ON THE EQUATION $F(n^2 + 1) = bF(n^2 - 1) + c$

Imre Kátai, Bui Minh Mai Khanh and Bui Minh Phong

(Budapest, Hungary)

Communicated by Gábor Farkas (Received 16 March 2025; accepted 18 June 2025)

Abstract. Under a suitable conjecture concerning prime numbers, we provide a complete solution to the equation

$$F(n^2+1) = bF(n^2-1) + c$$
 for every $n \in \mathbb{N}$, $n > 1$,

where $F:\mathbb{N}\to\mathbb{C}$ is a completely multiplicative function and $b,c\in\mathbb{C},$ $c\neq 0.$

1. Introduction

Let \mathcal{P} , \mathbb{N} , \mathbb{Z} and \mathbb{C} denote the set of primes, positive integers, integers and complex numbers, respectively. Let $\mathbb{N}_1 := \mathbb{N} \setminus \{1\}$. We denote by \mathcal{M} (\mathcal{M}^*) the set of all complex-valued multiplicative (completely multiplicative) functions, respectively. For each $a \in \mathbb{Z}$ and $p \in \mathcal{P}$ let $(\frac{a}{p})$ be the Legendre symbol. Let P(m) be the largest prime divisor of $m \in \mathbb{N}$ and let p_k denote the k-th prime number. For each $k \in \mathbb{N}$ we denote by \mathcal{F}_k the set of all arithmetical functions $F: \mathbb{N} \to \mathbb{C}$ such that $F(n^2 + 1) = k$ for every $n \in \mathbb{N}$.

Let
$$\mathbb{E}(n) = 1$$
 and $\mathbb{I}(n) = n$ for every $n \in \mathbb{N}$.

The problem of characterising the identity function as a multiplicative arithmetical function satisfying certain equations has been studied by several authors. C. Spiro [4] proved that if $f \in \mathcal{M}$ satisfies the relations

$$f(p+q) = f(p) + f(q)$$
 for every $p, q \in \mathcal{P}$

and $f(p_0) \neq 0$ for some $p_0 \in \mathcal{P}$, then f is the identity function.

Key words and phrases: Completely multiplicative function, the identity function, Dirichlet character.

2010 Mathematics Subject Classification: Primary 11A07, 11A25, 11K6, Secondary 11N25, 11N64.

https://doi.org/10.71352/ac.58.180625

First published online: 24 June 2025

In [1], we gave all solutions of the equation

$$F(n^2 + m^2 + k) = H(n) + H(m) + K$$
 for every $n \in \mathbb{N}$,

where $k \in \mathbb{N}$ is the sum of two fixed squares, $K \in \mathbb{C}$ and F, H are completely multiplicative functions.

The equation

$$G(n) = F(n^2 - 1) + D$$

was completely solved in [2], where $G, F \in \mathcal{M}^*$ and $D \in \mathbb{C}$.

Now we turn to the equation

$$F(Q(n)) = bF(Q(n) - \ell) + c,$$

where $\ell \in \mathbb{N}$, $b, c \in \mathbb{C}$ and $Q(x) \in \mathbb{Z}[x]$. The special case

$$(Q(n), \ell, b, c) = \{n^3, 1, 1, D\}$$

was solved in [3].

In this note we consider the case $Q(n) = n^2 + 1, \ell = 1$ and $b, c \in \mathbb{C}, c \neq 0$. Unfortunately, we can solve the equation only under the following conjecture:

Conjecture 1. For every prime $p > p_{93} = 487$, there exists a positive integer m such that $p \mid m^2 - 1$ and

$$P\left(\frac{(m^2-1)(m^2+1)}{p}\right) < p.$$

We note that, with the help of Maple, we have verified that Conjecture 1 holds for every p_k with $93 < k \le 10^6$. In the range $k \in \{1, ..., 93\}$, we could not verify Conjecture 1 for the primes p_k , where

$$k \in \mathcal{F} :=$$

 $:=\{1,2,3,4,5,6,11,13,14,15,16,18,24,25,28,29,30,33,39,56,67,74,93\}.$

Define the sets

$$\mathcal{K} := \left\{ p \in \mathcal{P} \mid \left(\frac{-1}{p}\right) = \left(\frac{-7}{p}\right) = -1 \right\} \text{ and } \mathcal{H} = \mathcal{P} \setminus \mathcal{K}.$$

It is easy to show that

$$\mathcal{K} = \left\{ p \in \mathcal{P} \mid p \equiv t \pmod{28}, \text{ where } t \in \{3, 19, 27\} \right\}.$$

In fact, for the proof of our main result, we require the following weaker conjecture.

