the Haar coefficients.

It is shown in [9] that the sum of Haar coefficients in a packet must be
equal to the Walsh coefficients for bent functions, i.e., 2n/2. As explained in
[19], this immediately follows from the property that the sum of Haar functions
in a packet is the Rademacher function [8], which is a particular Walsh function
and for bent functions the corresponding Walsh coefficient must have the value
2n/2.
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Table 1 shows function vectors, Walsh, and Haar spectra for all 8 bent
functions for n = 2. These spectra will be used in the following considerations.
It can be observed that due to the requirement that bent functions cannot be
balanced, the non-zero and zero values appear in the ratio ρ2 = 3 to ρ1 = 1,
and it is the same for the signs of the Walsh coefficients.

i Function F Sw,f Sh,f

1. x1x2 [0, 0, 0, 1] [2, 2, 2, −2] [2, |2, |0, 2]
2. x1x2 ⊕ x2 [0, 1, 0, 0] [2, 2, −2, 2] [2, | − 2, |2, 0]
3. x1x2 ⊕ x1 [0, 0, 1, 0] [2, −2, 2, 2] [2, |2, |0, −2]
4. x1x2 ⊕ x1 ⊕ x2 [0, 1, 1, 1] [−2, 2, 2, 2] [−2, |2, |2, 0]
5. 1 ⊕ x1x2 [1, 1, 1, 0] [−2, −2, −2, 2] [−2, | − 2, |0, −2]
6. 1 ⊕ x1x2 ⊕ x2 [1, 0, 1, 1] [−2, −2, 2, −2] [−2, |2, | − 2, 0]
7. 1 ⊕ x1x2 ⊕ x1 [1, 1, 0, 1] [−2, 2, −2, −2] [−2, | − 2, |0, 2]
8. 1 ⊕ x1x2 ⊕ x1 ⊕ x2 [1, 0, 0, 0] [2, −2, −2, −2] [2, | − 2, | − 2, 0]

Table 1. Function vectors, Walsh, and Haar spectra of bent functions for n = 2.

Recall that the functions in the bottom half of this table are logic comple-
ments of functions in the upper half. For both Walsh and Haar transforms,
the spectral coefficients of these subsets of functions mutually differ just in the
signs of the coefficients. We denote the Walsh spectra of all bent functions for
n = 2 as Wi, i = 1, 2, . . . , 8, where the index i corresponds to the position of
the vector in the table by starting from the top. In the case of Haar spectra,
a value 0 appears. Inserting zero values in the last packet of Haar coefficients
for larger n has an important role in the present considerations.

An exhaustive search over all 896 binary bent function in four variables
permits the following conclusions.

The packets P1 and P2 consist of a single coefficient each and its value
should be 4 or −4 since the corresponding Haar functions are identical to the
two particular Walsh functions, and this is the value a Walsh coefficient can
take for bent functions when n = 4. The Haar coefficient in P1 is the sum of
all function values in encoding (0, 1) → (1, −1), since the corresponding Haar
function is the constant 1.

The coefficient must have the value ±4, since the sum of Haar coefficients
in each packet is ±4, and at the same time this is the value of the Walsh
coefficients for bent functions. The sign of this coefficient determines if the
bent function has 10 or 6 non-zero values, for −4 and 4, respectively.

The Haar coefficient in P2 is the sum of values obtained as the componen-
twise subtraction of the second half of the function vector from the first half
of it. The value of this coefficient can also be ±4. The sign of this coefficient
shows in which half of the function vector non-zero values are concentrated.
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The packet P3 consists of two coefficients, whose value can be either 0 or ±4.
This also follows from the same requirement for the sum of Haar coefficients.
The non-zero value can be at any of two positions in this packet. If a non-zero
value is at the first position, it means that the first half of the function vector
is non-balanced. Non-zero coefficient at the second position corresponds to
the functions for which the second half of the function vector is non-balanced.
The value of this coefficient equal 4 means that in the non-balanced half of the
function vector there are 6 zero values and two values 1. It is the opposite if
the value of this coefficient is −4. Then, the non-balanced half of the function
vector contains more values 1 than 0, or when encoded −1 and 1. Notice that in
the present context, the term half does not mean literary the half of a function
vector, i.e., a subvector consisting of adjacent function values. Thus, elements
of balanced and non-balanced subvectors can be mutually mixed, but not in
an arbitrary way. This is further discussed below for the Haar coefficients in
certain packets, see Table 2 and Table 3.

The packet P4 contains four Haar coefficients. There are two possibilities
for values of four Haar coefficients in this packet and with respect to them we
distinguish two classes of functions

1. Class 1 - A coefficient has the value ±4 at any of four positions within
the packet P4, while the other three coefficients in this packet are equal 0.

