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Abstract. We propose a novel hybrid reconstruction method for SPECT
imaging that integrates the OSEM algorithm with Condat’s extension of
the PDHG method, enabling the usage of non-smooth TV functional as a
prior. Unlike traditional OSL scheme that requires smoothed version of
TV, our approach directly incorporates non-smooth TV. To ensure spa-
tially uniform regularization strength, even when attenuation is modeled,
we introduce a sensitivity-based compensation strategy in the PDHG
update step. This adjustment improves regularization consistency and
simplifies the selection of regularization parameters. We evaluate the
method using Monte Carlo simulations of a Jaszczak phantom under
varying noise conditions. The proposed OSEM-PDHG framework out-
performs OSL-TV in terms of PSNR, SSIM, and noise suppression, par-
ticularly in low-SNR scenarios. While increased regularization reduces
contrast in small structures such as cold rods, the method achieves sig-
nificantly improved image quality without compromising stability. Our
results suggest that this framework is a robust and flexible alternative
for noise-aware SPECT reconstruction.

1. Introduction

Single photon emission computed tomography (SPECT) is a widely utilized
nuclear imaging modality used in diagnostic imaging. During image acquisition
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a single- or multi-headed, typically rotating gamma camera detects γ-photons
that escape the field of view (FOV) of the scan based on their incoming direc-
tion and energy. This acquisition process can be modelled mathematically with
a linear operator that maps from the activity distribution within FOV of the
scan to the corresponding measurement data. The linear operator commonly
referred to forward-projection; it can account for various physical properties
of the detector system (e.g. spatial and energy resolution, system sensitivity)
as well as the underlying physics of the imaging process (e.g. attenuation, ra-
dioactive decay). The adjoint of the operator is known as the back-projection.

In SPECT imaging, the objective of reconstruction is to estimate the spa-
tial distribution of radioactive isotope activity within the detector system’s
FOV, based on measurements acquired during the scan. Due to the inherently
stochastic nature of radioactive decay, the resulting measurement data are af-
fected by noise. Consequently, SPECT reconstruction is formulated as a sta-
tistical inverse problem, wherein the unknown activity distribution is mapped
to the measured data via the forward-projection operator and subsequently
inferred from noisy observations.

The simplest model of the SPECT forward-projection operator is the Radon
transform. In this case, the reconstruction can be performed with the inverse
Radon transform, typically implemented through the filtered back-projection
(FBP) method. This analytical approach requires only a single computation
step, making it highly efficient. However, the inverse Radon transform is an
unbounded linear operator, rendering it particularly sensitive to measurement
noise. Moreover, if the forward-projection incorporates additional physical pro-
cess, such as as attenuation, spatial resolution, an explicit analytic inverse may
no longer exists or is unknown, limiting the applicability of FBP in such cases.

To address the limitations of FBP, iterative reconstruction methods are
commonly employed. During SPECT scan, detected photon hits are counted
within finite-sized rectangular regions (pixels) of the detector system. It is
generally assumed that the number of detected events in each pixel follows
independent Poisson distributions, with parameters determined by forward-
projection of underlying activity distribution within the FOV of the SPECT
scan. Most iterative reconstruction algorithms aim to recover the activity dis-
tribution that maximizes the likelihood of the observed measurements under
this model.

The maximum likelihood expectation maximization (MLEM) algorithm in-
troduced in [5], is commonly used to obtain a maximum likelihood (ML) esti-
mate of the activity distribution. It operates by alternating between an expec-
tation and a maximization step. In the expectation step, the expected value of
complete-data log-likelihood is computed, conditioned on the current estimate
of the latent variables. In the maximization step, this conditioned expectation
is maximized to update the estimate. While MLEM was originally proposed for
positron emission tomography (PET) reconstruction in [15], the mathematical
model of SPECT and PET reconstruction is the same, they only differ in the
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forward-projector operator. For SPECT reconstruction, both steps are com-
putationally efficient, as they primarily involve applications of the forward-
and backward-projection operators. In [10] the authors showed that MLEM
can also be interpreted as a diagonally preconditioned gradient ascent method
applied to the log-likelihood.

In MLEM-based reconstruction, the majority of computation effort is de-
voted to the application of forward- and backward-projection operators. The
overall runtime can be significantly reduced by partitioning the measurement
data into subsets and using only a single subset for calculating the the update
of the current estimate of the activity distribution. This strategy underlies
the ordered subset expectation maximization (OSEM) algorithm, introduced
in [7], which achieves substantial acceleration while maintaining reconstruction
quality. While OSEM converges more rapidly, than MLEM in practice, it does
not guarantee monotonic increase in the likelihood function and its convergence
properties are more complex.

A common drawback of iterative reconstruction methods is the progressive
amplification of noise with increasing number of iteration (see, for example [9]).
One approach to mitigate this effect involves incorporating prior knowledge
about the the distribution of isotope activity through the use of regularization.
In this context of ML estimation, such prior information can be integrated into
the likelihood function to yield maximum a posteriori (MAP) estimate. Both
MLEM and OSEM algorithm can be extended by introducing Gibbs prior dis-
tribution with smooth energy function. However in practical implementation,
the prior can be evaluated only at the current estimate of the activity distri-
bution. This leads to the MAP-EM one step late (OSL) in case of MLEM and
it was introduced in [6]. In case of OSEM the same extension can be applied
naturally, resulting in OSEM-OSL algorithm.

