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Abstract. In this work, we investigate a suite of explainable machine
learning models – including Kernel Ridge Regression, Gaussian Process
Regression, Convolutional Neural Networks, and Multi-Layer Percep-
trons – for parameter inference in systems of differential equations. By
combining these models with explainability techniques such as SHapley
Additive exPlanations, we extract explicit feature-to-parameter map-
pings, offering deeper insight into the inference process. Building on
these insights, we propose lightweight, hand-engineered estimators that
approximate parameter estimation tasks without requiring complex op-
timization. Additionally, we introduce a systematic methodology for
dataset generation, incorporating time-series simulation and diverse fea-
ture extraction. Our results demonstrate that explainability-driven mod-
eling can achieve accurate, interpretable, and computationally efficient
parameter estimation, offering a new perspective on the integration of
machine learning with domain-specific modeling.

1. Introduction

System identification, the process of building mathematical models from
observed data, plays a fundamental role in understanding and controlling dy-
namical systems across disciplines such as engineering, biology, and epidemiol-
ogy (cf. [4, 24]). Within this field, parameter estimation – the task of inferring
the underlying parameters of differential equation systems (DE) – is critical for
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ensuring that models accurately capture the essential dynamics of real-world
phenomena.

Classical parameter estimation in DE models typically involves solving
inverse problems, where observed trajectories are matched to model predic-
tions through numerical optimization, sensitivity analysis, or Bayesian infer-
ence frameworks (cf. [27, 30, 7]). While these methods have achieved notable
success, they often suffer from high computational cost, sensitivity to noise, and
limited interpretability, particularly in complex or high-dimensional settings.
Moreover, traditional techniques primarily focus on recovering best-fitting pa-
rameters, offering limited insight into the mechanisms by which features of the
observed data inform parameter selection.

In contrast, this work aims to shift the focus from parameter recovery alone
to understanding and utilizing the parameter selection process. Rather than
solely fitting models to data, we seek to extract explicit knowledge from machine
learning models about how different features of dynamic trajectories influence
parameter inference.

To this end, we develop a framework that integrates explainable machine
learning techniques – including Kernel Ridge Regression (KRR), Gaussian Pro-
cess Regression (GPR) and comparative baselines such as Convolutional Neu-
ral Networks (CNNs) and Multi-Layer Perceptrons (MLPs) – with post-hoc
explainability methods such as SHapley Additive exPlanations (SHAP).

In addition, we introduce a systematic methodology for dataset generation
tailored to this dual objective. By simulating time-series data from systems
of differential equations under controlled parameter variations and extracting
diverse feature representations – including classical statistical descriptors and
frequency-domain summaries such as spectrograms – we create rich experimen-
tal environments suited for both model training and interpretability analysis.

Through this combined focus on explanation, knowledge extraction, and
model compression, we propose a framework that not only achieves accurate
parameter estimation, but also promotes transparency, interpretability, and ef-
ficiency. This perspective opens new possibilities for integrating machine learn-
ing with domain science, where understanding underlying decision processes is
valued alongside predictive performance.

2. Background

2.1. Reproducing kernel Hilbert spaces

Definition 2.1. Let H be a real Hilbert space of functions f : Ω → R, where
Ω ⊆ Rd is non-empty. For each y ∈ Ω, define the evaluation functional

Ly : H → R by Ly(f) := f(y) for all f ∈ H.

Then, H is called reproducing kernel Hilbert space (RKHS) if all evaluation
functionals Ly are bounded, that is, Ly ∈ H∗ for every y ∈ Ω.
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Unless stated otherwise, ∥ · ∥ denotes the standard Euclidean norm on Rd.
For the Hilbert space H, we write ⟨·, ·⟩H for the inner product, and ∥f∥H =
=

√
⟨f, f⟩H for the induced norm. It is well known that there exists a unique

function k : Ω × Ω → R (cf. [3]), called the reproducing kernel of H, satisfying

k(·, y) ∈ H, and f(y) = ⟨f, k(·, y)⟩H for all f ∈ H, y ∈ Ω.

The kernel k is symmetric, k(x, y) = k(y, x), and satisfies

k(x, y) = ⟨k(·, x), k(·, y)⟩H for all x, y ∈ Ω.

Let (fn)n∈N be a sequence in H. If (fn) converges to f ∈ H in the norm of
H, meaning ∥fn − f∥H → 0, then (fn) converges pointwise to f on Ω; in other
words, for every y ∈ Ω, we have fn(y) → f(y).

