Annales Univ. Sci. Budapest., Sect. Comp. 58 (2025) 231-250

ENERGY-EFFICIENT LAZY GROUP MEMBERSHIP
PROTOCOL IMPLEMENTATION IN HASKELL

Jianhao Li and Viktéria Zsék (Budapest, Hungary)

Communicated by Zoltan Horvath
(Received 3 June 2025; accepted 2 August 2025)

Abstract. In distributed systems, maintaining an up-to-date view of ac-
tive nodes is essential for ensuring reliable communication, failure detec-
tion, and system reconfiguration. Traditional group membership protocols,
such as SWIM (3], rely on periodic gossip exchanges, incurring communi-
cation and energy overhead. In this work, we implement a ”lazy” group
membership protocol in Haskell that eliminates periodic messages. We
describe the complete implementation and introduce an energy-efficient
benchmark. An experiment based on the new benchmark compares our
lazy protocol to a standard SWIM implementation. Results show that,
despite higher absolute power caused by the secure UDP library and the
Haskell runtime, our lazy protocol achieves a lower normalized energy index
than SWIM.

1. Introduction

Distributed systems are essential for a variety of modern applications, in-
cluding cloud computing, the Internet of Things (IoT), and distributed data-
bases. These systems typically comprise multiple nodes that must collaborate
and communicate effectively. For such systems to operate reliably, they must
maintain a consistent view of the active participants. All nodes should have
the same understanding of who is part of the system at any given time. Group
membership is crucial for tasks such as reliable communication, where a sender
must know which nodes to address, and failure detection, where nodes need to
agree when another node has failed or left the group.

Key words and phrases: Distributed systems, functional programming group membership
protocol, distributed algorithms.

2010 Mathematics Subject Classification: 68M14, 68N18, 68Q85, 68W15.
https://doi.org/10.71352/ac.58.020825

First published online: 8 August 2025

https://doi.org/10.71352/ac.58.020825

232 J. Li and V. Zsok

Group membership protocols ensure that all nodes in a distributed system
agree on the set of active participants. These protocols ensure that all nodes
in the system maintain an up-to-date list of group members, which is crucial
for tasks such as reliable group communication and failure detection.

Classic membership protocols typically use periodic heartbeat or gossip mes-
sages. In these protocols, nodes periodically exchange messages with a few
other nodes to propagate membership changes and detect failures. For exam-
ple, SWIM [3] uses frequent gossip to communicate membership changes and
detect failures. The term gossip refers to this process of passing information
between nodes in a probabilistic manner. However, the periodic messages can
cause unnecessary overhead, especially in systems with stable membership.

In contrast, the lazy membership protocol we proposed in this paper avoids
periodic messages to reduce energy consumption. It only sends messages when
a node joins or leaves the group. In quiet periods, there is no background
communication. The main contributions of this paper are:

e We implement the lazy membership protocol in Haskell, utilizing the
secure UDP (User Datagram Protocol) library for communication, and
provide a clear description of its design. Haskell offers strong typing and
concise concurrency abstractions, which help write clear, correct code.

e We design an energy-focused benchmark to evaluate membership proto-
cols. This benchmark includes two modes: baseline message exchange
(for pure communication costs) and full-protocol operation (with mem-
bership management logic).

e We conduct an evaluation comparing the lazy protocol to SWIM in an
energy-focused benchmark. We test the protocols on separate machines
to ensure accurate results. We measure both the base energy consumption
of sending raw messages and the energy consumption of the protocol.

The paper is organized as follows: Section 2 provides background on group
membership protocols and compares our approach with the SWIM protocol.
Section 3 describes the implementation details of our lazy protocol, including
message formats, data structures, and concurrency mechanisms. Section 4
illustrates the runtime behavior through example executions. Section 5 outlines
our energy benchmark and how it simulates realistic workloads. Section 6
details the evaluation setup for both lazy and SWIM protocols. Section 7
presents and analyzes the experimental results. Finally, Section 8 concludes
the paper and discusses possible directions for future work.

2. Background and comparison with SWIM

Group membership is critical in Wireless Sensor Networks (WSNs), as it
enables nodes to coordinate tasks like group communication and group mem-

Energy-efficient lazy group membership protocol 233

bership verification. For instance, the causal-order protocol combines gossip
protocols and virtual synchronous group membership to ensure causal ordering
in WSNs [6].

In the WSN membership authentication and group key establishment pro-
tocol, each member knows exactly the memberships of users participating in
the secure group communication after membership authentication [2].

For the flat group key management schemas, all sensors have the same ca-
pabilities, collect data, and forward the data to other sensors in the network [7].

The membership authentication and key management scheme [7] enhanced
the key update mechanism of group key management schemes by requiring
all sensors in the WSN to broadcast heartbeat feedback to the control center
periodically. If the control center does not receive the heartbeat feedback from
any sensor within a reasonable time interval, it will notify all sensors to revoke
the current session key.

Moreover, group membership plays an essential role in data center orches-
tration systems. For example, the Serf failure detection and orchestration
tool [5] is based on the SWIM group membership protocol [3, 4]. SWIM uses
periodic gossip messages to communicate membership changes and detect fail-
ures in a distributed environment.

However, to our knowledge, only a very few works explicitly optimize en-
ergy consumption in group membership. Instead, our lazy group membership
protocol emphasizes sustainability. It eliminates periodic messages, sending
updates only when there is a change in membership.