The non-smooth total variation (TV) functional is widely used in imaging
applications for noise suppression. It promotes piecewise-constant solutions by
allowing intra-region smoothing while preserving sharp edges at region bound-
aries, thereby avoiding over-smoothing effects common to traditional regulariz-
ers. However OSL method requires smooth energy function when incorporating
a Gibbs prior. To address this, smoothed version of TV functional introduced
to the OSL framework in [11, 12]. Despite their theoretical appeal, the use
of smoothed TV and its derivative has been shown to include checker-board
artifacts under strong regularization conditions in [16]. This is particularly
problematic when strong regularization is required to achieve acceptable image
quality, for e.g. when the signal-to-noise ration (SNR) of the SPECT scan is
low.

To overcome these limitations, we propose a hybrid reconstruction scheme
that integrates OSEM algorithm with Condat–Vu variant of the primal-dual
hybrid gradient (PDHG) method, enabling the use of the original non-smooth
version of the TV functional as a regularizer. The PDHG algorithm introduced
in [3], is well suited for convex optimization problems involving linear maps
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and non-smooth term, and its flexibility allows for direct incorporation of TV
without the requirement of smoothing. The Condat–Vu algorithm presented in
[4] and [18], extends PDHG by including an explicit gradient step for functions
with Lipschitz-continuous derivatives. Both the original PDHG method and
Condat–Vu algorithm can be enhanced through diagonal preconditioning, as
proposed in [13], to further improve convergence behavior.

In our approach, the explicit gradient step, which is unique to the Condat–
Vu extension of PDHG algorithm, is replaced by an OSEM update, which
serves as an approximation of the MLEM update step, interpreted as a diago-
nally preconditioned gradient ascent on the log-likelihood. This hybrid method
effectively suppresses noise while preserving fine structural details, and impor-
tantly, it eliminates checkerboard artifacts even under strong regularization.
As a result, the proposed framework is particularly well suited for low-SNR
SPECT imaging scenarios, where conventional smoothed-TV-based methods
tend to fail.

2. Methods

2.1. SPECT projector operator

Our custom SPECT projector operator is based on the methods described in
[17]. It performs rotation-based forward and backward projection on the GPU,
incorporating distance-dependent modelling of both spatial resolution and de-
tector sensitivity. Additionally, it is capable of material map based attention
modelling. Attenuation coefficients are sourced from XCOM Photon cross sec-
tion database provided by NIST at [1]. The current implementation does not
include correction for radioactive decay. The projector was calibrated against
the Teratomo™ Monte Carlo photons transport simulator developed by Mediso
Ltd, which serves as the projection model for clinically validated multi pinhole
(MPH) SPECT reconstruction. (See for e.g. in [8] and [2].) Although our
implementation has been not directly calibrated using physical measurements,
it has demonstrated compatibility with data acquired with AnyScan SPECT
systems (Mediso Ltd, Hungary) equipped with parallel-hole collimators.

2.2. Penalized likelihood with Total Variation prior

We will consider the linear Poisson measurement model, which is commonly
employed in SPECT reconstruction. The statistical model for the SPECT
measurement is

bi ∼ Poisson {(Au)i + ri} i = 1, . . . , N,

where bi ≥ 0 denotes the number of photons counted in i-th bin of the measure-
ment image, uj ≥ 0 represents the radionuclide activity at voxel j = (x, y, z)
and ri denotes the expected contribution from random events, such as back-
ground radiation and scatter. The system matrix A models the detector geom-



Hybrid OSEM-PDHG reconstruction for SPECT 213

etry and efficiency, attenuation and scan duration with non-negative elements
ai,j ≥ 0.

The goal of reconstruction is to estimate the activity distribution u from the
observed measurement data b, given the system matrix A and the estimated
random events r. This is typically achieved by minimizing the negative log-
likelihood of the Poisson model. Ignoring constant terms that do not depend
on the variables to be minimized, the negative log-likelihood is given by

L(v) =
N∑

i=1
vi − bi log vi,

where v = Au + r denotes the expected counts in the measurement domain.
As it was mentioned previously, iterative SPECT reconstruction methods

are known to accumulate noise as the number of iteration increases. To mitigate
this effect, prior information is typically incorporated into objective function in
the form of a regularization term. Among various choices, the TV functional is
frequently used in tomography reconstruction due to its favorable property of
suppressing noise while preserving sharp edges between homogeneous regions.
The discretized TV is defined as

(2.1) ∥∇u∥2,1 =
∑

j

((
δ+

1 u
)2

j
+

(
δ+

2 u
)2

j
+

(
δ+

3 u
)2

j

)1/2
,

with j = (x, y, z) denotes the voxel index and δ+
d is the forward finite difference

operator along the d-th spatial direction with homogeneous Dirichlet boundary
conditions (i.e. zero padding) and voxel spacing h = (h1, h2, h3).