Definition 2.2. (Positive semi-definite and positive definite kernels.) A sym-
metric function φ : Ω × Ω → R is called a positive semi-definite kernel if for
any n ∈ N, any x1, . . . , xn ∈ Ω, and any c1, . . . , cn ∈ R, we have:

n∑
i=1

n∑
j=1

cicjφ(xi, xj) ≥ 0.

It is called positive definite if the inequality is strict whenever the ci are not all
zero.

A fundamental result, the Moore–Aronszajn theorem (cf. [3]), states that for
every symmetric, positive semi-definite function φ : Ω × Ω → R, there exists a
unique RKHS Hφ of functions f : Ω → R in which φ serves as the reproducing
kernel.

In particular, commonly used kernels in statistical learning are positive
semi-definite and hence correspond to RKHSs via the Moore–Aronszajn theo-
rem. Two widely used examples are the Gaussian radial basis function (RBF)
kernel kσ (cf. [8]) and the Matérn kernel kν,h (cf. [26, 33]).

Example 2.1. (Gaussian RBF Kernel.) Let σ > 0. The Gaussian RBF kernel
is defined by

kσ(x, x′) := exp
(

−∥x− x′∥2

σ2

)
(x, x′ ∈ Ω).

Example 2.2. (Matérn Kernel.) Let ν > 0 and h > 0. The Matérn kernel is
defined by

kν,h(x, x′) := 1
2ν−1Γ(ν)

(√
2ν ∥x− x′∥

h

)ν

Kν

(√
2ν ∥x− x′∥

h

)
(x, x′ ∈ Ω),

where Kν denotes the modified Bessel function of the second kind and order ν
(cf. [21]).
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These kernels not only satisfy the conditions of the Moore–Aronszajn theorem,
but also encode smoothness and scale information of the functions in the cor-
responding RKHS, making them essential tools in Gaussian process modeling
and kernel methods.

For a comprehensive treatment of RKHS theory and its connections to
learning and approximation, we refer the reader to [3, 6, 38].

3. Connections between Gaussian process regression and Kernel
Ridge Regression

We assume a complete probability space (Ω,A,P), where A is a σ-algebra
on Ω, and P is a probability measure. A random function (or stochastic process)
indexed by I ⊂ Rd is a collection of real-valued measurable functions

f := {f(x) : x ∈ I}, with f(x) : Ω → R.

For each fixed x ∈ I, the map f(x) is a real-valued random variable, and we
view f as a family of such variables indexed by the index set I.

A vector-valued random variable (Z1, . . . , Zn)⊤ ∈ Rn is said to follow a
multivariate normal distribution if every linear combination

∑n
i=1 aiZi, with

ai ∈ R, is normally distributed. In this case, we write

(Z1, . . . , Zn)⊤ ∼ N (µ,Σ),

where µ ∈ Rn is the mean vector with entries µi := E[Zi], and Σ ∈ Rn×n is the
covariance matrix with entries

Σij := Cov(Zi, Zj) = E[(Zi − µi)(Zj − µj)].

A stochastic process f = {f(x) : x ∈ I} is called a Gaussian process if for
any finite set {x1, . . . , xn} ⊂ I, the random vector

(f(x1), . . . , f(xn))⊤ ∈ Rn

is multivariate normally distributed. That is,

(f(x1), . . . , f(xn))⊤ ∼ N (mX ,ΦXX),

where

mX := (m(x1), . . . ,m(xn))⊤, ΦXX := (Φ(xi, xj))ni,j=1,

and the mean function m : I → R and covariance function Φ : I × I → R are
defined as

m(x) := E[f(x)],
Φ(x, x′) := Cov(f(x), f(x′)) = E[(f(x) −m(x))(f(x′) −m(x′))].



Parameter estimation via reproducing kernels 195

In this case, we write
f ∼ GP(m,Φ),

to denote that f is a Gaussian process with mean function m and covariance
function Φ.

Conversely, any pair (m,Φ), where Φ is a symmetric positive definite kernel,
uniquely determines a Gaussian process f ∼ GP(m,Φ) (cf. [14]), establishing a
one-to-one correspondence between Gaussian processes and such pairs. In this
context, the function Φ is a reproducing kernel, and by the Moore–Aronszajn
theorem, it defines a unique RKHS associated with the process.

