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Abstract. Under a suitable conjecture concerning prime numbers, we
provide a complete solution to the equation

F(n®4+1)=bF(n>—1)+c forevery neN, n>1,

where F' : N — C is a completely multiplicative function and b,c € C,

c#0.
1. Introduction

Let P, N, Z and C denote the set of primes, positive integers, integers and
complex numbers, respectively. Let N; := N\ {1}. We denote by M (M*) the
set of all complex-valued multiplicative (completely multiplicative) functions,
respectively. For each a € Z and p € P let (%) be the Legendre symbol. Let
P(m) be the largest prime divisor of m € N and let pi denote the k-th prime
number. For each k € N we denote by F the set of all arithmetical functions
F :N — C such that F(n? +1) =k for every n € N.

Let E(n) =1 and I(n) =n for every n € N.

The problem of characterising the identity function as a multiplicative arith-
metical function satisfying certain equations has been studied by several au-
thors. C. Spiro [4] proved that if f € M satisfies the relations

flp+q) =f(p)+ f(q) forevery p,geP
and f(po) # 0 for some py € P, then f is the identity function.

Key words and phrases: Completely multiplicative function, the identity function, Dirichlet
character.
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In [1], we gave all solutions of the equation
F(n>4+m?+k)=H(n)+ H(m)+ K forevery n €N,

where k € N is the sum of two fixed squares, K € C and F, H are completely
multiplicative functions.

The equation
Gn)=F(n*>-1)+D

was completely solved in [2], where G, F € M* and D € C.

Now we turn to the equation
F(Q(n)) =bF(Q(n) — £) + ¢,
where £ € N, b,c € C and Q(x) € Z[x]. The special case
(Q(n),¢,b,c) = {n’1,1,D}

was solved in [3].
In this note we consider the case Q(n) =n?+1,/=1 and b,c € C,c # 0.
Unfortunately, we can solve the equation only under the following conjecture:

Conjecture 1. For every prime p > pgs = 487, there exists a positive integer
m such that p | m? — 1 and

P<(m21);m2+1)> .

We note that, with the help of Maple, we have verified that Conjecture 1
holds for every py with 93 < k < 10°. In the range k € {1,...,93}, we could
not verify Conjecture 1 for the primes py, where

ke F:=
=1{1,2,3,4,5,6,11,13,14, 15, 16, 18, 24, 25, 28, 29, 30, 33, 39, 56, 67, 74, 93}

Define the sets

,c::{pep\ (—;):(—;):_1} and H—P\K.

It is easy to show that
K={peP ’ p=t (mod28), where t€ {3,19,27}}.

In fact, for the proof of our main result, we require the following weaker
conjecture.
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Conjecture 2. For every prime p > p3g = 167 with p € K, there exists a
positive integer £ such that p | €2 — 1 and

P<(£21);£2+1)> -

We have verified Conjecture 2 for every p = p;, with 39 < k < 105, and
we have checked that in the range k € {1,...,39}, Conjecture 2 holds for all
p = pr except:

p € {p2 =3, p11 =31, p15 =47, p3g = 167}.
In this paper we prove the following result.

Theorem 1. Assume that b,c € C, ¢ # 0 and the function F' € M* satisfies
the relation

(1.1) F(n*+1)=bF(n*—1)+c for every n € Nj.

Then the following assertions hold:
(a) Ifb=0, then c=1 and F € Fy , furthermore

F(p)=1 forevery peP,p=1 (mod 4).
(b) If be # 0 and Congjecture 2 holds, then
(F, b, ¢) e {(E, b, =b+1),(T, 1, 2)}.

2. Lemmas

We first observe from the assumption F' € M* and (1.1) that
(21) E,:=Fn*>+1)—bF(n—1)F(n+1)—c=0 forevery n € Nj.
Since
(2.2) (n*+n+1)°+1=m>+1)((n+1)>+1) forevery neN,
it follows from (2.1) and (2.2) that
bF(n? +n)F(n? +n+2) +c = (bF(n— DF(n+1) +c) (bF(n)F(n+2) +c).
Therefore, we have the identity
Ly, :=bF(n)F(n+1)F(n® +n+2)—

(2.3) —b*F(n—1)F(n)F(n+1)F(n+2)—

—bcF(n)F(n+2) —bcF(n—1)F(n+1)+c—c* =0,

which holds for every n € Nj.
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From now on, let F'(2) := z and F(3) :=y.