Conjecture 2. For every prime $p > p_{39} = 167$ with $p \in \mathcal{K}$, there exists a positive integer ℓ such that $p \mid \ell^2 - 1$ and

$$P\left(\frac{(\ell^2-1)(\ell^2+1)}{p}\right) < p.$$

We have verified Conjecture 2 for every $p = p_k$ with $39 < k \le 10^6$, and we have checked that in the range $k \in \{1, ..., 39\}$, Conjecture 2 holds for all $p = p_k$ except:

$$p \in \{p_2 = 3, p_{11} = 31, p_{15} = 47, p_{39} = 167\}.$$

In this paper we prove the following result.

Theorem 1. Assume that $b, c \in \mathbb{C}$, $c \neq 0$ and the function $F \in \mathcal{M}^*$ satisfies the relation

(1.1)
$$F(n^2+1) = bF(n^2-1) + c \quad \text{for every} \quad n \in \mathbb{N}_1.$$

Then the following assertions hold:

(a) If b = 0, then c = 1 and $F \in \mathcal{F}_1$, furthermore

$$F(p) = 1$$
 for every $p \in \mathcal{P}, p \equiv 1 \pmod{4}$.

(b) If $bc \neq 0$ and Conjecture 2 holds, then

$$(F, b, c) \in \{(\mathbb{E}, b, -b+1), (\mathbb{I}, 1, 2)\}.$$

2. Lemmas

We first observe from the assumption $F \in \mathcal{M}^*$ and (1.1) that

(2.1)
$$E_n := F(n^2 + 1) - bF(n - 1)F(n + 1) - c = 0$$
 for every $n \in \mathbb{N}_1$.

Since

$$(2.2) (n^2 + n + 1)^2 + 1 = (n^2 + 1)((n+1)^2 + 1) for every n \in \mathbb{N},$$

it follows from (2.1) and (2.2) that

$$bF(n^2+n)F(n^2+n+2) + c = \left(bF(n-1)F(n+1) + c\right)\left(bF(n)F(n+2) + c\right).$$

Therefore, we have the identity

(2.3)
$$L_n := bF(n)F(n+1)F(n^2+n+2) - b^2F(n-1)F(n)F(n+1)F(n+2) - bcF(n)F(n+2) - bcF(n-1)F(n+1) + c - c^2 = 0,$$

which holds for every $n \in \mathbb{N}_1$.

From now on, let F(2) := x and F(3) := y.

In the proof of our results, we will use the relation (2.1) for the values

$$n \in \{2, 3, 4, 5, 6, 7, 8, 17, 21, 31, 41, 57\}.$$

This yields the following system of equations:

$$E_{2} = F(5) - by - c = 0,$$

$$E_{3} = xF(5) - bx^{3} - c = 0,$$

$$E_{4} = F(17) - bxF(5) - c = 0,$$

$$E_{5} = xF(13) - byF(5) - c = 0,$$

$$E_{6} = F(37) - bF(5)F(7) - c = 0,$$

$$E_{7} = xF(5)^{2} - bx^{4}y - c = 0,$$

$$E_{8} = F(5)F(13) - by^{2}F(7) - c = 0,$$

$$E_{17} = xF(13)F(17) - -bx^{3}F(5)F(11) - c = 0,$$

$$E_{21} = xF(5)F(29) - bx^{5}y^{2} - c = 0,$$

$$E_{31} = xF(13)F(37) - bx^{6}yF(5) - c = 0,$$

$$E_{41} = xF(29)^{2} - bx^{4}yF(5)F(7) - c = 0,$$

$$E_{57} = xF(5)^{3}F(13) - bx^{4}F(7)F(29) - c = 0.$$

Lemma 1. If $F \in \mathcal{M}^*$ and $c \in \mathbb{C}$ satisfy

(2.5)
$$F(n^2+1) = c \quad \text{for every } n \in \mathbb{N},$$

then $c \in \{0, 1\}$.

If c = 0, then $F \in \mathcal{F}_0$.