Compared to SWIM, our lazy protocol focuses on reducing the overhead of
constant message exchanges. The SWIM protocol, while providing fast failure
detection and scalability, sends periodic heartbeats even when there are no
changes in group membership. In contrast, the lazy protocol operates only
when necessary, significantly reducing unnecessary energy consumption.

3. Protocol implementation

The goal of our implementation is to create a lazy group membership pro-
tocol in Haskell. This protocol eliminates periodic ping messages and instead
uses event-driven messages and timeouts to maintain group membership.

The protocol is implemented based on SecureUDP [1], which is a Haskell
library that provides reliable UDP packet delivery through acknowledgments
and retransmissions. In addition, several other libraries are imported to facili-
tate concurrency, data handling, and network communication.

The GHC.Generics library supports generic programming, enabling easier
serialization and data manipulation.

Data.Word defines fixed-width integer types such as Word64 and Words,
which are used for handling data and identifiers. Data.Data allows for working
with data types in a generic way, enhancing flexibility and abstraction.

234 J. Li and V. Zsék

Data.Set implements sets, which are used to manage collections of unique
elements, such as active group members.

Data.Serialize facilitates the serialization and deserialization of data for
communication between nodes.

Network.Socket provides low-level network functionality for socket pro-
gramming, enabling communication over UDP.

Data.List.Split offers utility functions to split lists, useful for processing
received messages.

Control.Monad is used to control monadic flow, which is essential for con-
currency and iterative operations.

Control.Concurrent provides concurrency support, including thread man-
agement and synchronization.

Data.ByteString is a more efficient representation of byte sequences, useful
for network transmission.

Control.Exception helps handle exceptions and ensures proper resource
management during concurrent operations.

Lastly, Data.ByteString.Char8 facilitates working with ByteString in a
character-based format, commonly used in network communication.

The following Data structures and state subsection explains how each
node maintains the membership list and protocol state. The Join procedure
subsection details the steps involved when a new node joins the group. The
Leave and failure handling section describes how nodes handle leaving the
group or detecting failures. The Concurrency subsection discusses the use of
concurrent threads for timeout management. Finally, the Protocol messages
section outlines the various message types used in the protocol.

3.1. Data structures and state

Each node has a unique identifier (NodeId) consisting of its IP address
and port, and maintains local configuration and state. The configuration
(NodeConfig) includes the node’s ID and a secure UDP channel for communi-
cation. Shared mutable state (LocalInfo) contains fields such as the current
membership list, the node’s protocol state, pending join/leave information, and
timers. For example, a node state can be Idle (a member with no ongoing
group membership changing event), Joining (in the process of joining), and
Introducer (a node introducing new members).

The data and state definitions form the basis of the following implementa-
tion, and MVar-based updates ensure safe concurrent access.

3.2. Join procedure

Joining a group is an essential process that allows new nodes to obtain the
current group view and join without compromising consistency.

The general procedure for a new node to join a group and to become a
member of it consists of the following steps. A new node starts the joining

Energy-efficient lazy group membership protocol 235

process by sending a JoinRequest to any known member and waits for either
a GroupStructure reply or a timeout. The group member who received the
Join-Request and became the Introducer is informing all the other group
members consistently. The other group members who received information
from the Introducer will update the local group list.

When a new node wishes to join, it starts in the NotInGroup state and
sends a JoinReq to the designated introducer node. The introducer receives
this request. In the Idle state, upon receiving JoinReq, the introducer adds the
requester to a pending list (toAdd), updates a local join counter, and broadcasts
an Inform message to all current group members (except those whose removal
is pending). Then the introducer changes to WaitingInformAck state and waits
for acknowledgments.

Upon receiving Inform, other group members send back an InformAck and
change to the Informed state temporarily. If all active members acknowl-
edge the Inform message, the introducer proceeds: it sends a final Operation
message to existing members and a GroupStruct to the new member, thus
completing the joining process.

Suppose acknowledgments are insufficient (e.g., less than half respond in
time) and there is another Inform message in the mailbox. In that case, the
introducer aborts the join by sending Finish to other group members and
JoinFail to the joining node to cancel the attempt.

As illustrated in Listing 1, the recvInformAck function handles the pro-
cessing of InformAck messages in the lazy group membership protocol. When a
node receives an InformAck message, it checks whether the informId of the in-
coming message matches the node’s localInformId. If the incoming informId
matches localInformId, it logs and inserts the sender into ack. Otherwise, it
re-enqueues. After updating the local information, it calls recvAllInformAck.

recvinformAck :: C.MVar MsgList —> Message —> NodeConfig —>
C.MVar Locallnfo —> IO ()
recvinformAck msgListMVar msg@(Informack { informld = inlID,
sender = ackSender }) cfg locallnfoMVar = do
C.modifyMVar_ locallnfoMVar § \li —>
case (inlD == locallnformld li) of
True —> do
putStrLn § ”[recvinformAck] executing”
return li { ack = Set.insert ackSender (ack i) }
False —> do
reenqueue msg msglListMVar
return li
recvAlllnformAck cfg locallnfoMVar
recvinformAck - _ _ _ = error ”[recvinformAck] pattern match error”

Listing 1. The recvInformAck function processes incoming InformAck mes-
sages, updating the acknowledgment set or re-enqueuing unrecognized mes-
sages.