At every point of the discretized scalar field u, the gradient ∇u indicates
the direction of steepest ascent, the magnitude of the gradient representing the
rate of change along that direction, so in essence ∥∇u∥2,1 is the sum of all rates
of changes along the direction. Consequently ∥∇u∥2,1 can be interpreted as
the aggregated magnitude of local variations in u. This quantity is strongly
correlated with noise on the reconstructed image, making TV a natural choice
for regularization in the SPECT reconstruction objective function.

The objective function for the SPECT reconstruction with TV prior can be
formulated as

L̃(u) + R(∇u) + I(u),(2.2)

where L̃(u) = L(Au + r) represents the data fidelity term based on the nega-
tive log-likelihood, R(∇u) = β ∥∇u∥2,1 is the regularization term weighted by
the regularization parameter β > 0 and I(u) is the convex indicator function
enforcing non-negativity of the solution:

I(u) =
{

0, if u ≥ 0
+∞ otherwise.

This formulation defines a convex, non-smooth optimization problem.
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2.3. Non-smooth TV regularized SPECT reconstruction

2.3.1. Finding an ML solution
The classical MLEM [15] based SPECT reconstruction method can be used

to obtain a ML estimate of u by minimizing the function L̃(u) = L (Au + r).
Starting from an initial estimate u(0) with u

(0)
j ≥ 0 the activity at voxel j

updated iteratively according to the following multiplicative update rule:

(2.3) u
(k+1)
j =

u
(k)
j∑
i ai,j

∑
i

ai,j
bi∑

s ai,su
(k)
s + ri

.

The multiplicative update in Equation (2.3) can be interpreted as diagonally
preconditioned gradient descent step on the objective function, as described
in [10]:

(2.4) u(k+1) = u(k) − T
(

u(k)
)

AT L′(Au(k) + r),

where the diagonal preconditioning matrix is T (u) = D(u)D
(
AT 1

)−1 with
D(x) denoting the the diagonal matrix formed from the vector x, and 1 is the
vector of all ones.

A known limitation of MLEM is its slow convergence rate. The primary
computation burden arises from the evaluation of the forward- and backward-
projection operators A and AT during each iteration. To address this issue, the
OSEM algorithm was introduced in [7]. OSEM accelerates the convergence by
updating the estimate u using only a subset of the measurement data at each
iteration. Specifically, the measurement indices {1, . . . , N} are partitioned into
M (typically disjoints) subsets Sm ⊂ {1, . . . , N} for m = 0, . . . , M − 1. Then
the MLEM update rule from Equation (2.3) is modified as follows:

(2.5) u
(k+1)
j =

u
(k)
j∑

i∈Sm
ai,j

∑
i∈Sm

ai,j
bi∑

s ai,su
(k)
s + ri

,

where m = k mod M .
The negative log-likelihood can be decomposed over the subsets as L(v) =

=
∑

m Lm(vm) with
Lm(vm) =

∑
i∈Sm

vi − bi log vi

where vm is the restriction of the vector v to the indices in Sm. The OSEM
update in Equation (2.5) can also be interpreted as diagonally preconditioned
gradient descent step:

(2.6) u(k+1) = u(k) − Tm

(
u(k)

)
AT

mL′
m(Amu(k) + rm),
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with the diagonal preconditioning matrix Tm(u) defined as:

(2.7) Tm(u) = D(u)D
(
AT

m1
)−1

where Am is the submatrix of A containing the rows indexed by Sm and rm

is the corresponding subvector of r. While MLEM converges to a ML solution
under mild assumptions, OSEM may instead cycle among at most M limit
points, which typically lie close to the ML estimate.
2.3.2. Primal-dual TV regularization

Let us denote the convex conjugate of a proper, convex function f with f∗

defined as f∗(y) = supx⟨y, x⟩ − f(x), where ⟨·, ·⟩ denotes the standard inner
product.

The regularization function R is closed and convex and there exists a feasi-
ble u > 0 such that L̃(u) + R(∇u) <∞. Therefore, the conditions of Fenchel’s
Duality Theorem (see Section 31 in [14]) are satisfied, and strong duality holds
between the primal problem, in which we try to minimize objective function
defined in Equation (2.2) and its dual problem which seeks to maximize the
following dual objective: −R∗(g)− (L̃ + I)∗ (∇∗g). The adjoint of discrete gra-
dient operator, ∇∗ is the negative of the discrete divergence operator, defined
as (divg)j =

(
δ−

1 g1
)

j
+

(
δ−

2 g2
)

j
+

(
δ−

3 g3
)

j
, where δ−

d denotes the backward finite
difference operator along direction d. In this formulation, the variable u in the
primal objective function in Equation (2.2) is referred to as the primal variable,
while the variable g in the dual objective, is known as the dual variable.

If u minimizes the primal objective of Equation (2.2) and g maximizes the
dual objective, then the pair (u, g) constitutes a saddle point of the associated
Lagrangian defined as

(2.8) (u, g) 7→ ⟨∇u, g⟩ −R∗(g) + L̃(u) + I(u).

This saddle point formulation provides the foundation for primal-dual opti-
mization methods such as the PDHG algorithm.