In this setting, given a dataset X = (x1, . . . , xn) ⊂ I with observed outputs
Y = (y1, . . . , yn)⊤ ∈ Rn, the posterior distribution of the process f ∼ GP(m,Φ)
conditioned on the data remains a Gaussian process,

f | Y ∼ GP(m̄, Φ̄),

with posterior mean and covariance functions

m̄(x) := m(x) + ΦxX(ΦXX + σ2In)−1(Y −mX) (x ∈ I),
Φ̄(x, x′) := Φ(x, x′) − ΦxX(ΦXX + σ2In)−1ΦXx′ (x, x′ ∈ I),

where ΦxX := (Φ(x, x1), . . . ,Φ(x, xn)) ∈ Rn, ΦXx′ := Φ⊤
xX , and ΦXX ∈ Rn×n

is the Gram matrix. The vector mX ∈ Rn contains the prior mean values at
the training inputs. The posterior mean m̄ gives the predicted average output
at a new point x, while Φ̄ quantifies the updated uncertainty (cf. [39]).

3.1. Kernel Ridge Regression

Let ψ : Ω × Ω → R be a symmetric, positive definite kernel, and let Hψ

denote the corresponding RKHS. Using the same dataset (X,Y ), kernel ridge
regression seeks a function f̂ ∈ Hψ minimizing the regularized empirical risk

f̂ := arg min
f∈Hψ

1
n

n∑
i=1

(f(xi) − yi)2 + λ∥f∥2
Hψ
,

where λ > 0 is a regularization parameter (cf. [35, 37, 32]).
By the representer theorem (cf. [31]), the solution f̂ admits the explicit

form
f̂(x) = ψxX(ψXX + nλIn)−1Y,

where ψXX ∈ Rn×n is the kernel matrix with entries ψ(xi, xj) and ψxX ∈ R1×n

is the vector [ψ(x, x1), . . . , ψ(x, xn)].
There is a deep connection between GPR and KRR: the posterior mean

function m̄ of GPR coincides with the KRR solution f̂ when the regularization
parameter λ and the noise variance σ2 are related by σ2 = nλ (cf. [21]).
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4. Related work

Parameter estimation for DE models has long been a fundamental topic
in the modeling of dynamic systems. Traditional techniques, such as least-
squares fitting, adjoint sensitivity analysis, and maximum likelihood estimation
(cf. [5, 9, 28, 29]), have been widely used to infer system parameters by min-
imizing the discrepancy between observed trajectories and model simulations.
However, these classical approaches often encounter difficulties when applied
to systems with nonlinear dynamics, noisy measurements, or incomplete ob-
servations. Issues such as computational cost, sensitivity to initial conditions,
and the risk of convergence to local minima become particularly pronounced
in complex, high-dimensional settings.

The integration of machine learning into the study of dynamical systems
has opened new avenues for addressing some of these challenges. Neural net-
works, including recurrent architectures and physics-informed neural networks
(PINNs), have been proposed for directly learning system behavior from time-
series data (cf. [27]). Kernel-based methods offer flexible and probabilistic
modeling frameworks that are well-suited for small-sample, high-noise envi-
ronments (cf. [16]). Despite the success of these methods in improving pre-
dictive accuracy, most works remain focused on optimizing performance, with
relatively little attention given to understanding the decision-making process
behind parameter selection.

Among the theoretical frameworks supporting these modern approaches,
the theory of RKHS provides a principled foundation for function approxima-
tion and regularization in supervised learning problems (cf. [16]). RKHS-based
techniques offer strong theoretical guarantees on generalization and stability
while enabling flexible nonparametric representations of complex mappings.
These properties make kernel methods particularly attractive for parameter
inference tasks, especially when system knowledge is limited or data quality is
low.

Alongside improvements in modeling techniques, the need for interpretabil-
ity in machine learning has become increasingly critical. Especially in scientific
domains, understanding why a model makes certain predictions is as important
as the predictions themselves. Methods such as SHAP (cf. [25, 10]) provide a
unified, theoretically grounded approach to feature attribution, offering insights
into the internal reasoning of complex models.