2. Class 2 - The values of the four coefficients in the packet P4 are a Walsh
spectrum for bent functions in two variables.

Computation of Haar coefficients in P4 is performed over a quadruple of
function values. From the positions of non-zero values in the corresponding
Haar functions, the position of the non-zero value corresponds to the balanced
quadruple of the form 0, 0, 1, 1 or 1, 1, 0, 0 in the function vector. The sign of
the non-zero coefficient in this package determines which of these quadruples
appears in the function vector. The following example illustrates this state-
ment.
Example 5.2. Consider the bent function f = x2x3 ⊕ x1x4 with the function
vector F = [1, 1, 1, 1, |1, 1, −1, −1, |1, −1, 1, −1, |1, −1, −1, 1]T . The Haar coeffi-
cients are computed as the scalar product of Haar functions, rows of the Haar
matrix, with the function vector. The Haar spectrum of this function is

Sh,f = [4, |4, |4, 0, |0, 4, 0, 0, |0, 0, 0, 0, 2, 2, 2, −2]T .

The packet P4 = (0, 4, 0, 0). The Haar coefficients in the packet P4 are com-
puted with respect the following four Haar functions har4(x), har5(x), har6(x),
har7(x) specified by their function vectors as

har4 = [1, 1, −1, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

har5 = [0, 0, 0, 0, 1, 1, −1, −1, 0, 0, 0, 0, 0, 0, 0, 0]T ,

har6 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, −1, −1, 0, 0, 0, 0]T ,

har7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, −1, −1]T .
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P5 P5

1. P5,1 = [0, 0, 0, 0, 2, 2, 2, −2]T 4. P5,4 = [2, 2, 0, 0, 0, 0, 2, −2]T

2. P5,2 = [0, 0, 2, 2, 0, 0, 2, −2]T 5. P5,5 = [0, 0, 2, 2, 2, −2, 0, 0]T

3. P5,3 = [2, 2, 0, 0, 2, −2, 0, 0]T 6. P5,6 = [2, 2, 2, −2, 0, 0, 0, 0]T

Table 2. Allowed combinations of Haar coefficients in P5 with zero values
inserted in pairs.

P5 P5

1. P5,1 = [0, 2, 0, 2, 0, 2, 0, −2]T 5. P5,5 = [2, 0, 0, 2, 2, 0, 0, −2]T

2. P5,2 = [2, 0, 2, 0, 2, 0, −2, 0]T 6. P5,6 = [2, 0, 0, 2, 0, 2, −2, 0]T

3. P5,3 = [2, 0, 2, 0, 0, 2, 0, −2]T 7. P5,7 = [0, 2, 2, 0, 0, 2, −2, 0]T

4. P5,4 = [0, 2, 0, 2, 2, 0, −2, 0]T 8. P5,8 = [0, 2, 2, 0, 2, 0, 0, −2]T

Table 3. Allowed combinations of Haar coefficients in P5 with single zero values
inserted.

The second quadruple in F matches the pattern in har5, and the resulting
coefficients in this packet are P4 = (0, 4, 0, 0). It can be observed that Haar
coefficients offer a possibility to get an information about the positions of non-
zero values in the function vectors of bent functions.

The fifth packet P5 contains 8 Haar coefficients. By the definition of the
Haar functions in this packet, their values are computed as the difference be-
tween two adjacent function values. There are four possible combinations for
these function values. In the used encoding, these are (1, 1), (1, −1), (−1, 1),
and (−1, −1) and the Haar coefficients compare them. When equal, the Haar
coefficient has the value 0, otherwise it has absolute value 2. It follows that
each Haar coefficient specifies a pair of function values. Knowing the position
of non-zero values of the Haar functions in the packet P5, we know the position
of the related pair of function values in the function vector.

For bent functions, four of the Haar coefficients in P5 are zero-valued, while
the other four are Walsh coefficients for bent functions in two variables. This
follows from the computation of Haar coefficients as the difference of two ad-
jacent function values and the requirement that the sum of the coefficients in
the packet is ±4. An exhaustive search over all 896 bent functions for n = 4
permits the conclusions which can be formulated as follows.