236 J. Li and V. Zsok

As detailed in Listing 2, the recvOp function handles the Operation mes-
sage in the lazy group membership protocol. When the node is in the Informed
state and the incoming informId matches the node’s localInformId, it can-
cels any active timers and updates the group membership list. The new list is
computed by taking the union of the existing group list with the new members
and removing the nodes that are no longer part of the group. The function
also updates the deleteInform list by removing the deleted nodes. A Gsinfo
message is then sent to each newly added node. After the update, the node
transitions to the Idle state, resets its localInformId, and logs the updated
group membership. If the informId does not match or the node is not in the
Informed state, the message is re-enqueued for later processing.

recvOp :: C.MVar MsgList —> Message —> NodeConfig —>
C.MVar Locallnfo —> 10 ()
recvOp msgListMVar msg@(Operation { informld = opInID, newMembers = newMs,
removeMembers = remMs }) cfg locallnfoMVar = do
C.modifyMVar_ locallnfoMVar § \li —>
case (nodeState li, oplnID == locallnformld li) of
(Informed, True) —> do
cancelTimer cfg
let newGL = Set.difference (Set.union (groupList li) newMs) remMs
newD| = Set.difference (deletelnform 1i) remMs
gsInfoMsg = Ser.encode (Gsinfo { informld = oplInID,
sender = selfNodelD cfg })
msgs = [(nodeldToSockAddr e, gsinfoMsg) | e <— Set.toList newMs]
_ <— Sec.sendMessages (secureUDP cfg) msgs
putStrLn $ ”[recvOp] executing, groupList” ++ show newGL
return li { nodeState = Idle, locallnformld = zerolnformID,
groupList = newGL, deletelnform = newDI }

- —>do
reenqueue msg msglistMVar
return li
recvOp _ - _ _ = error ”[recvOp] pattern match error”

Listing 2. The recvOp function processes the Operation message to update
the group membership and notify new members.

The join protocol utilizes an inform/ack mechanism to add new nodes with-
out compromising group consistency, ensuring a safe and clear process.

3.3. Leave and failure handling

The general process of leave and failure handling has the following proce-
dure. Each member maintains a small “deletion list” of nodes to remove, either
because they have failed or have chosen to leave. When a member detects a
failure or decides to leave, it adds the node ID to its deletion list and trig-
gers an inform round. In this round, the member sends an Inform message to
all group members except those on its deletion list, then waits for InformAck

Energy-efficient lazy group membership protocol 237

replies within a timeout. If all alive members acknowledge, the informer be-
comes the Introducer and broadcasts the final update.

A leaving node can add itself to a removal set (toDelete) and broadcast an
Inform, triggering the same acknowledgment and update procedure. Failure
detection leads nodes to mark lost members in a pending removal set.

As shown in Listing 3, the idleDetectFail function is responsible for de-
tecting node failures when the node is in the Idle state. It takes a set of
lostIds, representing nodes that have failed or are unreachable, and checks
whether any of these nodes are already marked for deletion in deleteInform.
If there are any new lost nodes, they are added to the deleteInform set. This
function ensures that the group membership list remains updated by tracking
failed nodes. If no new failures are detected, the function does not make any
changes to the state.

idleDetectFail :: C.MVar Locallnfo —> Set.Set Nodeld —> IO ()
idleDetectFail locallnfoMVar lostlds = C.modifyMVar._ locallnfoMVar $ \li —> do
let newlost = lostlds ‘Set. difference * deletelnform i
newDeletelnform = Set.union (deletelnform i) lostlds
case (nodeState li, Set.null(newLost)) of
(Idle, False) —> do
putStrLn $ ”[idleDetectFail] executing”
return li { deletelnform = newDeletelnform }
_ —> return li

Listing 3. The idleDetectFail function detects node failures in the Idle state
and updates the deleteInform list accordingly.

As demonstrated in Listing 4, the introDetectFail function is used to
detect node failures when the node is in the Introducer state. It receives a set
of lostIds, which represent the nodes that have failed or become unreachable.
If any of the lost nodes are not already marked for deletion in toDelete, the
function logs the failure and adds them to the toDelete set. This ensures that
the node acting as an introducer keeps track of failed members and updates
the group membership accordingly. If no new failures are detected, the state
remains unchanged.

introDetectFail :: C.MVar Locallnfo —> Set.Set Nodeld —> IO ()
introDetectFail locallnfoMVar lostlds = C.modifyMVar_ locallnfoMVar $ \li—> do
let newLost = Set. difference lostlds (toDelete Ii)
case (nodeState li, Set.null newlLost) of
(Introducer, False) —> do
putStrLn ”[introDetectFail] executing”
return li { toDelete = Set.union (toDelete li) lostlds }
_ —> return li

Listing 4. The introDetectFail function detects node failures in the
Introducer state and updates the toDelete list accordingly.

238 J. Li and V. Zsok

As presented in Listing 5, the recvFinish function implements the Recv-
Finish action, which handles the reception of the Finish message in the lazy
group membership protocol. When the node is in the Informed state and the
incoming informId matches the node’s localInformId, the function cancels
any active timer, logs the action, and transitions the node back to the Idle
state. It also resets the localInformId to signify the finish of the group mem-
bership update. If the conditions are not met, the message is re-enqueued for
later processing.

recvFinish :: C.MVar MsgList —> Message —> NodeConfig —>
C.MVar Locallnfo —> 10 ()
recvFinish msgListMVar msg@(Finish { informld = inID }) cfg locallnfoMVar =
C.modifyMVar_ locallnfoMVar § \li —>
case (nodeState li, inID == locallnformld i) of
(Informed, True) —> do
cancelTimer cfg
putStrLn ”[recvFinish] executing”
return li { nodeState = Idle, locallnformld = zerolnformID }

- —>do
reenqueue msg msglistMVar
return li
recvFinish _ _ _ _ = error ”[recvFinish] pattern match error”

Listing 5. The recvFinish function processes the Finish message to finalize
the group membership update and return to the Idle state.