The proximal mapping of f at point x, with a symmetric positive definite
step-size matrix S, is defined as

proxS
f (x) = arg min

z

(
f(z) + 1

2 ∥z − x∥2
S

)
,

where ∥x∥S =
√
⟨S−1x, x⟩ is the norm induced by S. If f is differentiable, the

proximal mapping reduces to proxS
f (x) = x−Sf ′ (x), which can be interpreted

as a preconditioned implicit gradient descent step.
The Condat–Vu extension of PDHG algorithm, introduced in [4], is de-

signed to search for saddle point of the Lagrangian defined in Equation (2.8).
Let us assume that the step-size matrices S and T are diagonal with positive
entries. At each iteration, the method updates the dual variable g according
to the rule:

g(k+1) = proxS
R∗

(
g(k) + S∇u(k)

)
.
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The convex conjugate R∗ is the convex indicator function of ℓ∞-norm ball of
radius β. Therefore, the proximal mapping proxS

R∗ reduces to a projection onto
this convex set. Since S is diagonal, the projection simplifies to the final version
of the dual step:

proxS
R∗(g) = g

max
(

1,
∥g∥2

β

) .

After each dual variable update, the primal variable u is updated according
to the following rule:

(2.9) u(k+1) = proxT
I

(
u(k+1) + Tdiv

(
2g(k+1) − g(k)

))
,

where u(k+1) = u(k) − TAT L′(Au(k) + r) is the diagonally preconditioned
explicit gradient step with respect to the negative log-likelihood. The term
div

(
2g(k+1) − g(k)) is an extrapolated dual variable used to improve conver-

gence.
The proximal mapping of I corresponds to the projection onto the feasible

set defined by the convex indicator function I, which in this case is the non-
negative orthant. Therefore, the update simplifies to proxT

I (u) = max(u, 0)
The convergence of the algorithm is guaranteed under the condition that

the following induced matrix norm satisfies

(2.10)
∥∥∥∥S1/2∇

(
T −1 − µ

2 I
)−1/2

∥∥∥∥2
< 1,

where µ is a Lipschitz constant of the gradient of the data fidelity term L̃.
Under this condition, the algorithm converges to saddle point (û, ĝ), where û is
the solution of the primal problem defined in Equation (2.2), regardless of the
initial point (u(0), g(0)). If r > 0, then L̃ has Lipschitz-continuous gradient. In
context of SPECT imaging, the present of background radiation is inevitable,
making the assumption realistic and well justified.
2.3.3. Primal-dual TV regularized OSEM reconstruction

Our proposed method combines the Condat–Vu algorithm with OSEM.
The term u(k) = u(k) − TAT L′(Au(k) + r) which appears in the primal vari-
able update defined in Equation (2.9), can be interpreted as a preconditioned
gradient descent step on L̃(u). By choosing the preconditioning matrix as
T = D

(
u(k)) D

(
AT 1

)−1, this expression corresponds to the additive form
MLEM update defined in Equation (2.4).

To accelerate the computation, we adopt the subset-based strategy of OSEM
algorithm. Specifically we replace the full system matrix A with a subset
Am, where m = k mod M and use the corresponding preconditioning matrix
Tk = D

(
u(k)) D

(
AT

m1
)−1. With this modification, the update u(k) can be

computed via the multiplicative OSEM update step in Equation (2.5).
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In our framework, the primal step-size matrix Tk changes at every iteration
due to its dependence on the current estimate u(k). Consequently, the dual step
size matrix Sk must also adapt accordingly. The Lipschitz-constant µ might
not be available in every case. Instead of enforcing condition which requires
the value µ defined in Equation (2.10), we adopt a simplified criterion based on
the original PDHG formulation for matrix-valued step sizes described in [13].
Specifically, at each iteration, we require:

(2.11)
∥∥∥S

1/2
k ∇T

1/2
k

∥∥∥2
< 1.

If the dual variable step-size is the scalar

Sk = ρ

∥Tk∥ ∥∇∥2 ,

then ∥∥∥S
1/2
k ∇T

1/2
k

∥∥∥2
≤ Sk ∥∇∥2

∥∥∥T
1/2
k

∥∥∥2
=

= Sk ∥∇∥2 ∥Tk∥ =

= ρ

∥∇∥2 ∥Tk∥
∥∇∥2 ∥Tk∥ =

= ρ.

Therefore, if 0 < ρ < 1, then Sk and Tk satisfy Equation (2.11). In practice,
ρ is chosen close to 1; in our experiments, we used ρ = 1 − 10−3. Since Tk

is a diagonal matrix, its norm ∥Tk∥ reduces to the maximum diagonal entry.
The operator norm ∥∇∥ of the discrete gradient operator can be efficiently
estimated by power iteration.

The regularization step might lead to non-positive entries in the updated
primal variable u(k+1), and the negative entries are projected to zero by the
proximal operator of the non-negativity constraint I. Where the activity values
are exactly zero, the multiplicative nature of OSEM updates prevents further
modifications of those voxels. To enure strict positivity and maintain the avail-
ability of updates, the indicator function I(u) can be replaced by a relaxed con-
straint Ic(u) which is the convex indicator function of the set {u ≥ c} where
c > 0 is a small constant. The corresponding proximal mapping becomes a
simple thresholding function proxT

Ic
(u) = max(u, c).