5. Methodology

We develop a general framework for interpretable parameter estimation
from dynamical system trajectories, applicable across a variety of DE mod-
els. Our approach combines synthetic dataset generation, feature extraction,
predictive model training, and explainability analysis, and is designed to be
model-agnostic and adaptable to various systems.
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We consider ordinary differential equations (ODEs) of the form

(5.1) Ṡ(t) = F (S(t), θ), S(0) = S0 (t ∈ R+, S0 ∈ Rd),

where S(t) ∈ Rd represents the system state at time t, θ ∈ Θ ⊂ Rp is a vector
of parameters, and F : Rd × Rp → Rd defines the system dynamics.

To ensure that the initial value problem (5.1) admits a unique solution, we
assume that the function F is continuous and satisfies a Lipschitz condition
with respect to the state variable S, uniformly in θ. That is, there exists a
constant L > 0 such that for all S1, S2 ∈ Rd and all θ ∈ Θ,

∥F (S1, θ) − F (S2, θ)∥ ≤ L∥S1 − S2∥,

where ∥ · ∥ denotes the standard Euclidean norm on Rd. Under these assump-
tions, the Picard-–Lindelöf theorem [11] guarantees the existence of a unique
local solution S : [0, T ] → Rd for some T > 0.

Although the system may involve multiple parameters, we focus on the
estimation of a single parameter of interest θ ∈ R. The remaining parameters
are either fixed or jointly sampled but not individually inferred.

Dataset generation

Synthetic datasets are constructed by sampling parameter vectors θ ∈ Θ ⊂
⊂ Rp from a bounded domain that reflects prior knowledge or physical con-
straints. Each sampled θ defines an instance of the dynamical system (5.1),
which is numerically integrated over a fixed time interval [0, T ]. In our experi-
ments, we employ an explicit Runge–Kutta method of order 5(4) with adaptive
step size control, specifically the Dormand–Prince scheme (cf. [13, 1]).

Let ŝθ : [0, T ] → Rd denote the numerically integrated trajectory corre-
sponding to parameter θ. To account for measurement noise, we optionally
add Gaussian perturbations:

s̃θ(t) := ŝθ(t) + ε(t), ε(t) ∼ N (0, σ2Id),

where ε(t) ∈ Rd is multivariate Gaussian noise with zero mean and isotropic
covariance σ2Id ∈ Rd×d.

Each noisy trajectory s̃θ(t) is transformed into a fixed-dimensional feature
vector x ∈ Rq, paired with its associated target parameter y = θ. The final
dataset consists of input-output pairs (xi, yi) ∈ Rq × R.

Learning and explainability

The objective is to learn a predictive function

f∗ : Rq → R, f∗(x) ≈ θ∗,

mapping extracted features to the corresponding target parameter value. We
consider multiple machine learning models to approximate f∗, including kernel-
based methods and neural networks.
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KRR (cf. [31]) is employed with positive definite kernels to produce regu-
larized function estimators within a RKHS. GPR (cf. [39]) offers a Bayesian
nonparametric framework, yielding both point predictions and closed-form pos-
terior uncertainty estimates. As neural network baselines, we include MLPs
(cf. [20]) for general-purpose regression and CNNs (cf. [23]), especially for tasks
involving spectrogram-based representations (cf. [40]). Specific architectures,
kernel functions, and hyperparameter configurations are detailed in the exper-
imental section.

To interpret the trained models and assess the role of different input fea-
tures, we incorporate post-hoc explainability tools. For neural networks and
other black-box regressors, we apply SHAP (cf. [25]), a game-theoretic method
that attributes prediction differences to feature contributions. SHAP values are
computed by approximating the Shapley value for each input feature, offering
a principled measure of local importance. These per-instance explanations are
further aggregated across the dataset to obtain global feature relevance.

In summary, our framework integrates simulation-based dataset generation,
feature-informed learning, interpretable modeling, and post-hoc explanation
to deliver both accurate and transparent parameter inference from observed
system trajectories.

6. Experimental setup

6.1. Model description

The experiments are based on a two-dimensional nonlinear dynamical sys-
tem, initially proposed for the study of bifurcation phenomena in chemical
and biological processes (cf. [22]). The system dynamics are described by the
coupled ordinary differential equations

Ṡ1 = λ− aS1S2 + βS2 − δ1S1,(6.1)
Ṡ2 = aS1S2 − βS2 − δ2S2,(6.2)

where S1(t) and S2(t) denote the system states at time t, and λ, a, β, δ1, δ2 are
positive parameters controlling inflow, nonlinear interactions, recovery, and
decay processes, respectively.