In the proof of our results, we will use the relation (2.1) for the values
n e {2,3,4,5,6,7,8,17,21,31,41,57}.
This yields the following system of equations:

Ey=F(5) —by—c=0,

B3 = xF(5) — bx® — ¢ =0,

Ey=F(17) —baF(5) —c =0,

Es = 2F(13) — byF(5) —c =0,

Eg = F(37) — bF(5)F(7) — ¢ =0,

E; = 2F(5)% — baty —c =0,

Eg = F(5)F(13) — by*F(T) — ¢ =0,
By = 2F(13)F(17) — —bx®F(5)F(11) — ¢ = 0,
Eo = aF(5)F(29) — ba’y® — ¢ =0,

B3 = 2F(13)F(37) — baSyF(5) —c = 0,
( (7)
(

By = 2F(29)* — ba*yF(5)F(7) —c =0,
Esy = 2F(5)3F(13) — ba* F(T)F(29) — ¢ = 0.

Lemma 1. If FF € M* and c € C satisfy
(2.5) F(n®>+1)=c for every n €N,

then ¢ € {0, 1}.
If c =0, then F € Fy.
If c=1, then F(2) =1 and

(2.6) F(p)=1 forevery peP, p=1 (mod4).
Proof. From (2.2) and (2.5), we have

c=F((n+n+ 12 +1) = F((n? + ((n+1) +1)) =
=Fn?+1)F((n+1)*+1) =

which implies ¢ € {0, 1}.
If ¢ = 0, then F(n?+ 1) =0 for every n € N and so F € F.
If c=1, then F(n? +1) =1 forevery n € Nandso F € F.

We now prove (2.6). It is easy to check that F'(2) = 1, F(5) = F(13) =
= F(17) =1
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Assume that F(¢) =1 forevery ¢ € P,qg =1 (mod 4),q < P and let
PeP,P=1 (mod4),P > 17. Since P =1 (mod 4), there is m,Q € N with
m < P, such that

m? +1=PQ.

Clearly, Q@ < P since PQ = m? +1 < (P —1)?2 + 1. For any q € P,q|Q, we
have m? +1 =0 (mod ¢) and

o =(3)-(2)

so ¢ =1 (mod 4), and by our assumption F(q) = 1. Therefore F(Q) = 1, and
thus
1=F(m?+1)=F(PQ)=F(P)F(Q) = F(P).

This proves (2.6) and completes the proof of Lemma 1. |
Lemma 2. If F € M* satisfies (1.1) and be # 0, then
F(2)F(3)F(5) # 0.
Proof. (i) The proof of x = F'(2) # 0.
From (2.4), we have
B3 =aF(5) —ba® —c=0,

which, together with ¢ # 0, implies x = F(2) # 0.
(ii) The proof of y = F(3) # 0.
Assume that y = 0. Then from F3 and Ej in (2.4), we obtain:

(2.7) F(5)=F(17) =c.
Consequently,

¢ = F(5)F(17)? = F(1445) = F(38%> + 1) = bF(38° — 1) + c =
bE(3)F(13)F(37) +c = c,

which gives

(2.8) A =1.

Thus, we have

(2.9) r=uxc? = F(2)F(5)? = F(50) = bF(48) + c = ba*y +c=c.
On the other hand, from (1.1) and (2.8)—(2.9), we have

? =F((2)F(5) = F(10) = F(3° +1) =bF(3* = 1) + ¢ = bF(2)® + c = bc® + .
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This with (2.8) implies ¢ = b+ 1, and hence
1=c*=0b+1)2=bb+2)+1=bb+2)=0.

Since b # 0, it follows that

(2.10) b=-2 and c=b+1=—-1

Now, from (2.7) and (2.10), we have

(2.11) z=F((2)=-1,F(5)=-1 and F(17) = —
Now from (2.4), we compute:

0=FEs =xF(13) — bx®y —c= —F(13) + 1,

0= Ey7 = 2F(5)F(29) — bz°y* — c = F(29) + 1,

0= Es7 = xF(5)2F(13) — bt F(T)F(29) —c =
—F(13) + 2F(7)F(29) + 1.

From this, we get

F(13) =1, F(29) = —1 and F(7)=0.