If c = 1, then F(2) = 1 and

(2.6)
$$F(p) = 1 \quad \text{for every} \ \ p \in \mathcal{P}, \ p \equiv 1 \pmod{4}.$$

Proof. From (2.2) and (2.5), we have

$$c = F((n^2 + n + 1)^2 + 1) = F((n^2 + 1)((n + 1)^2 + 1)) =$$

= $F(n^2 + 1)F((n + 1)^2 + 1) = c^2$,

which implies $c \in \{0, 1\}$.

If c = 0, then $F(n^2 + 1) = 0$ for every $n \in \mathbb{N}$ and so $F \in \mathcal{F}_0$.

If c = 1, then $F(n^2 + 1) = 1$ for every $n \in \mathbb{N}$ and so $F \in \mathcal{F}_1$.

We now prove (2.6). It is easy to check that F(2) = 1, F(5) = F(13) = F(17) = 1.

Assume that F(q) = 1 for every $q \in \mathcal{P}, q \equiv 1 \pmod{4}, q < P$ and let $P \in \mathcal{P}, P \equiv 1 \pmod{4}, P > 17$. Since $P \equiv 1 \pmod{4}$, there is $m, Q \in \mathbb{N}$ with m < P, such that

$$m^2 + 1 = PQ.$$

Clearly, Q < P since $PQ = m^2 + 1 \le (P - 1)^2 + 1$. For any $q \in \mathcal{P}, q|Q$, we have $m^2 + 1 \equiv 0 \pmod{q}$ and

$$(-1)^{\frac{q-1}{2}} = \left(\frac{-1}{q}\right) = \left(\frac{m^2}{q}\right) = 1,$$

so $q \equiv 1 \pmod{4}$, and by our assumption F(q) = 1. Therefore F(Q) = 1, and thus

$$1 = F(m^2 + 1) = F(PQ) = F(P)F(Q) = F(P).$$

This proves (2.6) and completes the proof of Lemma 1.

Lemma 2. If $F \in \mathcal{M}^*$ satisfies (1.1) and $bc \neq 0$, then

$$F(2)F(3)F(5) \neq 0.$$

Proof. (i) The proof of $x = F(2) \neq 0$.

From (2.4), we have

$$E_3 = xF(5) - bx^3 - c = 0,$$

which, together with $c \neq 0$, implies $x = F(2) \neq 0$.

(ii) The proof of $y = F(3) \neq 0$.

Assume that y = 0. Then from E_2 and E_4 in (2.4), we obtain:

$$(2.7) F(5) = F(17) = c.$$

Consequently,

$$c^3 = F(5)F(17)^2 = F(1445) = F(38^2 + 1) = bF(38^2 - 1) + c = bF(3)F(13)F(37) + c = c,$$

which gives

(2.8)
$$c^2 = 1$$
.

Thus, we have

$$(2.9) x = xc^2 = F(2)F(5)^2 = F(50) = bF(48) + c = bx^4y + c = c.$$

On the other hand, from (1.1) and (2.8)–(2.9), we have

$$c^{2} = F(2)F(5) = F(10) = F(3^{2} + 1) = bF(3^{2} - 1) + c = bF(2)^{3} + c = bc^{3} + c.$$

This with (2.8) implies c = b + 1, and hence

$$1 = c^2 = (b+1)^2 = b(b+2) + 1 \Rightarrow b(b+2) = 0.$$

Since $b \neq 0$, it follows that

$$(2.10) b = -2 and c = b + 1 = -1.$$

Now, from (2.7) and (2.10), we have

(2.11)
$$x = F(2) = -1, F(5) = -1 \text{ and } F(17) = -1.$$

Now from (2.4), we compute:

$$0 = E_5 = xF(13) - bx^3y - c = -F(13) + 1,$$

$$0 = E_{17} = xF(5)F(29) - bx^5y^2 - c = F(29) + 1,$$

$$0 = E_{57} = xF(5)^2F(13) - bx^4F(7)F(29) - c =$$

$$= -F(13) + 2F(7)F(29) + 1.$$

From this, we get

$$F(13) = 1$$
, $F(29) = -1$ and $F(7) = 0$.

Now consider:

$$0 = E_6 = F(37) - bF(5)F(7) - c = F(37) + 1 \implies F(37) = -1,$$

$$0 = E_{31} = xF(13)F(37) - bx^6yF(5) - c = -F(37) + 1 \implies F(37) = 1,$$

which are impossible. Therefore, our assumption y=0 leads to a contradiction, so $y\neq 0$.

(iii) The proof of $F(5) \neq 0$.