The failure and leave events are handled via the deletion list and the inform
phase, ensuring that all live members are aware of the removals.

3.4. Concurrency

The Haskell code utilizes concurrent threads for networking and timer op-
erations. Each node spawns a receiver thread that listens on the secure UDP
channel, deserializes incoming messages, and dispatches them to the corre-
sponding handlers. Timers (using forkI0 and delays) enforce timeouts. Shared
state is protected by MVars (atomic mutable variables in Haskell) to ensure
thread-safe updates of the membership list and state.

As shown in Listing 6, the timer management functions are responsible
for handling the timeout mechanism in the protocol. The cancelTimer func-
tion stops any active timeout thread by checking the thread ID stored in
timerThread and killing the thread if it exists. The startTimer function first
cancels any existing timer, then forks a new thread that waits for a specified
delay (in microseconds) before executing the provided action.

The thread ID is stored in timerThread to allow for proper management
and cancellation. The defaultTimeout function defines the default timeout
period as 16 times the message-fetch interval, ensuring that the protocol has
a reasonable waiting period for each operation. These functions are crucial

Energy-efficient lazy group membership protocol 239

for managing timeouts and ensuring that operations are executed within the
specified time limits.

cancelTimer :: NodeConfig —> IO ()
cancelTimer cfg = mask_$ do
mOld <— C.modifyMVar (timerThread cfg) $ \old —> return (Nothing, old)
case mOld of
Just tid —> C.killThread tid
Nothing —> return ()

startTimer :: Int —> IO () —> NodeConfig —> IO ()
startTimer delay action cfg = mask_$ do
cancelTimer cfg
tid <— C.forklO $ do
C.threadDelay delay
uninterruptibleMask_ action
C.modifyMVar_ (timerThread cfg) $ _ —> return (Just tid)

defaultTimeout :: NodeConfig —> Int
defaultTimeout cfg = 16 * msgFetchinterval cfg

Listing 6. Timer management functions for controlling the timeout mechanism
in the protocol.

Concurrency in this implementation involves a receiver thread and timer
threads, with all shared state stored in MVars, which ensures reliable timeouts
and message handling.

3.5. Protocol messages

The protocol uses several message types (modeled as a Haskell data type
Message), including JoinReq (join requests), Inform (introducer broadcasts
that there are membership changes), InformAck (acknowledgments of informs),
GroupStruct and Operation (final group update and data), Finish (cancel
join), and JoinFail (inform the joining node that the joining is failed). Mes-
sage handling functions dispatch on message type and current state to imple-
ment the protocol logic.

The processGroupMessage matches on the incoming Message constructor
and calls the corresponding handler function: recvInform, recvJoinRequest,
forwardJoinReq, introRecvJoinRequest, recvInformAck, recvFinish, re-
cvHandlerUpdate, recvGroupStruct, recvGsInfo, recvJoinFail, recvAll-
InformAck, updateOp, recvOp.

Each handler implements a part of the protocol logic: Once the Joinreq
is received, if the node is Idle, it changes to introCounter, assigns a new
localInformId, adds the requester to toAdd, broadcasts an Inform to current
members, starts a join timeout, and sets the state to WaitingInformAck. When
receiving a GroupStruct, the joining node cancels the join timer, adds the
introducer to the group list, sets numInMemory, and changes to GsCollecting,

240 J. Li and V. Zsék

then calls recvA11GsInfo to check if all group info has arrived. When receiving
a Gsinfo (group structure info), if in GsCollecting and the inform ID matches,
we add the sender to groupList and again check if all group info has arrived.

The recvAllGsInfo checks if we have collected all expected group-info
messages. If yes (and we are in GsCollecting), we reset the state to Idle
and clear localInformId and numInMemory. When receiving an Informack, if
its ID matches our localInformId, we add the sender to ack; otherwise, we
requeue it. Then recvAllInformAck is called.

The recvAllInformAck checks if the ack set covers the current active group.
If yes, it cancels the timer, transitions to Introducer, and calls updateOp to
apply the group update. When receiving a Finish or Joinfail, the node
knows that joining has failed.

Other helper functions like idleDetectFail, introDetectFail, idleLeave,
tryDeleteInform, selfUpdate, informTimeout detect failures or leave events
and send appropriate group updates. For example, idleDetectFail marks lost
nodes for removal, tryDeleteInform sends Inform messages trying to inform
other group members about the changes, and selfUpdate handles the case
when the group list is empty after deleting the failed or left nodes.

A fixed set of message types and handlers covers all group membership
events that can occur.

4. Code execution and runtime behavior

In this section, we illustrate the actual runtime behavior of our protocol.
We explain how each node starts up, joins the group, and processes mes-
sages. The printed logs show state changes and membership updates in a
clear, step-by-step manner. Sample outputs from three nodes highlight the
join sequence and confirm the protocol’s correctness.

As illustrated in Listing 7, the Main.hs module handles command-line ar-
guments, node creation, and group creation or joining. Depending on the ar-
gument count, a node either becomes the first member (creating a new group)
or attempts to join an existing group via an introducer. After the node joins
an existing group, it broadcasts a message in the group.

We use getArgs to read command-line parameters. If three arguments
are provided (hostStr, portStr, intervalStr), this node becomes the first
member. It calls createNode, then createGroup, and prints a startup message.
Finally, it loops forever to keep the process alive. If five arguments are provided
(including introHost and introPortStr), this node joins an existing group.
After createNode, it prints a start message, calls join, waits eight seconds to
let the joining be completed, broadcasts “I joined” to all current members, and
then loops forever. Any other argument pattern prints “Wrong args.”