When a function is in Class 1, i.e., P4 consists of a single non-zero value ±4
and three other coefficients are 0, the positions of non-zero Haar coefficients
in P5 are restricted to the following 6 combinations as in Table 2 explained
on the example of the Walsh spectrum W1 in Table 1, although any other
spectrum out of 8 spectra in this table can be equally used. When using other
spectra, the difference is in the signs of the Haar coefficients. When discussing
these combinations, we should take into account that bent functions cannot be
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balanced, and must have an exactly specified number of non-zero values. From
that follows the restriction on the number of possible combinations, 6 in the
case of functions in n = 4 variables. It can be observed that in these allowed
combinations for Haar coefficients in P5 for functions in Class 1, the zero values
and absolute values 2 appear in pairs. Since in this packet, Haar coefficients
are computed as differences of adjacent function values, the adjacent function
values also appear in pairs, as in Table 2. In this table, the pairs of Haar
coefficients consist of two elements with the same absolute values. The Class 1
for n = 4 consists of 384 bent functions.

It can be observed that for functions in Class 1 with n = 4, zero values
in P5 are inserted between the non-zero coefficients in pairs. For functions in
Class 2, there are 8 possible arrangements of Haar coefficients in P5, and single
0’s are inserted between non-zero Haar coefficients. Table 3 shows the possible
subspectra in P5 for n = 4 with W1. Again, any other Walsh spectrum from
Table 1 can be used. In this table, the pairs of values consist of elements with
different absolute values 0 and 2. This class consists of 512 bent functions.

The requirements that a bent function must be non-balanced and takes an
exactly specified number of non-zero values impose some further restrictions
on the distribution of non-zero values in the function vectors of bent func-
tions. Conversely, the same requirements result in specific patterns of values
per packets of Haar spectral coefficients. It is shown in [21] that due to this, it
is possible to construct the sets of bent functions from Haar coefficients in the
packet Pn+1, which is one half of the total of Haar coefficients. For n = 4, and
the given packet P5, this is the set of 8 bent functions. Clearly, to determine a
unique function, we should know other Haar coefficients, i.e., the entire spec-
trum, since the Haar functions are a complete basis in the space of functions
defined at 2n points.

6. Haar spectra of Generalized Boolean bent functions

In what follows, we show that manipulation of packets of Haar coefficients
leads to the Generalized Boolean bent functions. For n = 4, the Generalized
Boolean bent functions are constructed by manipulating packets P2, P3, and
P4. We consider the following manipulations

1. In a Haar spectrum with P5 as in Table 2, the packet P4 is replaced by
the packet P4 for functions with P5 in Table 3, and vice versa,

2. Permutation of values in P3,

3. Change of signs in P2.

The following examples illustrate these possibilities to construct General-
ized Boolean bent functions from Haar spectra of binary bent functions.
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6.1. Manipulation of the packet P4

The Generalized Boolean bent functions are constructed by exchanging
packets P4 for functions with P5 in Table 2 and Table 3. It means, in the given
Haar spectrum of a function with the packet P5 in Table 2, the packet P4 is
replaced by the packet P4 for functions with the packet P5 in Table 3, while
other packets remain unchanged. The opposite replacement is equally possible.

Recall that in Table 3, the values in P4 are Walsh spectra for binary bent
functions for n = 2, while in Table 2 these are quadruples with a single non-zero
value ±4.

Example 6.1. Consider the Haar spectrum with P5 from Table 2

Sh,f = [4|4|4, 0, |0, −4, 0, 0, |0, 0, 0, 0, 2, 2, 2, −2]T ,

where the packet P4 = [0, −4, 0, 0]. We replace this packet by the packet
P4 = [2, 2, 2, −2] for functions with P5 in Table 3. Therefore, we get the Haar
spectrum

Sh,f = [4, |4, |4, 0, |2, 2, 2, −2, |0, 0, 0, 0, 2, 2, 2, −2]T .

The inverse Haar transform produces the function

F = [1.5, 1.5, 0.5, 0.5, 0.5, 0.5, −0.5, −0.5,

1.5, −0.5, 0.5, −1.5, 0.5, −1.5, −0.5, 1.5]T .

After multiplication by 2, we get the integer-valued function as

F = [3, 3, 1, 1, 1, 1, −1, −1, 3, −1, 1, −3, 1, −3, −1, 3]T .

We perform non-negative integer encoding of function values from the min-
imum to the maximum value by (0, 1, 2, 3), i.e., in this example this encoding
is (−3, −1, 1, 3) → (0, 1, 2, 3), and get

F = [3, 3, 2, 2, 2, 2, 1, 1, 3, 1, 2, 0, 2, 0, 1, 3]T .

Binary encoded this function vector is

F = [11, 11, 10, 10, 10, 10, 01, 01, 11, 01, 10, 00, 10, 00, 01, 11]T .