Assume that $xy = F(2)F(3) \neq 0$, but F(5) = 0. Then from (2.4), we get:

(2.12)
$$E_{2} = -by - c = 0,$$

$$E_{3} = -bx^{3} - c = 0,$$

$$E_{7} = -bx^{4}y - c = 0,$$

$$E_{8} = -by^{2}F(7) - c = 0,$$

$$E_{41} = xF(29)^{2} - c = 0,$$

$$E_{57} = -bx^{4}F(7)F(29) - c = 0.$$

From E_3 and E_2 , we get:

$$c = -bx^3$$
, $y = -\frac{c}{b} = x^3$.

Using E_7 :

$$E_7 = -bx^3(x^4 - 1) = 0 \implies x^4 = 1.$$

Also

$$E_8 = -by^2 F(7) - c = -bx^3 (x^3 F(7) - 1) = 0 \implies F(7) = \frac{1}{x^3} = x.$$

Thus, we have

$$E_{57} = -bx^4F(7)F(29) - c = -bx^3(x^2F(29) - 1) = 0,$$

which implies

$$F(29) = x^2$$

and

$$E_{41} = xF(29)^2 - c = x^3(x^2 + b) = 0.$$

Hence

$$b = -x^2.$$

Therefore, we have

$$x^4 = 1, b = -x^2, c = x^5, y = x^3, F(7) = x, F(29) = x^2.$$

Now compute:

$$L_2 = bx^6yF(5) - b^2x^3yF(5)F(7) - bcF(5)F(7) - bcx^3y + c - c^2 = x^5(x^8 - x^5 + 1) = x(-x + 2) = 0,$$

which leads to x = F(2) = 2. This shows that $1 = x^4 = F(2)^4 = 2^4 = 16$, which is impossible.

Thus, Lemma 2 is proved.

Lemma 3. If $F \in \mathcal{M}^*$ satisfies (1.1) and $bc \neq 0$, then

$$\begin{split} & \Big(b,c,x,y,F(5),F(7),F(11),F(13),F(17)\Big) \in \\ & \in \Big\{ (b,-b+1,1,1,1,1,1,1), (1,2,2,3,5,7,11,13,17) \Big\}. \end{split}$$

Proof. Assume that $bc \neq 0$. Then Lemma 2 implies that $bcF(2)F(3)F(5) \neq 0$.

By applying (2.4) concerning E(2), E(4), E(5), E(8), E(17), E(21), E(6), we obtain the following expressions:

$$F(5) = bF(3) + c = by + c,$$

$$F(17) = bF(3)F(5) + c = b^2y^2 + bcy + c.$$

(2.13)
$$F(13) = \frac{bF(2)^3F(3) + c}{F(2)} = \frac{bx^3y + c}{x},$$

$$F(7) = \frac{F(5)F(13) - c}{bF(3)^2} = \frac{b^2x^3y^2 + bcx^3y + bcy + c^2 - cx}{bxy^2},$$

$$F(29) = \frac{bF(2)^5 F(3)^2 + c}{F(2)F(5)} = \frac{bx^5 y^2 + c}{x(by+c)},$$

$$F(11) = \frac{F(2)F(13)F(17) - c}{bF(2)^3 F(5)} =$$

$$= \frac{b^3 x^3 y^3 + b^2 c x^3 y^2 + b c x^3 y + b^2 c y^2 + b c^2 y + c^2 - c}{bx^3 (by+c)},$$

$$F(37) = bF(5)F(7) + c =$$

$$= \frac{b^3 x^3 y^3 + 2b^2 c x^3 y^2 + b c^2 x^3 y + b^2 c y^2 + 2b c^2 y - b c x y + c x y^2 + c^3 - c^2 x}{xy^2}.$$

From (1.1), we also have

(2.14)
$$E(n) = F(n^2 + 1) - bF(n^2 - 1) - c = 0$$
 for every $n \in \mathbb{N}_1$.