2.3.4. Compensation of the dependence on system-sensitivity in
regularization strength

When attenuation is included in the system matrix A, the system-sensitivi-
ties AT

m1 associated with subset m = k mod M become spatially inhomoge-
neous. As a result, the regularization update term in the primal variable up-
date in Equation (2.9) can lead spatially varying regularization strength (see
Section 3.1). This effect is also noticeable in case of OSL. (See for e.g. [20].)
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To compensate this effect, we can scale subgradient term by diagonal matrix
formed from the system sensitivities, D

(
AT

m1
)
, effectively canceling the inverse

scaling from the step size matrix. The same modification was proposed to OSL
based methods in [16, 20]. This yields the sensitivity-compensated update:

(2.12) u(k+1) = proxTk

I

(
u(k+1) + D

(
u(k)

)
div

(
2g(k+1) − g(k)

))
.

This adjustment restores regularization homogeneity across the image, ensuring
consistent noise suppression regardless of sensitivity variations introduced by
attenuation modelling.

2.4. OSEM-PDHG-TV method

The computational requirements of the proposed algorithm are comparable
to those of the OSEM-OSL method equipped with a smoothed version of the
TV prior. However, the proposed method requires additional memory to store
the dual variable (i.e., the gradient field). Furthermore, to implement over-
relaxation, the dual variable must be stored twice. For SPECT imaging with
a resolution of 256 voxels in each dimension and 32-bit floating-point storage,
this results in an additional memory usage of approximately 128 MB. The
algorithm is presented in Algorithm 1.

Algorithm 1 OSEM-PDHG-TV
1: procedure OSEM-PDHG-TV
2: u, g ← c1, 0
3: for l = 1, . . . , L do
4: for m = 1, . . . , M do
5: S ←

ρ∥AT
m1∥∞

∥∇∥2·∥u∥∞

6: g′ ← g+S∇u

max
(

1,
∥g+S∇u∥2

β

) ▷ Dual variable update

7: uj ← uj∑
i∈Sm

ai,j

∑
i∈Sm

ai,j
bi∑

s
ai,sus+ri

▷ OSEM update for all
j

8: u, g ← u + D(u)div (2g′ − g) , g′

9: u← max (u, c)
10: end for
11: end for
12: return x
13: end procedure

2.5. Phantom simulations

To evaluate the performance of the proposed hybrid OSEM-PDHG-based
reconstruction method, we conducted a series of simulations using a digital
Deluxe Jaszczak phantom. The simulations were performed with the Monte
Carlo photon transport simulator developed by Mediso Ltd.
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The imaging setup replicated a clinical acquisition scenario using a Mediso
AnyScan TRIO SPECT system equipped with LEHR-HS collimator with NaI
crystal of 9.5mm thickness. The phantom was filled with 600MBq 99mTc ac-
tivity and it included several distinct regions:

1. a homogeneous region filled with uniform activity and no inserts, used
for noise assessment;

2. six non-radioactive cold spheres embedded in hot background, with di-
ameters of 9.5mm, 12.7mm, 15.9mm, 19.1mm, 25.4mm, and 31.8mm;

3. six segments containing non-radioactive rods within hot background. The
rods have diameter of 4.8mm, 6.4mm, 7.9mm, 9.5mm, 11.1mm, and
12.7mm.

The last two regions are visualized in Figure 1, highlighting the cold inserts in
the hot background.

31.8mm

9.5mm

12.7mm15.9mm

19.1mm

25.4mm

12.7mm11.1mm

9.5mm

7.9mm 6.4mm

4.8mm

cold hot

Figure 1. Cold inserts of the Deluxe Jaszczak phantom.

During the simulated acquisition, a single SPECT head operated in step-
and-shoot mode, capturing measurements of the phantom from 120 angular
positions with 3◦ increments between views. Two energy windows were used to
record detected photons: a 20% main window around 140 keV, and an adjacent
7% lower-energy scatter window, intended for scatter correction.

Detected photon events were binned into frames of 256×256 pixels. The
Monte Carlo simulator was configured to account for various physical interac-
tions, including photon scattering in phantom, collimator, crystal and in the
back-compartment of the SPECT head Additionally photon rejection due to
camera’s energy resolution was modelled using Gaussian distribution.

To evaluate reconstruction performance under varying noise conditions, we
generated three distinct datasets, each consisting of 10 independent measure-
ment realization:

• medium SNR simulated acquisitions denoted by M120, where each scan
contains approximately 120 million detected event, corresponding to a
frame acquisition time of ∼40s;
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• low SNR scans, denoted by M30 containing approximately 30 million
events per measurement, with a frame duration of ∼10s;

• very low SNR set, denoted by M15, including approximately 30 million,
with a frame duration of ∼5s.

For each measurement realization, the total number of photon hits was sampled
from a Poisson distribution with an expected value of 15, 30, or 120 million
counts, depending on the dataset. Given the sampled total count, individual
pixel values in the measurement image were then drawn from a multinomial
distribution, conditioned on the mean values of the Poisson variables produced
by the simulator.

2.6. Performance indicators

To quantitatively assess reconstruction performance, we used several stan-
dard performance metrics.