From there, the functions a and b determined by the first and the second
bit in the binary encoded F, as well as the function c = a ⊕ b, are

a = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]T ,

b = [1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1]T ,

c = [0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]T .
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The function a is balanced, and therefore non-bent. Functions b and c are
both bent and their Walsh spectra are flat

Sb = [−4, −4, −4, −4, −4, −4, 4, 4, −4, 4, −4, 4, −4, 4, 4, −4]T ,

Sc = [−4, −4, 4, 4, 4, 4, 4, 4, −4, 4, 4, −4, 4, −4, 4, −4]T .

Therefore, the constructed function is a Generalized Boolean bent function
since b and c are binary bent functions. To verify this, by following the approach
in definition of the Generalized Boolean bent functions [16], [17], we encode the
elements of the function vector F as (0, 1, 2, 3) → (1, i, −1, −i), obtained as iz

for all z ∈ {0, 1, 2, 3},

Fe = [−i, −i, −1, −1, −1, −1, i, i, −i, i, −1, 1, −1, 1, i, −i]T ,

and compute the Walsh spectrum as

SFe = [−4, −4, −4i, −4i, −4i, −4i, 4, 4, −4, 4, −4i, 4i, −4i, 4i, 4, −4]T ,

which is flat as required for bent functions.

Any other packet P4 in Table 3 can be used as a replacement for the packet
P4. Further, the Generalized Boolean bent functions can be constructed by the
converse replacement of packets for functions in Table 3 by the corresponding
packets for functions in Table 2.

6.2. Manipulation of the packet P3

In the next example, we consider manipulation of packet P3 in order to
construct a Generalized Boolean bent function from the Haar spectrum of a
bent function in four variables.
Example 6.2. Consider the Haar spectrum of a bent function with the packet
P5 as P5,4 in Table 2 for the Walsh spectrum W6 in Table 1

Sh,f = [4, | − 4|0, 4, |0, 4, 0, 0, | − 2, −2, 0, 0, 0, 0, 2, −2]T .

The packet P3 = [0, 4]. After reordering the coefficients in this packet, we get
the Haar spectrum

Sh,f = [4, | − 4|4, 0, |0, 4, 0, 0, | − 2, −2, 0, 0, 0, 0, 2, −2]T .

The inverse Haar transform produces the function vector

F = [−0.5, 1.5, −0.5, 1.5, 0.5, 0.5, −1.5, −1.5,

0.5, 0.5, 0.5, 0.5, 1.5, −0.5, −0.5, 1.5]T .

After multiplication by 2, the non-negative integer encoding, and binary en-
coding as in Example 6.1, we get

a = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]T ,

b = [0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1]T ,

c = [1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0]T .
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The function a is balanced and, therefore, non-bent, while functions b and
c are bent. We verify that also by complex encoding of F and computing its
Walsh spectrum to see that this spectrum is flat.

We can construct in the same way Generalized Boolean bent functions by
manipulation of packet P3 in a function with the packet P4 equal to any of 8
Walsh spectra for bent functions for n = 2 in Table 1 and the packet P5 is any
of the packets in Table 3.

6.3. Manipulation of the packet P2

The next example illustrates manipulation of the packet P2, in which case
the single option is to change the sign of the coefficient in this packet.

Example 6.3. Consider the Haar spectrum of a bent function as

Sh,f = [−4, |4, | − 4, 0, |2, −2, −2, −2, | − 2, 0, 2, 0, 0, −2, 0, −2]T .

The single coefficient in P2 is 4, and we change its value into −4, so that the
Haar spectrum is converted into

Sh,f = [−4, | − 4, | − 4, 0, |2, −2, −2, −2, | − 2, 0, 2, 0, 0, −2, 0, −2]T .

The inverse Haar transform constructs the function with the function vector

F = [−1.5, 0.5, −1.5, −1.5, 0.5, −1.5, 0.5, 0.5,

−0.5, −0.5, −0.5, 1.5, −0.5, −0.5, −0.5, 1.5]T .

After multiplication by 2, the non-negative integer encoding, and binary en-
coding as in Example 6.1, we get

a = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]T ,

b = [0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1]T ,

c = [0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0]T .

The function a is balanced and therefore non-bent, while b and c are bent
functions with the flat Walsh spectra. Therefore, the function constructed
by changing the sign of the coefficient in P2 is a Generalized Boolean bent
function, as we can also verify by complex encoding of F and computing its
Walsh spectrum that appears to be flat.

7. Extensions to larger n

The following examples for n = 6 illustrate that the extension of the pre-
vious considerations to functions in a larger number of variables is straightfor-
ward.
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Example 7.1. Consider the function
f = 1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x1x4x6.