The runtime interactions of three nodes are shown in the following outputs.
Node 1 starts the group, and Nodes 2 and 3 join sequentially through the speci-

Energy-efficient lazy group membership protocol 241

fied introducers. Each node prints a series of internal operations that reflect the
progress of the protocol. Messages such as Joinreq, Inform, and Operation
show the steps of membership negotiation and state propagation. Besides the
messages of the group membership protocol, the client group broadcast message
”T joined” is also printed out in the output.

As demonstrated in Listing 8, the first node (Node 1) starts by printing
its own identifier and the message-fetch interval. This log confirms that the
UDP socket and secure channel are ready. Shortly after, Node 1 receives
a Joinreq message from Node 2. Upon handling this request, it invokes
recvJoinRequest, which moves Node 1 into the WaitingInformAck state and
broadcasts an Inform message to its (currently empty) group. Since there
are no other members yet, recvAllInformAck immediately finds that all ac-
knowledgments have “arrived,” causing Node 1 to transition to the Introducer
role. In its introducer role, Node 1 executes updateOp, calculates the new
group membership (which now just includes Node 2), and prints the updated
groupList. Later, when Node 1’s handleReceive thread decodes an Inform
from Node 2 (indicating that Node 2 is notifying the joining of Node 3), Node 1’s
recvInform call acknowledges it, moves to Informed, and starts an informed-
state timer. Finally, Node 1 receives an Operation message from Node 2. This
recvOp call merges Node 3 into Node 1’s groupList, so that it now shows
both Node 2 and Node 3, and then returns Node 1 to Idle. The last line, “I
joined,” is a client broadcast message that simply confirms Node 3 is connected
via Node 1.

As presented in Listing 9, node 2 begins by printing its own identifier and
interval. It immediately sends a Joinreq to Node 1. Soon after, Node 2’s
handleReceive thread picks up a Groupstruct from Node 1. The recvGroup-
Struct call records Node 1 in its groupList, and moves Node 2 into GsCollect-
ing. Since there is only one member to collect, recvAl1GsInfo quickly finds
that the size of groupList matches numInMemory, causing Node 2 to become
Idle, which means Node 2 joined the group successfully. The printed “group-
Broadcast True” confirms that the broadcast sent by the client has succeeded.

Next, a Joinreq from Node 3 arrives. Node 2’s recvJoinRequest logs
“[recvJoinRequest] executing” and broadcasts an Inform to its current group
(which contains only Node 1). Then, when Node 2 sees an Informack from
Node 1, recvInformAck adds Node 1 to its ack set. Because Node 2 was
already in WaitingInformAck, recvAllInformAck now moves it to Introducer
and schedules updateOp. When updateOp runs, Node 2 computes its new group
(Nodes 1 and 3), sends an Operation to Node 1, sends an Groupstruct to Node
3, and prints its updated groupList. Finally, the printed-out string “I joined
from 127.0.0.1:10002” shows that Node 2 has received the client broadcast
message from Node 3.

As shown in Listing 10, node 3 logs its own startup similarly. It sends
a Joinreq to Node 2, as indicated by “[sendJoinRequest] executing.” Soon
after, Node 3 decodes a Groupstruct from Node 2. Its recvGroupStruct

242 J. Li and V. Zsék

adds Node 2 to groupList and moves into GsCollecting (it also knows the
size of the current group). Next, Node 3 sees a Gsinfo from Node 1. Since
Node 1’s informId matches Node 3’s localInformId, recvGsInfo adds Node
1 to groupList and logs “[recvGsInfo| executing.” Finally, recvA11GsInfo
recognizes that Node 3 has now gathered information from both Node 1 and
Node 2, so it changed Node 3 to Idle, which means Node 3 has joined the
group. The final “groupBroadcast True” shows that Node 3 has sent a group
broadcast to the entire group to announce its arrival.

Figure 1 illustrates the two-round join process. In round 1, Node 2 sends
a Joinreq to Node 1, receives a Groupstruct reply from Node 1, and then
sends ClientMsgl to Node 1. In round 2, Node 3 issues a Joinreq to Node 2.
Node 2 forwards a Inform to Node 1. Node 1 returns a Informack to Node
2. Node 2 completes the update by sending Operation to Node 1 and sending
Groupstruct to Node 3. Then, Node 1 delivers Gsinfo to Node 3. Finally,
Node 3 sends ClientMsg2 to both Node 2 and Node 1.

Nodel Node2 Node3
| Joinreq | |
I I :
I I I
i Groupstruct i i
| i i
I I I
! ClientMsgl ! !
1 I I
i i i
I I I
! ! Joinreq !
I I I
I I I
I I I
! Inform ! !
I I I
I I I
| Informack | |
i i i
I . I I
! Operation ! !
| | i
I I I
| | Groupstruct !
I L
I I I
I I I
I I I
! Gsinfo I
I I I
I I I
, , ClientMsg2 ,
i i i
I I I
! ClientMsg2 !
I I
I I
I I

Figure 1. Message flow across three nodes

The client messages are not required for updating group membership. We
use it to verify that the group broadcast works correctly after the group mem-
bership has been updated. This sequence ensures that each join is coordinated
through an inform/ack phase and that group state remains consistent.

Energy-efficient lazy group membership protocol 243

The runtime logs display the execution of the protocol, showing clear state
transitions for the joining, inform/ack, and update phases. Each node’s out-
put confirms that membership messages propagate in the correct order and
demonstrates that the implementation faithfully realizes the intended mem-
bership protocol under real execution.