Peak signal-to-noise ratio (PSRN) measures the fidelity of the reconstructed
image u relative to a known ground truth u∗. It is defined as:

PSNR (u, u∗) = 20 log10

(
MAX (u∗)

RMSE (u, u∗)

)
,

where MAX (u∗) is maximum value of the reference image u∗ and RMSE de-
notes the root mean square error calculated as:

RMSE (u, u∗) =
√

1
n

∑
j

(
uj − u∗

j

)2
,

where n is the number of voxels.
Structural similarity index measure (SSIM), introduced in [19], is a per-

ceptual metric used to evaluate the similarity between two images by modeling
human visual perception. SSIM compares local patterns of pixel intensities that
have been normalized for luminance and contrast, making it more sensitive to
structural information. The values ranges from −1 to 1, where 1 indicates
perfect similarity between images.

The noise level (NL) is used to characterize the measured noise in a specific
volume of interest (VOI). It is defined as the coefficient of variation within the
VOI:

NLVOI = σVOI

µVOI
,

where σ and µ are the the standard deviation and mean, respectively.
Contrast-to-noise ratio (CNR) is employed to evaluate the contrast between

cold regions and the surrounding hot background in the phantom. It is com-
puted as:

CNRVOI = µBG − µVOI

µBG
,

where BG stands for background VOI.
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2.7. Reference method

To benchmark the performance of the proposed method, we compare it
against an equalized OSEM-OSL method as it was described in [16]. While
this method was created for PET reconstruction, it can be applied to SPECT
reconstruction as well, as demonstrated in [20].

In contrast to the traditional OSL method presented in [6], this method in-
cludes system-sensitivity compensation of the regularization term. The update
rule for the reference method is given by:

u
(k+1)
j = 1

1 + β∂jV (u(k)) ·
u

(k)
j∑

i∈Sm
ai,j

∑
i∈Sm

ai,j
bi∑

s ai,su
(k)
s + ri

,

where β > 0 controls the regularization strength and ∂jV (u) denotes the par-
tial derivatives of the smoothed TV functional with respect to voxel j. The
regularization functional is defined as:

(2.13) V (u) =
∑

j

((
δ+

1 u
)2

j
+

(
δ+

2 u
)2

j
+

(
δ+

3 u
)2

j
+ η2

)1/2
,

where η > 0 is a small smoothing parameter, introduced in [12].

3. Results

3.1. Regularization homogeneity
When the Jaszczak phantom is positioned in the center of the FOV, the

effective strength of regularization can vary radially from the axis of rotation of
the SPECT heads–if no compensation is applied. To quantify this effect, three
different cylindrical VOIs are placed symmetrically within the homogeneous
region, positioned at increasing radial distance on either side of the phantom
center. These VOIs are used to measure the NL, which serves as a proxy
for regularization strength. Higher NL indicates weaker regularization. By
averaging the NL values from mirrored VOIs across the rotation axis, we obtain
a robust indicator of radial regularization inhomogeneity.

We evaluated the impact of regularization strength inhomogeneity caused
by the system-sensitivity dependence of the step-size, by running the OSEM-
PDHG algorithm with TV prior on one measurement from the M120 group with-
out compensation, i.e. the primal update step was Equation (2.9). To demon-
strate that the system-sensitivity compensated version of the proposed method
is not suspectable to this phenomenon, we also performed reconstruction on
the same measurement with primal variable update rule of Equation (2.12).

The number of subsets was set to 12, and the reconstruction was performed
for 100 iterations, resulting in a total of 1200 volume updates. To ensure fair
comparison, the regularization strength β in both cases was chosen in such way
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that the NL in the inner region of the phantom was close to equal. For the
non-compensated version, β = 10−5 and for the compensated version, a higher
value of β = 1.5 ·10−3 was used to compensate the canceled system sensitivities
of the solution.

For both reconstruction variants, the NL values in the inner, middle and
outer VOIs were recorded at iterations 25, 50, 75 and 100. The results are
presented in Figure 2. In the non-compensated reconstruction, a clear radial
inhomogeneity is observed: NL values differ significantly between regions, and
this discrepancy increases as the number of iterations grows. In contrast, the
compensated version maintains consistent regularization, with slight differences
across the regions.
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Figure 2. NL measured radially placed VOIs across reconstruction iterations.
In the non-compensated version (left), NL varies significantly across regions,
with discrepancy increasing as the number of iterations grow. In contrast,
the compensated case shown only minor differences in NL between regions,
indicating improved regularization homogeneity.

These results demonstrate that enabling compensation for system-sensitivi-
ty in the step-size matrix during regularization update leads to more ho-
mogeneous regularization across the image volume. Compared to the non-
compensated approach, the choice of regularization parameter β becomes more
straightforward and less sensitive to spatial variations. This has practical sig-
nificance in clinical settings, as it simplifies the calibration of reconstruction
protocols, thus allowing effective fine-tuning using simpler phantoms rather
than complex or anatomical realistic models.