6.2. Data generation

A synthetic dataset was constructed by numerically solving the Scheurle–
Seydel model for a range of parameter values. A total of N = 500 independent
trajectories were simulated over the time interval [0, 10], evaluated at T = 501
uniformly spaced time points. All simulations were initialized from the fixed
initial condition:

[S1(0), S2(0)] := [1.0, 1.0].
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The diffusion parameters were fixed as δ1 := 0.01and δ2 := 0.01, while
the remaining model parameters were sampled independently from uniform
distributions:

λ ∼ U(0.5, 100.0), a ∼ U(0.01, 0.05), β ∼ U(0.05, 0.15).
Let θ := (λ, a, β) ∈ Θ ⊂ R3 denote a sampled parameter vector. For each θ, the
associated ODE system was numerically integrated using the Dormand–Prince
method—an explicit Runge–Kutta scheme of order 5(4) with adaptive step size
control (cf. [13, 1]).

Let sθ,1(t) and sθ,2(t) denote the two components of the numerically com-
puted solution trajectory sθ(t) ∈ R2 corresponding to the parameter vector
θ. These noiseless signals serve as the foundation for all subsequent feature
extraction and spectral analysis.

To simulate observational noise, additive Gaussian noise with isotropic vari-
ance σ2 := 1 was independently applied to each component:

s̃θ,i(t) := sθ,i(t) + ϵi(t), ϵi(t) ∼ N (0, σ2), i = 1, 2.

All simulations were implemented in Python using NumPy (cf. [18]) for nu-
merical computation and SciPy (cf. [36]) for ODE integration. A fixed random
seed ensured reproducibility.

Figure 1. Simulated trajectories of S1(t) and S2(t) with Gaussian noise (σ = 1).

6.3. Feature extraction

To facilitate downstream learning tasks, we extracted a structured collec-
tion of statistical and spectral features from each simulated trajectory. These
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features were derived from the two components sθ,1(t) and sθ,2(t) of the nu-
merically computed state trajectories.

Statistical features. For each trajectory, we computed descriptive statis-
tics separately for sθ,1 and sθ,2, including the mean, standard deviation, mini-
mum, and maximum values. These scalar features provide a compact summary
of the distributional properties of the system’s behavior over time. Any un-
defined or infinite values encountered during computation were replaced with
zeros to maintain numerical stability.

Frequency-domain features. To characterize periodic behavior, we ap-
plied the Fast Fourier Transform (FFT) to both state variables. The DC com-
ponent (zero-frequency term) was excluded, and the magnitudes of the first 20
non-DC Fourier coefficients were retained as features. The choice of 20 coef-
ficients was treated as a tunable hyperparameter; increasing this number did
not yield significant improvements in prediction performance based on empiri-
cal validation.

Spectrogram features. To capture joint time–frequency structure, we
computed spectrograms for each trajectory using the short-time Fourier trans-
form (STFT). Let M1 ∈ RF×Tdenote the spectrogram of sθ,1, where F = 33
is the number of frequency bins and T = 15 is the number of time windows.
These values were determined by applying an FFT window size of 64 and a
hop length of 32 to the 501-point time series.

To compress dynamic range and enhance low-magnitude patterns, a loga-
rithmic transformation was applied:

M̃1(i, j) := log(M1(i, j) + ϵ), ϵ > 0.

We then standardized the transformed matrix:

M std
1 (i, j) := M̃1(i, j) − µ1

σ1
,

µ1 := 1
FT

F∑
i=1

T∑
j=1

M̃1(i, j),

σ2
1 := 1

FT

F∑
i=1

T∑
j=1

(M̃1(i, j) − µ1)2.

The same process was applied to sθ,2 to obtain M std
2 ∈ RF×T . The two

standardized spectrograms were then vertically concatenated to form a ma-
trix M ∈ R2F×T , which served as the input representation for CNN models.
The normalization step ensures comparability across samples and promotes
numerical stability during training.

All feature extraction steps were implemented in Python using NumPy,
SciPy, and Matplotlib. Sampling frequencies were inferred from the dis-
cretized time grids used during numerical integration.
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6.4. Model training and evaluation setup

We trained and evaluated four types of models for the parameter estimation
task: KRR (cf. [31]), GPR (cf. [39]), MLPs (cf. [20]), and CNNs (cf. [23]). For
KRR, we tested multiple kernels, including RBF, polynomial (degree 3), and
Laplacian kernels. The regularization parameter λ was set to either 0.1 or 1.0,
and the RBF/Laplacian kernel bandwidth γ was fixed at 0.1. For GPR, we
used RBF and Matérn covariance kernels with smoothness parameter ν := 1.5,
and set the regularization parameter λ := 10−5, with 10 optimizer restarts for
marginal likelihood maximization.