5. Benchmark description

In this section, we describe the design of our energy benchmark. We outline
the roles of the Coordinator and Sensor Nodes, the parameters they exchange,
and the method used to measure energy usage. We also detail the baseline tests
that isolate pure communication costs and introduce the normalized energy
ratio used to compare protocols.

We developed a benchmark to measure the total energy consumption of
the protocol in an IoT-like scenario. The system consists of one Coordinator
and multiple Sensor Nodes. After all nodes have started and connected, the
Coordinator sends each Sensor Node three parameters: the signal frequency f,
the duration ¢, and the Coordinator’s address.

The Coordinator then begins estimating its own energy consumption over a
period of t+ 5 seconds. Upon receiving f and ¢, each Sensor Node estimates its
energy usage over t+5 seconds and transmits a sensor message to the Coordina-
tor at an interval of f for exactly ¢ seconds. The Coordinator logs or stores all
received messages. Finally, we sum the energy consumption estimation results
(produced by the energy profiling tool) from the Coordinator and all Sensor
Nodes to obtain the total energy consumption of the distributed system.

In our tests, the Coordinator and Sensor Nodes run on separate, homoge-
neous machines. The duration ¢ is fixed at 60 seconds. We conduct experiments
by varying the signal frequency f (100 milliseconds, 500 milliseconds, 1000
milliseconds, 2000 milliseconds), the message size L (100 bytes, 200 bytes, 400
bytes) and the number of Sensor Nodes N (5, 10, 20, 30, 40, 50, as permitted
by lab conditions).

This benchmark reflects realistic IoT use cases. In industrial monitoring,
message rates are high (f = 100-500 milliseconds) with small payloads (L =
= 100-200 bytes). In environmental sensing, rates are lower (f = 1000-2000
milliseconds) with larger payloads (L = 200-400 bytes).

To measure pure communication costs, we perform a baseline test between
two machines, A and B. Machine A sends messages of size L at a frequency of
f for a duration of ¢, while B only listens and discards packets. Both machines
remain lightly loaded, and unrelated services are disabled.

The energy is measured via CPU RAPL counters or external energy con-
sumption measurement tools at each end. When comparing to multi-node
protocol tests, we scale the two-node baseline energy Epase(f, L,t) linearly to

244 J. Li and V. Zsok

N nodes (each sending at f). We then define the normalized energy ratio.

B (f L, t)

proto

z(f,L,t;N):m’

where Eéﬁ)to is the total energy with protocol logic, and Ej g is the two-node

pure-communication energy.
6. Evaluation implementation

In this section, we provide a detailed description of the four implementa-
tions used in our evaluation. The lazy baseline test implementation relies on
raw sockets and the Secure-UDP library. It supports two roles, receiver and
sender. Each role requires both an IP address and a port to be specified on
the command line.

In receiver mode, the code parses the local IP and port, creates a data-
gram socket, configures and starts a SecureUDP channel, and then runs energy
measurement. It listens for 60 seconds, repeatedly calling Sec.getReceived to
retrieve decrypted messages and print them.

In sender mode, the program binds its socket, configures a SecureUDP
channel, and begins energy profiling; it then builds a fixed-size payload, com-
putes the send count from the given interval and duration, and in a tight loop
invokes Sec.sendMessages at each interval before cleanly closing the socket.
The energy profiler is launched via an external AMD tool on a background
thread.

The SWIM baseline test uses net.Listen-Packet and net.DialUDP for
communication, and an exec.Command to start the AMD energy tracer.

In the lazy test, a coordinator waits for sensors to join, then broadcasts
a START message with frequency, duration, and size. Each sensor parses the
START and sends its own stream of messages back to the coordinator. Energy
tracing begins just before data exchange.

The SWIM test uses the memberlist library for membership. After the
group forms, the coordinator sends a START packet via UDP to each member’s
data port. Sensors receive this single packet, then push data back at the given
interval. Energy recording is triggered at the same point.

7. Energy measurement results

In this section, we report the energy measurements gathered during our
experiments. All experiments were conducted on two laptops running Windows
11: one equipped with an AMD Ryzen 7 7840HS CPU and 32 GB of RAM and
the other with an AMD Ryzen 7 8745HS CPU and 16 GB of RAM. Energy

Energy-efficient lazy group membership protocol 245

measurements were collected via AMD’s AMDuProfCLI tool with a sampling
interval of 200 milliseconds over 65 seconds, while each test ran for 60 seconds
of active message exchange. We vary the send interval i € {200,500,1000}
milliseconds and message size m € {100,200,400} bytes in all tests.

As shown in Figure 2, in the baseline tests, the Haskell implementation with
SecureUDP consistently draws around 21 Watts, roughly three times the 6 to
7 Watts observed for the Go with UDP test. This difference likely stems from
the overhead of SecureUDP, as well as heavier runtime and garbage collection
activity in Haskell. Neither the send interval nor the message size strongly

affects the average power.
SWIM baseline
Lazy baseline [T

400

Average Power (Watts)

200

600 o0

1,000

Message Size (bytes
Interval (milliseconds) essage Size (bytes)

Figure 2. Baseline energy consumption for pure message exchange on two
nodes.

As shown in Figure 3, when running the complete protocol logic, the Lazy
protocol implementation consumes around 19-20 Watts on average, compared
to 6-7 Watts for the SWIM protocol implementation. The SecureUDP channel
plus group management logic and Haskell runtime overhead may account for
most of the extra draw. We observe a slight downward trend at longer intervals,
as fewer messages per second result in reduced transmission activity.