3.2. Maximum regularization strength

To evaluate the maximum effective regularization strength of the OSL and
PDHG based reconstruction methods, we performed a series of reconstruction
on one of the measurements from the M120 dataset using 12 subsets and 10
iterations. The regularization parameter β was varied across runs, with values
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defined as β = (k + 1) · 10−3 for k = 0, . . . , 11. Following each reconstruction,
the NL was measured in the homogeneous region of the phantom to quantify
the extent of regularization. The results are presented in Figure 3, illustrating
how NL varies with increasing values of β for both reconstruction methods.
Notably, up to a certain threshold, both methods exhibit similar regulariza-
tion strength for the same β values, indicating consistent behavior in low-to
moderate regularization regime.
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Figure 3. Maximum achievable regularization strength for OSL and PDHG
based methods. For OSL, the lowest NL is observed around β = 4·10−3. Beyond
this point the checker-board artifacts become increasingly prominent, leading
to degradation in NL, despite stronger regularization. In contrast PDHG is
not affected by checker-board artifact. It reaches minimum NL at β = 10−2,
after which further increases in β do not yield additional noise reduction.

In the OSL method, the potential function of the Gibbs prior needs to be
evaluated at every iteration. This potential corresponds to the the gradient
of the smoothed version of TV function defined in Equation (2.13). However,
computation of the partial derivatives of the smoothed TV introduces checker-
board pattern observed in reconstruction. This phenomenon previously was
reported in [16], and is clearly visible in our results, as illustrated in Figure 4.

3.3. Reconstruction performance

All reconstruction were performed using 10 iterations with 12 subsets, re-
sulting in total of 120 volume updates per reconstruction. For each simulated
scan in the three datasets (M120, M30 and M15), we identified the regulariza-
tion parameter β0 that yielded the highest average PSRN across the dataset
when using equalized OSL reconstruction with smoothed TV regularization.
As discussed in Section 3.2, the regularization parameter β is comparable be-
tween OSL and PDHG methods. Therefore we have used the same β0 values
as reference points for PDHG based reconstruction with non-smooth TV prior.
In addition to β0, we also evaluated performance of PDHG based method at
two increased regularization levels, β1 and β2. The specific values of β0, β1 and
β2 used in each dataset are summarized in Table 1.
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OSL-TV PDHG-TV

Figure 4. Checker-board artifacts in TV-regularized OSL reconstruction. Left:
OSL based regularization exhibits prominent checkerboard artifacts due to the
use of smoothed TV regularization. Right: PDHG based regularization, no
visible artifacts. Both reconstruction were performed with β = 1.2 · 10−2.
The NL values in this region can be seen in Figure 3 for both reconstruction
methods.

Dataset β0 β1 β2

M120 3.5 · 10−3 4 · 10−3 4.5 · 10−3

M30 8 · 10−3 9 · 10−3 10−2

M15 1.2 · 10−2 1.3 · 10−2 1.4 · 10−2

Table 1. Regularization strength parameters β0, β1 and β2 used for the
PDHG-based TV reconstruction. The value β0 corresponds to the regular-
ization strength at which the OSL method with smoothed TV achieves the
maximum mean PSNR, and serves as a reference for comparison.

We evaluated the reconstruction results using several quantitative metrics:
PSRN, SSIM, NL, and the CNR of both the cold rods and cold spheres. Sta-
tistical comparison was performed using Welch’s t-test to asses wether the
difference in means is significant relative to the reference method. The analysis
revealed no statistically significant differences in the cold sphere contrast across
any of the reconstruction settings when compared to the the reference. The
minimum observed p-value was 0.3304. As a result, the cold sphere CNRs were
excluded from further analysis and are not shown in the figure. The mean rela-
tive performance indicators, along with the absolute mean values, are presented
in Figure 5.
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Figure 5. Relative performance indicators compared to OSL-TV method with
regularization parameter β0. Arrows indicate the direction of improvement for
each metric. Absolute values of the indicators are displayed above each bars,
while the corresponding reference values are shown below the plots. Asterisks
(*) denote the reconstruction that used the same regularization strength pa-
rameter (β0) as the reference.

Across all datasets, the mean PSRN improves when using the same regu-
larization strength parameter β0 used in PDHG based TV reconstruction com-
pared to the OSL-TV reference. The relative improvement in PSRN becomes
more pronounced as the total counts of the measurement decreases. When reg-
ularization strength is increased to β1, PSRN improves further for all datasets,
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with the most significant gains observed in the lowest-SNR dataset. Upon in-
creasing the regularization strength to β2, a decrease in PSRN observed for
M120 compared to β1, although the metric continues to improve for M30 and
M15.

In term of SSIM, all datasets but M120 show an increase when using β0 in
PDHG-TV. As with PSRN, the relative improvement in SSIM increases with
decreasing measurement total counts. Further increases in the regularization
strength to β1 β2 lead additional SSIM gains in all datasets, again with larger
improvements in the lower-SNR conditions.

A similar trend is observed in the NL measured in the homogeneous region
of the phantom. For the M120 dataset using β0 results in a slight increase in
NL compared to the OSL reference. However, for both M30 and M15, the NL
is lower than that of the reference, with relative improvement increasing as
measurement SNR decreases. Increasing regularization strength further (to β1
and β2), leads to additional reduction in NL across all datasets; the decrease
is greater when SNR of the measurement is lower. A strong correlation is
observed between SSIM and NL: lower noise levels in the homogeneous regions
are associated with higher SSIM values.