The MLP models consisted of two fully connected hidden layers with 64
and 32 units respectively, ReLU (Rectified Linear Unit) activations, and were
trained using a learning rate of 0.001, a batch size of 32, and for 100 epochs.
CNNs were trained directly on spectrogram images generated from the trajec-
tories, using three convolutional layers with 16, 32, and 64 filters (each with
3×3 kernels), followed by 2×2 max-pooling and a dropout layer with rate 0.5.
The CNNs were trained with a learning rate of 0.001, batch size of 16, and for
50 epochs.

Each model was trained to predict a single target parameter (λ, a, or β)
from the extracted features and evaluated on a held-out test set using three
metrics: mean absolute error (MAE), root mean squared error (RMSE), and
the coefficient of determination (R2) (cf. [19, 17]). Hyperparameters such as
regularization strength (KRR, GPR), learning rates, and batch sizes (MLP,
CNN) were selected based on standard heuristics and validated through pre-
liminary experiments.

To assess interpretability, we applied SHAP (cf. [25]). For kernel-based
models, we used RKHS-structured SHAP values when feasible (cf. [10]), while
for neural models we employed model-agnostic SHAP approximations. Feature
importance rankings were compared across models to assess the consistency
and reliability of the extracted patterns.

7. Results and discussion

Our work can be situated within the broader family of approaches leverag-
ing RKHS theory for modeling and inference tasks involving dynamical systems.

Geng [15] demonstrated the effectiveness of RKHS constructions for directly
solving complex nonlinear differential equations, while González et al. (cf. [16])
extended RKHS-based formulations to the problem of parameter estimation
in noisy ODE systems. More broadly, Steinke et al. (cf. [34]) presented a
unifying view of kernel methods, highlighting the deep connections between
positive definite kernels, regularization operators, and differential equations,
thus emphasizing the natural role of RKHS methods in structured dynamical
modeling tasks.
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In this context, we designed a comparative evaluation involving four mod-
eling approaches: KRR, GPR, MLP, and CNN. Models were trained on fea-
tures derived from statistical summaries, Fourier-transform representations,
and spectrograms, aiming to predict key system parameters. The evaluation
metrics included mean absolute error (MAE), root mean squared error (RMSE),
and coefficient of determination (R2).

The empirical results, summarized in Table 1, showed that kernel-based
methods (KRR and GPR) consistently outperformed neural models (MLP and
CNN) across all feature types and target parameters, even without extensive
hyperparameter tuning. This observation suggests that the structure captured
by kernels is well aligned with the underlying system dynamics, providing a
strong inductive bias for the task at hand.

Target Model (Kernel/Arch) – Feat MAE/RMSE/R2

λ KRR (Laplacian) – Stat 0.0079 / 0.0105 / 0.8734
λ GPR (RBF) – Stat 0.0007 / 0.0012 / 1.0000
λ GPR (Matérn) – Stat 0.0073 / 0.0283 / 1.0000
λ MLP (64–32) – Stat 1.3686 / 1.8003 / 0.9953
λ MLP (64–32) – FFT 1.7632 / 2.4863 / 0.9911
λ CNN (3C, DO 0.5) – Spec 20.2090 / 23.8824 / 0.1781
a KRR (Laplacian) – Stat 0.0016 / 0.0026 / 0.9516
a GPR (Matérn) – Stat 0.0007 / 0.0015 / 0.9836
a GPR (RBF) – Stat 0.0008 / 0.0014 / 0.9860
a MLP (64–32) – Stat 0.0016 / 0.0023 / 0.9624
a MLP (64–32) – FFT 0.0020 / 0.0028 / 0.9433
a CNN (3C, DO 0.5) – Spec 0.0067 / 0.0085 / 0.4817
β KRR (Laplacian) – Stat 0.0200 / 0.0239 / 0.3477
β GPR (RBF) – Stat 0.0010 / 0.0025 / 0.9927
β GPR (Matérn) – Stat 0.0014 / 0.0022 / 0.9945
β MLP (64–32) – Stat 0.0039 / 0.0053 / 0.9677
β MLP (64–32) – FFT 0.0100 / 0.0131 / 0.8052
β CNN (3C, DO 0.5) – Spec 0.0288 / 0.0336 / −0.2874

Table 1. Performance on parameter estimation. Format: ”Model (Ker-
nel/Arch) – Feature type”.