It is a bent function of degree 3, since its Positive polarity Reed-Muller ex-
pression has the largest product with three variables [1]. Its Haar spectrum
is

Sh,F = [−8, |8, | − 8, 0, | − 4, 4, −4, −4, |0, 4, 0, −4, 0, 4, 0, 4, |
−2, −2, 2, −2, 2, 2, −2, 2, −2, 2, 2, 2, −2, 2, 2, 2, |
0, −2, 0, −2, 0, 2, 0, −2, 0, 2, 0, 2, 0, −2, 0, 2,

0, −2, −2, 0, 0, 2, −2, 0, 0, −2, −2, 0, 0, 2, −2, 0]T .

The packet P4 is P4 = [−4, 4, −4, −4], which is the Walsh spectrum W7 in
Table 1 multiplied by 2. When disregarding zero values, the packet P5 is the
Walsh spectrum W3 in Table 1.

The packet P6 = [−2, −2, 2, −2, 2, 2, −2, 2, −2, 2, 2, 2, −2, 2, 2, 2] is a con-
catenation of W6 = [−2, −2, 2, −2], W2 = [2, 2, −2, 2], W4 = [−2, 2, 2, 2], and
W4 = [−2, 2, 2, 2].

When disregarding zero values, the packet
P7 = [−2, −2, 2, −2, |2, 2, −2, 2, | − 2, −2, 2, −2, | − 2, −2, 2, −2]

which is a concatenation of W6, W2, W6, and W6. When multiplied by 2, the
packets P6 and P7 are the Walsh spectra of bent functions

f6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x3x4 ⊕ x2x3 ⊕ x1x2, and
f7 = 1 ⊕ x1 ⊕ x4 ⊕ x3x4 ⊕ x1x2.

Function vectors are
F6 = [0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1]T ,
F7 = [1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1]T .
In F6, there can be observed non-balanced patterns (0, 1, 1, 1), (1, 0, 1, 1),

(1, 0, 0, 0), (1, 0, 1, 1). The first and the third pattern are complements of each
other, and the second and the fourth are identical patterns. In F7, the non-
balanced pattern, (1, 0, 1, 1) appears three times, and the remaining pattern is
the logic complement of it (0, 1, 0, 0).

8. Closing remarks

The multiresolution feature of the Haar transform offers possibilities to
observe relationships between elements of vectors representing Haar spectra
and also of function vectors of bent functions. In the largest packet of Haar
coefficients Pn+1, the Haar coefficients appear in pairs whose elements have
either identical or different absolute values. In the same way, the elements
of the function vectors appear in pairs corresponding to the pairs of Haar
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coefficients, since in this packet, Haar coefficients are computed as differences
of function values at adjacent positions in the function vectors. In the packet
Pn+1, non-zero Haar coefficients constitute up to the multiplicative constant
Walsh spectra of bent functions in (n − 2) variables. For a bent function, pairs
of Haar coefficient in a packet can be reordered, but not arbitrarily, to get the
other bent functions. The allowed reorderings correspond to the reorderings
determined by the spectral invariance operations in the Walsh domain [3], [4],
[5]. The same is true for the reordering of the corresponding function values.
Destroying pairs in either packets of Haar coefficients or in function vectors
by reordering of their elements does not preserve bentness. The restricted
possibilities for reordering of either pairs of function values or pairs of Haar
coefficients explain a small number of bent functions. We show that certain
manipulation with packets of Haar coefficients convert Haar spectra of binary
bent functions into Haar spectra of the Generalized Boolean functions that are
defined in terms of binary valued variables, but functionally take four different
values. Further work will be devoted to the formulation of formal procedures
for construction of Generalized Boolean bent functions from the Haar spectra
of binary bent functions. Also, the analysis of possible relationships between
pairs of function values constituting the balanced and non-balanced parts of
function vectors of binary bent functions by using the Haar coefficients could
be an interesting task.
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Nǐs
Serbia
Radomir.Stankovic@gmail.com and milstankovic@gmail.com

Claudio Moraga
TU Dortmund University
Dortmund
Germany
Claudio.Moraga@udo.edu

Jaakko Astola
Tampere
Finland
Jaakko.Astola@outlook.com

https://doi.org/10.1007/978-3-031-50650-5
https://doi.org/10.1007/978-1-4615-1425-1
https://doi.org/10.1016/C2014-0-02922-X
https://doi.org/10.2307/2387224

	Introduction
	Binary bent functions
	Generalized Boolean bent functions
	Walsh and Haar transforms
	Haar spectra of bent functions
	Haar spectra of Generalized Boolean bent functions
	Manipulation of the packet P4
	Manipulation of the packet P3
	Manipulation of the packet P2

	Extensions to larger n
	Closing remarks