Regarding the CNR of the cold rods, PDHG-TV consistently outperforms
OSL-TV when using the same regularization parameter β0. For the M120, the
improvement is more noticeable in sectors containing rods below the spatial
resolution limit of the reconstruction (i.e. rods that are not visible resolved).
Thus, these improvements can be ignored from the analysis. In lower-SNR
datasets M30 and M15, contrast improvements are also observed in the sectors
where rods are visible. However, increasing the regularization strength to β1
reduces the contrast to levels comparable to OSL-TV reference. Further in-
creasing to to β2 leads to additional drop in CNR across all datasets in each
rod sectors, primarily due to the blurring effect of stronger regularization.

In summary, all performance indicators, except for the contrast of cold
rods, benefit from increased regularization strength in the PDHG-TV method.
These improvements are more substantial in lower-SNR conditions. However
this gain comes at the cost of reduced CNR for cold rods, highlighting a tradeoff
between noise suppression and contrast preservation.

Representative reconstruction results from the M15 dataset are shown in
Figure 6. Qualitatively, the PDHG-TV method using the reference regulariza-
tion parameter β0 exhibits noticeably lower NLs, visible in the homogeneous
background of a slice containing the cold spheres. Additionally, reduced blur-
ring in the cold rod region results in higher visual contrast at β0. However this
advantage diminishes as the regularization strength increases to β1 and β2,
where blurring effect is more pronounced and leads to loss in rod contrast. The
contrast of the spheres appears visually consistent across all reconstructions,
aligning with the quantitative findings.
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OSL-TV
β = 1.2 · 10−2

PDHG-TV
β = 1.2 · 10−2

PDHG-TV
β = 1.3 · 10−2

PDHG-TV
β = 1.4 · 10−2

175

Figure 6. Reconstructed slice showing cold spheres and cold rods from a
M15 measurement across different regularization strengths. The voxel inten-
sity 175 Bq corresponds to the hot region in the simulated phantom. First:
Reference reconstruction using OSL-TV. Second: PDHG-TV with the same
regularization parameter β0. This reconstruction shows reduced NL in the cold
sphere slice and less blurring in the cold rods slice, resulting improved visual
contrast. Third and fourth: Reconstruction with increased regularization
parameter β1 and β2, which further reduce noise but also lead to greater blur-
ring and reduced cold rod contrast.

4. Discussion

This work presents a hybrid image reconstruction framework that combines
the well-established OSEM method with Condat–Vu algorithm to enable the
use of non-smooth TV regularization in SPECT imaging. Since OSEM is al-
ready widely deployed in commercial SPECT systems, one of the strengths of
this approach lies in the fact that the proposed extension of OSEM can be read-
ily integrated into current reconstruction software with minimal disruption.

One of the central challenges in iterative reconstruction is tuning the regu-
larization strength to balance noise suppression and detail preservation. Tradi-
tional OSL based regularization suffers from system-sensitivity dependence in
regularization strength, which makes it hard to tune the regularization strength
parameter β. As shown in Section 3.1, the formulation of hybrid OSEM-PDHG
yielded by the theory also suffers from the effect. We addressed this by intro-
ducing a system-sensitivity compensation strategy that ensures spatially homo-
geneous regularization, even when attenuation is modelled. Our results show
that this compensation improves consistency across the field of view and simpli-
fies the task of selecting the regularization parameter β, particularly in clinical
settings where robust protocol design is essential.
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The proposed method also resolves an issue in OSL-based TV regulariza-
tion: the emergence of checkerboard artifacts when using smoothed approxi-
mations of the TV functional. These artifacts limit the usable range of β in
traditional methods, capping the achievable noise suppression as shown in Sec-
tion 3.2. In contrast, our approach supports direct use of the non-smooth TV
functional, allowing significantly higher regularization strengths without visual
artifacts. This translates into improved noise reduction, especially in low-SNR
scenarios such as short-duration scans or low-activity studies.

Our quantitative evaluation across simulated datasets with varying SNR
levels confirmed these advantages. When using the same regularization strength
parameter β0, our approach outperformed OSL-TV in terms of PSRN, SSIM,
and NL. The gains were more pronounced as the total counts of the measure-
ment decreased. Moreover, unlike OSL-TV, the proposed method continued to
improve as β increased, until eventually reaching a point of diminishing returns.
This robustness enables greater flexibility in adjusting regularization strength
for noise control.

Finally, the generality of the PDHG framework provides a foundation for
future extension. In place of TV, other non-smooth regularizers, such as higher-
order TV, directional priors, or learned convex penalties, can be integrated into
the same reconstruction scheme. This extensibility makes the method a flexible
platform for incorporating emerging advances in regularization design.

In summary, the proposed hybrid OSEM-PDHG framework offers a prac-
tical, high-performance solution for SPECT reconstruction that is both back-
ward-compatible with clinical systems and forward-compatible with advanced
regularization techniques. It improves reconstruction quality across varying
noise levels, avoids common artifacts, and simplifies parameter tuning, making
it an appealing tool for both clinical deployment and further research.
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