Although additional tuning of MLP and CNN models could potentially
narrow the performance gap, this work focused on a systematic comparison
using standard configurations. Hence, the superior results of KRR and GPR
models support the relevance of RKHS-inspired methodologies as a theoreti-
cally grounded and practically effective framework for parameter inference in
nonlinear dynamical systems.
Best performing models

Across all three target parameters (λ, a, and β), the GPR model with an
RBF kernel, trained on statistical features, achieved the best overall perfor-
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mance. For λ, the GPR model with an RBF kernel reached a MAE of 0.0007,
an RMSE of 0.0012, and an R2score of 1.0000. For a, the best result was ob-
tained by the GPR model with a Matérn kernel (ν = 1.5), yielding a MAE
of 0.0007, RMSE of 0.0015, and R2of 0.9836. For β, GPR with an RBF ker-
nel again performed best, with a MAE of 0.0010, RMSE of 0.0025, and R2 of
0.9927.

Among the evaluated models, KRR also showed strong performance-par-
ticularly the variant using the Laplacian kernel for λ-though it consistently
trailed GPR in predictive accuracy. Neural network-based models, including
MLPs and CNNs, were able to learn meaningful patterns, but their performance
was significantly lower, especially when trained on frequency-domain features
or spectrogram images.

Feature importance analysis for λ

To further understand the learned models, we performed SHAP-based fea-
ture attribution analysis. Figures 2, 3, and 4 illustrate the feature importance
for KRR, GPR, and MLP models, respectively.

Figure 2. SHAP bar plot for KRR model predicting λ.

Figure 3. SHAP bar plot for GPR model predicting λ.

Across all three models, the two most influential features remained iden-
tical, with only the third-ranked feature differing slightly. Despite this minor
variation, no substantial differences could be observed in the overall SHAP ex-
planations, suggesting a strong consistency in the learned feature importance
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Figure 4. SHAP bar plot for MLP model predicting λ.
patterns. These results reinforce that the extracted statistical features robustly
capture the essential dynamics governing the parameter λ across different mod-
eling approaches.

Moreover, these results highlight that simple statistical summaries can be
highly informative and sufficient for parameter inference tasks, outperforming
models trained on more complex feature types such as frequency-domain or
spectrogram representations.

Comparison of feature types

The empirical evaluation highlights several key insights. Statistical features
consistently outperformed Fourier-transform and spectrogram-based represen-
tations across all model types and target parameters. This finding emphasizes
the importance of carefully engineered features that summarize the system dy-
namics rather than relying solely on raw or transformed signal representations.

Overall, the results demonstrate that combining simulation-based data gen-
eration, feature extraction, kernel-based learning, and model interpretability
yields a powerful and transparent framework for inferring dynamic system pa-
rameters.

8. Conclusion and future work

We proposed a feature-based learning framework for parameter estimation
in differential equation systems, combining predictive modeling with post-hoc
explainability. Experiments on synthetic ODE datasets evaluated multiple
methods, including kernel-based approaches, neural networks, and Gaussian
processes. Kernel Ridge Regression and Gaussian Process Regression consis-
tently achieved higher predictive accuracy and robustness compared to neural
network baselines.

Notably, SHAP-based feature attribution across KRR, GPR, and MLP
models revealed highly consistent results, with the top three features remain-
ing the same across methods, differing only in order. This robustness suggests
that reliable insights into parameter–feature relationships can be extracted even
when model architectures vary.
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While the proposed framework demonstrated strong empirical performance,
further theoretical analysis is needed to formalize the connection between sys-
tem dynamics and feature relevance. Additionally, extending validation beyond
synthetic datasets remains an important step toward establishing broader prac-
tical applicability.

Building on these findings, future work will extend the methodology to
stable multi-parameter estimation, develop data-driven techniques for identi-
fying informative parameter ranges, and design adaptive dataset generation
strategies to improve training efficiency and interpretability.

To enable a fair comparison, we also should scale up the dataset and em-
ploy computationally optimized models and techniques, as current kernel-based
methods do not scale efficiently, and evaluating neural architectures like MLPs
and CNNs requires sufficient data volume to fully leverage their capacity.
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