As shown in Figure 4, the normalized energy index falls below 1 for the
lazy protocol in all configurations, indicating that the custom Haskell protocol,
despite its higher absolute draw, is more sustainable relative to its baseline
than SWIM is. Both indices vary only slightly with interval and message size
since baseline and protocol costs change in a similar proportion.

The figure shows that both protocols produce the same surface shape under
identical test settings, with the vertical axis indicating the normalized energy
index. Overall, under this benchmark test the energy index of the Lazy protocol
is lower than that of the SWIM protocol, indicating greater sustainability.

246 J. Li and V. Zsék

We assume the Lazy protocol benefits from the removal of the periodic
heartbeat messages. By eliminating them, the Lazy protocol sends fewer con-
trol messages when there is no change in group membership. However, its
absolute power draw is higher, primarily due to the costs of SecureUDP and
the Haskell runtime. Interval and payload size have only a limited impact on
these tests.

_\T\r\ z SWIM

Lazy

20

10
400

Average Power [Watts)

200
400 600 200

500 1,000

Interval {(milliseconds) Message Size (bytes)

Figure 3. Energy consumption of the protocol implementation

\r\ ‘ Lazy Index

QS“"[M Index [

11

Energy Index
—

400

200
800

1,000

Interval (milliseconds) Message Size (bytes)

Figure 4. Normalized energy index comparing protocol to baseline.

Energy-efficient lazy group membership protocol 247

8. Conclusion

We have presented a lazy group membership protocol implemented in Has-
kell, designed to reduce periodic messages. The energy-focused benchmark
shows that, while the absolute power draw is higher due to SecureUDP and the
Haskell runtime, the lazy protocol’s normalized energy index is low, indicating
better sustainability relative to pure communication costs. The primary benefit
of the lazy protocol is energy sustainability, as it eliminates the need for periodic
messages, resulting in lower energy consumption.

Overall tests demonstrate consistent feature behavior across intervals and
message sizes, confirming that the protocol runs efficiently under varying loads
and validating the accuracy of our energy measurements through repeated tri-
als.

The future work includes optimizing the implementation by improving the
underlying reliable message sending library. We also plan to explore adaptive
timeout schemes to reduce latency, integrate with real IoT deployments for field
validation, and include new formal verification based on the implementation to
strengthen correctness guarantees.

A. Code execution

{—# LANGUAGE OverloadedStrings #—}
module Main (module Main) where

import Protocol

import System.Environment (get Args)
import Control. Monad (forever)
import Control.Concurrent (threadDelay)

main :: 10 ()
main = do
args <— getArgs
case args of
[hostStr, portStr, intervalStr] —> do
let portR = read portStr :: Int
interval = read intervalStr :: Int
node@(nodeC,_,_,_) <— createNode hostStr portR interval
createGroup node
putStrLn $ ”"First node started ” ++ show nodeC
forever $ threadDelay 10000000
[hostStr, portStr, intervalStr , introHost, introPortStr] —> do
let portR = read portStr :: Int
interval = read intervalStr :: Int
introPort = read introPortStr :: Int
introld = Nodeld { host = ipToTuple introHost, port = introPort }
node@(nodeC,_,_,_) <— createNode hostStr portR interval

248 J. Li and V. Zsék

putStrLn $ ”Node started” ++ show nodeC

join node introld

threadDelay 8000000

s <— groupBroadcast node "I joined”

case s of
True —> putStrLn ”groupBroadcast True”
False —> putStrLn ”groupBroadcast False”

forever $ threadDelay 10000000

- —>do
putStrLn ”Wrong args”

Listing 7. Main.hs implementation for lazy protocol

stack exec lazy—exe 127.0.0.1 10000 500000

Node created with Nodeld: Nodeld {host = (127,0,0,1), port = 10000}
First node started Node Id Nodeld {host = (127,0,0,1), port = 10000}
msgFetchinterval 500000

[handleReceive] Decoded group control message:

Joinreq {sender = Nodeld {host = (127,0,0,1), port = 10001}}
[recvJoinRequest] executing

[recvAllinformAck] executing

[updateOp] executing, groupListfromList [Nodeld {host = (127,0,0,1),
port = 10001}]

[handleReceive] Decoded group control message:

Inform {informld = (Nodeld {host = (127,0,0,1), port = 10001},1)}
[handleReceive] Decoded client message: | joined from 127.0.0.1:10001
[recvinform] executing

[handleReceive] Decoded group control message:

Operation {informld = (Nodeld {host = (127,0,0,1), port = 10001},1),
newMembers = fromList [Nodeld {host = (127,0,0,1), port = 10002}],
removeMembers = fromList [|}

[recvOp] executing, grouplListfromList [Nodeld{host = (127,0,0,1), port = 10001},
Nodeld {host = (127,0,0,1), port = 10002}]

[handleReceive] Decoded client message: | joined from 127.0.0.1:10002

Listing 8. Node 1 Execution Output

stack exec lazy—exe 127.0.0.1 10001 500000 127.0.0.1 10000

Node created with Nodeld: Nodeld {host = (127,0,0,1), port = 10001}

Node startedNode Id Nodeld {host = (127,0,0,1), port = 10001}
msgFetchInterval 500000

[sendJoinRequest] executing

[handleReceive] Decoded group control message: Groupstruct {memberNum = 1,
informld = (Nodeld {host = (127,0,0,1), port = 10000},1), introLeave = False}
[recvGroupStruct] executing, groupListfromList [Nodeld {host = (127,0,0,1),
port = 10000}]