Thus we infer from (2.13) and (2.14) that

$$\begin{split} E(3) &= F(10) - bF(2)F(4) - c = -bx^3 + bxy + cx - c = 0, \\ E(12) &= F(5)F(29) - bF(11)F(13) - c = \\ &= -\frac{1}{x^4(by+c)} \left(b^4x^6y^4 + b^3cx^6y^3 - b^2x^8y^3 - bcx^8y^2 + b^2cx^6y^2 + \\ &\quad + 2b^3cx^3y^3 + 2b^2c^2x^3y^2 + 2bc^2x^3y + bcx^4y + b^2c^2y^2 - \\ &\quad - 2bcx^3y + c^2x^4 + bc^3y - c^2x^3 + c^3 - c^2 \right) = 0. \end{split}$$

By applying the above relations with $n \in \{2, 3, 8\}$, we infer from (2.3) that

$$L(2) = bF(2)F(3)F(8) - b^{2}F(1)F(2)F(3)F(4) - bcF(2)F(4) - bcF(3) - c^{2} + c = bF(2)^{4}F(3) - b^{2}F(2)^{3}F(3) - bcF(2)^{3} - bcF(3) - c^{2} + c = bx^{4}y - b^{2}x^{3}y - bcx^{3} - bcy - c^{2} + c = 0,$$

$$L(3) = bF(3)F(4)F(14) - b^{2}F(2)F(3)F(4)F(5) - bcF(3)F(5) - bcF(2)F(4) - c^{2} + c = bF(3)F(2)^{3}F(7) - b^{2}F(2)^{3}F(3)F(5) - bcF(3)F(5) - bcF(2)^{3} - c^{2} + c = -\frac{1}{y}\left(b^{3}x^{3}y^{3} - b^{2}x^{5}y^{2} + b^{2}cx^{3}y^{2} - bcx^{5}y + b^{2}cy^{3} + bcx^{3}y + bc^{2}y^{2} - bcx^{2}y - c^{2}x^{2} + cx^{3} + c^{2}y - cy\right) = 0,$$

$$L(8) = bF(8)F(9)F(74) - b^{2}F(7)F(8)F(9)F(10) - bcF(8)F(10) - bcF(7)F(9) - c^{2} + c = bF(2)^{4}F(3)^{2}F(37 - b^{2}F(7)F(2)^{4}F(3)^{2}F(5) - bcF(2)^{4}F(5) - bcF(7)F(3)^{2} - c^{2} + c =$$

$$= \frac{-c}{r} \left(b^{2}x^{5}y - bx^{5}y^{2} + b^{2}x^{3}y^{2} + bcx^{5} + bcx^{3}y + bcy + c^{2} - x \right) = 0.$$

Define:

$$W_1 = -E(3),$$

$$W_2 = -L(2),$$

$$W_3 = -xL(8)/c,$$

$$W_4 = -yL(3),$$

$$W_5 = -x^4(by + c)E(12).$$

Then we have the following system of equations

$$\begin{split} W_1 &= bx^3 - bxy - cx + c = 0, \\ W_2 &= b^2x^3y - bx^4y + bcx^3 + bcy + c^2 - c = 0, \\ W_3 &= b^2x^5y - bx^5y^2 + b^2x^3y^2 + bcx^5 + bcx^3y + bcy + c^2 - x = 0, \\ W_4 &= b^3x^3y^3 - b^2x^5y^2 + b^2cx^3y^2 - bcx^5y + b^2cy^3 + bcx^3y + bc^2y^2 - bcx^2y - \\ &- c^2x^2 + cx^3 + c^2y - cy = 0, \\ W_5 &= b^4x^6y^4 + b^3cx^6y^3 - b^2x^8y^3 - bcx^8y^2 + b^2cx^6y^2 + 2b^3cx^3y^3 + 2b^2c^2x^3y^2 + \\ &+ 2b^2c^2x^3y^2 + 2bc^2x^3y + bcx^4y + b^2c^2y^2 - 2bcx^3y + c^2x^4 + bc^3y - \\ &- c^2x^3 + c^3 - c^2 = 0. \end{split}$$

These yield the following system of five polynomial equations in variables b, c, x, y. Using a computer algebra system (Maple), we find that the system has the following solutions:

$$(b, c, x, y) \in \{(b, 0, 0, y), (0, 1, 1, y), (b, -b + 1, 1, 1), (1, 2, 2, 3), (-1, 1, 1, 1), (-2, -1, -1, 0)\}.$$

From these, the only tuples consistent with $bcF(2)F(3)F(5) = bcxy(by+c) \neq 0$ are

$$(b,c,x,y)\in\{(b,-b+1,1,1),(1,2,2,3)\}.$$

Substituting these into the earlier formulas gives the corresponding function values:

$$\begin{split} &\Big(b,c,x,y,F(5),F(7),F(11),F(13),F(17)\Big) \in \\ &\in \Big\{(b,-b+1,1,1,1,1,1,1),(1,2,2,3,5,7,11,13,17)\Big\}, \end{split}$$

completing the proof of Lemma 3.

3. Proof of Theorem 1

Proof of Theorem 1 (a). If b = 0 and $c \neq 0$, then $F(n^2 + 1) = c$ for every $n \in \mathbb{N}$, and so Theorem 1 (a) follows from Lemma 1.

Proof of Theorem 1 (b). Assume that $F \in \mathcal{M}^*$ satisfies (1.1) and $bc \neq 0$. Then, by using Lemma 2 and Lemma 3, we have $bcF(2)F(3)F(5) \neq 0$. Thus, by using Lemma 3, we will prove our theorem by considering two separate cases.

Case 1: (b, c, x, y, F(5), F(7), F(11), F(13), F(17)) = (b, -b + 1, 1, 1, 1, 1, 1, 1, 1)

Case 2: (b, c, x, y, F(5), F(7), F(11), F(13), F(17)) = (1, 2, 2, 3, 5, 7, 11, 13, 17).

Proof of Case 1. In this case, we can assume that F(n) = 1 for every $n \le P$, where P > 17. We aim to prove that F(P) = 1.

It is clear from our assumptions that F(P) = 1 if $P \notin \mathcal{P}$. So we now assume $P \in \mathcal{P}$.

- (a) We first prove that F(P) = 1 if $P \in \mathcal{H}$.
- (a1). Let $P \in \mathcal{H}$ and $\left(\frac{-1}{P}\right) = 1$.

Then $P \equiv 1 \pmod 4$ and similarly as in the proof of Lemma 1, there is $m,Q \in \mathbb{N}, m < P$ such that

$$m^2 + 1 = PQ.$$

Clearly, Q < P. From our assumptions, F(Q) = 1 and

$$F(m-1) = 1, \ F(m+1) = F(2)F(\frac{m+1}{2}) = 1.$$

Thus we have

$$F(m^2 + 1) = F(PQ) = F(P)F(Q) = F(P),$$

and from equation (1.1)

$$F(m^2 + 1) = bF(m - 1)F(m + 1) + 1 - b = b + 1 - b = 1.$$

Therefore, we proved that F(P) = 1 if $\left(\frac{-1}{P}\right) = 1$.

(a2). Now suppose $P \in \mathcal{H}$ and $\left(\frac{-7}{P}\right) = 1$.

Then there exist $m, Q \in \mathbb{N}, m < P$ such that

$$m^2 + m + 2 = PQ,$$

since $\left(\frac{-7}{P}\right) = 1$ and

$$m^2 + m + 2 \equiv 0 \pmod{P} \iff (2m+1)^2 \equiv -7 \pmod{P}.$$

Clearly, m < P, Q < P and $m \neq P - 1, m \neq P - 2$. So we have

$$F(Q) = 1, \ F(m-1) = 1, \ F(m) = 1, \ F(m+1) = 1, \ F(m+2) = 1.$$

Now apply equation (2.3), we have

$$L_m := bF(m)F(m+1)F(m^2+m+2) - b^2F(m-1)F(m)F(m+1)F(m+2) - bcF(m)F(m+2) - bcF(m-1)F(m+1) + c - c^2 = 0.$$

Substituting all values as 1:

$$L_m = bF(P) - b^2 - 2bc + c - c^2 = 0.$$

Recall c = 1 - b, we have

$$L_m = bF(P) - b^2 - 2b(1-b) + (1-b) - (1-b)^2 = bF(P) - b = 0,$$

which implies F(P) = 1.

Therefore, the theorem is proved for all $p \in \mathcal{H}$.

(b) Now we prove that F(P) = 1 if $P \in \mathcal{K}$.

To apply Conjecture 2, by using $P > p_2 = 3$, we first verify the special cases:

$$F(P) = 1$$
 if $P \in \{p_{11} = 31, p_{15} = 47, p_{39} = 167\}.$

(b1) If $P = p_{11} = 31$, then from E_9 and E_{32} , we compute:

$$F(41) = \frac{bF(2)^4 F(5) + c}{F(2)} = b + c = 1$$

and

$$F(31) = \frac{F(5)^2 F(41) - c}{bF(3)F(11)} = \frac{1 - c}{b} = 1.$$

(b2) If $P = p_{15} = 47$, then F(n) = 1 for every n < 47. Thus we infer from E_{27} and E_{46} that

$$F(73) = \frac{bF(2)^3F(13)F(7) + c}{F(2)F(5)} = b + c = 1$$

and

$$F(47) = \frac{F(29)F(73) - c}{bF(3)^2F(5)} = \frac{1 - c}{b} = 1.$$

Consequently

$$F(P) = 1$$
 for $P = 47$.