[recvAllGsInfo] executing, groupListfromList [Nodeld {host = (127,0,0,1),
port = 10000}]

[handleReceive] Decoded group control message:

Joinreq {sender = Nodeld {host = (127,0,0,1), port = 10002}}

Energy-efficient lazy group membership protocol 249

[recvJoinRequest] executing

groupBroadcast True

[handleReceive] Decoded group control message:

Informack {informld = (Nodeld {host = (127,0,0,1), port = 10001},1),
sender = Nodeld {host = (127,0,0,1), port = 10000} }

[recvinformAck] executing

[recvAllinformAck] executing

[updateOp] executing, grouplistfromList [Nodeld {host = (127,0,0,1),
port = 10000},Nodeld {host = (127,0,0,1), port = 10002}]
[handleReceive] Decoded client message: | joined from 127.0.0.1:10002

Listing 9. Node 2 Execution Output

stack exec lazy—exe 127.0.0.1 10002 500000 127.0.0.1 10001

Node created with Nodeld: Nodeld {host = (127,0,0,1), port = 10002}

Node startedNode Id Nodeld {host = (127,0,0,1), port = 10002}
msgFetchInterval 500000

[sendJoinRequest] executing

[handleReceive] Decoded group control message: Groupstruct {memberNum = 2,
informld = (Nodeld {host = (127,0,0,1), port = 10001},1), introLeave = False}
[recvGroupStruct] executing, groupListfromList [Nodeld {host = (127,0,0,1),
port = 10001}]

[handleReceive] Decoded group control message:

Gsinfo {informld = (Nodeld {host = (127,0,0,1),

port = 10001},1), sender = Nodeld {host = (127,0,0,1), port = 10000} }
[recvGsInfo] executing, groupListfromList [Nodeld {host = (127,0,0,1),

port = 10000}, Nodeld {host = (127,0,0,1), port = 10001}]

[recvAllGsInfo] executing, groupListfromList [Nodeld {host = (127,0,0,1),
port = 10000},Nodeld {host = (127,0,0,1), port = 10001}]

groupBroadcast True

1]

2]

Listing 10. Node 3 Execution Output

References

Barrientos, F.J.A.C., secureUDP: Setups secure (unsorted) UDP packet
transfer, Hackage

https://hackage.haskell.org/package/secureUDP

Cheng, Q., C. Hsu and L. Harn, Lightweight noninteractive member-
ship authentication and group key establishment for WSNs, Mathematical
Problems in Engineering, vol. 2020, 2020, Article ID 1452546.
https://doi.org/10.1155/2020/1452546

Das, A., I. Gupta and A. Motivala, SWIM: Scalable weakly-consistent
infection-style process group membership protocol, in Proc. Int. Conf. De-
pendable Systems and Networks (DSN), IEEE, 2002, pp. 303-312.
https://doi.org/10.1109/DSN.2002.1028914

https://hackage.haskell.org/package/secureUDP
https://doi.org/10.1155/2020/1452546
https://doi.org/10.1109/DSN.2002.1028914

250

J. Li and V. Zsok

[4]

HashiCorp, Gossip Protocol, GitHub
https://github.com/hashicorp/serf/blob/master/docs/internals/
gossip.html.markdown

HashiCorp, Introduction to Serf, GitHub
https://github.com/hashicorp/serf/blob/master/docs/intro/
index.html.markdown

Kim, C. and J. Ahn, Causal order protocol based on virtual synchronous
group membership in wireless sensor networks, Int. J. Control and Automa-
tion, 8(2) 2015, 9-20.

https://doi.org/10.14257/ijca.2015.8.2.02

Shi, H., M. Fan, Y. Zhang, M. Chen, X. Liao and W. Hu, An
effective dynamic membership authentication and key management scheme
in wireless sensor networks, in 2021 IEEE Wireless Communications and
Networking Conference (WCNC), IEEE, Nanjing, China, 2021, pp. 1-6.
https://doi.org/10.1109/WCNC49053.2021.9417320

Jianhao Li
https://orcid.org/0009-0000-0556-6423

ELTE Eo6tvos Lorand University

Faculty of Informatics

Department of Programming Languages and Compilers
H-1117 Budapest, Pdzmdany Péter sétany 1/C.
Hungary

lijianhao@inf.elte.hu

Viktéria Zsék
https://orcid.org/0000-0003-4414-6813

ELTE Eotvos Lorand University

Faculty of Informatics

Department of Programming Languages and Compilers
H-1117 Budapest, Pdzmény Péter sétéany 1/C.
Hungary

zsv@inf.elte.hu

https://github.com/hashicorp/serf/blob/master/docs/internals/gossip.html.markdown
https://github.com/hashicorp/serf/blob/master/docs/internals/gossip.html.markdown
https://github.com/hashicorp/serf/blob/master/docs/intro/index.html.markdown
https://github.com/hashicorp/serf/blob/master/docs/intro/index.html.markdown
https://doi.org/10.14257/ijca.2015.8.2.02
https://doi.org/10.1109/WCNC49053.2021.9417320
https://orcid.org/0009-0000-0556-6423
https://orcid.org/0000-0003-4414-6813

	Introduction
	Background and comparison with SWIM
	Protocol implementation
	Data structures and state
	Join procedure
	Leave and failure handling
	Concurrency
	Protocol messages

	Code execution and runtime behavior
	Benchmark description
	Evaluation implementation
	Energy measurement results
	Conclusion
	Code execution