(b3) If $P=p_{39}=167$, then F(n)=1 for every n<167. Thus we infer from $E_{107},\,E_{8351}$ that

$$E(107) = F(2)F(5)^{2}F(229) - bF(2)^{3}F(53)F(3)^{3} - c = F(229) - 1 = 0$$

and

$$E(8351) = F(53)F(2)F(13)^{2}F(17)F(229) - bF(2)F(5)^{2}F(167)F(29)F(2)^{5}F(3)^{2} - c =$$

$$= F(229) - bF(167) - c = 0.$$

Consequently

$$F(229) = 1$$
 and $F(167) = F(P) = 1$.

Now we use Conjecture 2. Since F(n) = 1 for every $n \le p_{39} = 167$, we infer from Conjecture 2 that there exists a positive integer ℓ such that

$$P|\ell^2 - 1 \text{ and } P\left(\frac{(\ell^2 + 1)(\ell^2 - 1)}{P}\right) < P.$$

Thus, it follows from our assumptions that

$$F(\ell^2 + 1) = 1, F(\ell^2 - 1) = F\left(\frac{\ell^2 - 1}{P}\right)F(P) = F(P),$$

which with (1.1) imply that

$$1 = F(\ell^2 + 1) = bF(\ell^2 - 1) + c = bF(P) + c = bF(P) + 1 - b.$$

Therefore F(P) = 1 and we proved that $(F, b, c) = (\mathbb{E}, b, -b + 1)$.

Proof of Case 2. Assume that

$$(b, c, x, y, F(5), F(7), F(11), F(13), F(17)) = (1, 2, 2, 3, 5, 7, 11, 13, 17).$$

Similar way as in the proof of Case 1, we can deduce that F(n) = n for every $n \in \mathbb{N}$. Thus, we have $(F, b, c) = (\mathbb{I}, 1, 2)$.

This completes the proof of Theorem 1.

4. Remark

Conjecture 3. Let H be a complex valued function defined on the set of Gaussian integers satisfying the equations

$$H(\alpha\beta) = H(\alpha)H(\beta)$$
 for every $\alpha, \beta \in \mathbb{Z}[i]$

$$H(\alpha^2 + 1) = F(\alpha^2 - 1) + 2$$
 for every $\alpha \in \mathbb{Z}[i]$.

Then either $H(\alpha) = \alpha$ or $H(\alpha) = \overline{\alpha}$ for every $\alpha \in \mathbb{Z}[i]$, where $\overline{\alpha}$ is the conjugate of α .

This conjecture is weaker than the assertion (b) in Theorem 1.

References

- [1] **Kátai, I., B.M.M. Khanh and B.M. Phong,** On the equation $F(n^2 + m^2 + k) = H(n) + H(m) + K$, Thang Long Journal of Science: Mathematics and Mathematical Sciences, **1(4)** (2023), 135–151. https://science.thanglong.edu.vn/index.php/volc/article/view/54
- [2] **Kátai, I., B.M.M. Khanh and B.M. Phong,** On the equation $G(n) = F(n^2-1)+D$, Ann. Univ. Sci. Budapest., Sect. Comp., **53** (2022), 159–173. https://doi.org/10.71352/ac.53.159
- [3] **Kátai, I., B.M.M. Khanh and B.M. Phong,** On the equation $F(n^3) = F(n^3 1) + D$ and some conjectures, *Publ. Math. Debrecen*, **103** (2023), 257–267.
 - https://doi.org/10.5486/PMD.2023.9656
- [4] **Spiro, C.,** Additive uniqueness sets for arithmetic functions, *J. Number Theory*, **42** (1992), 232–246.

https://doi.org/10.1016/0022-314X(92)90022-H

Imre Kátai, Bui Minh Mai Khanh and Bui Minh Phong

ELTE Eötvös Loránd University Faculty of Informatics
Department of Computer Algebra H-1117 Budapest
Pázmány Péter sétány 1/C
Hungary
katai@inf.elte.hu
mbuiminh@yahoo.com
bui@inf.elte.hu