Now consider:

0=FEs =F(37) —bF(5)F(7) —c=F(37) + 1 = F(37) = —1,
0= FE3 = 2F(13)F(37) — ba®yF(5) —c= -F(37) +1 = F(37) =1,

which are impossible. Therefore, our assumption y = 0 leads to a contradiction,

soy # 0.
(iii) The proof of F'(5) # 0.
Assume that zy = F(2)F(3) # 0, but F(5) = 0. Then from (2.4), we get:

Ey=—-by—c=0,

E3=—ba® —c=0,

E; = —bxly —c =0,

Fg = —by?F(7) —c=0,

By =2F(29)% —c=0,

Es7 = —ba*F(7)F(29) — ¢ = 0.

(2.12)

From E3 and Es, we get:
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Using E7:
E;= b3 -1)=0 = ' =1
Also

Ey = —by’F(7) —c= —bx*(2®F(7) = 1) =0 = F(7)= — =uz.

x3
Thus, we have
Es7 = —bx*F(T)F(29) — ¢ = —ba®(x?F(29) — 1) = 0,

which implies
F(29) = 22
and
By =2F(29)% —c=2*(z* +b) = 0.

Hence

Therefore, we have

at =1, b=—2% c=2a5 y=2a3 F(7)

x, F(29) = 2°.
Now compute:
Ly = ba®yF(5) — b?23yF(5)F(7) — beF(5)F(7) — beay+
te—c =20 2"+ 1) =2 (~2+2) =0,

which leads to x = F(2) = 2. This shows that 1 = 2*
which is impossible.

F(2)* = 21 = 16,
Thus, Lemma 2 is proved. |
Lemma 3. If F € M* satisfies (1.1) and bc # 0, then
(b, c,x,y,F(5),F(7),F(ll),F(lS),F(l?)) c
c {(b,—b+ 1,1,171,1,1,1)7(1,2,2,375,7,11,13,17)}.

Proof. Assume that bc # 0. Then Lemma 2 implies that beF'(2)F(3)F(5) #
# 0.

By applying (2.4) concerning E(2), E(4), E(5), E(8), E(17), E(21), E(6),
we obtain the following expressions:

F(5)=0bF(3)+c=by+ec,
F(17) = bF(3)F(5) + ¢ = b?y* + bey + ¢,

bE(2)PF(3)+c¢  baly+c
F(13) = =
(2.13) (13) F2) e
F(B)F(13) —c  b2a3y? + bea®y + bey + ¢ — ca

F(7) = bF(3)2 bry? ’
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bE(2PF(3)2+¢  bay* +c¢
F2)F(55)  z(by+ec)’

F(29) =

F(2)F(13)F(17) —c
bE(2)3F(5) B

F(1) =

(2.13)

B b3z31y3 4 b2cxy? + bexdy + bley? + bcPy + 2 — ¢
B b3 (by + ¢) ’

F(37) = bF(5)F(T) + ¢ =

_ bPadyi 420’ e y? 4ot y+ b2 cy? 4202y —bery+cxy 42 —2x
= S .
zy

From (1.1), we also have
(2.14) E(n)=F(n*+1)—bF(n*—1)—c=0 forevery n € Nj.
Thus we infer from (2.13) and (2.14) that
E(3) = F(10) = bF(2)F(4) — ¢ = —ba® 4+ by + cx — c = 0,
E(12) = F(5)F(29) — bF(11)F(13) — ¢ =
= 77334(11(; s (b4x6y4 + b3eaby® — b2aBy® — beaBy? + bPeabyP+
+ 2b3cay® + 202 3y? 4 20?23y + bexty + b2Py? —
— 2bcady + Aat + by — Ead + B — 02) =0.
By applying the above relations with n € {2, 3,8}, we infer from (2.3) that
L(2) = bF(2)F(3)F(8) — b*F(1)F(2)F(3)F(4) — bcF(2)F(4) — bcF(3)—
— P4+ c=bF(2)*F(3) = b¥*F(2)3F(3) — bcF(2)® —bcF(3) — ? + ¢ =
= bty — b2y — bex® —bey — P + ¢ =0,
L(3) = bF(3)F(4)F(14) — b*F(2)F(3)F(4)F(5) — bcF (3)F(5) — beF(2)F(4)—
— 2 +c=bF(3)F(2)3F(7) — b*F(2)*F(3)F(5) — beF (3)F(5)—
—bcF (22— +c= —é (b3m3y3 — b5y + b2 eady? — beady + breyP+

+ bexdy + bc?y? — bex’y — 2x? + e + Py — cy) =0,

L(8) = bF(8)F(9)F(74) — b*F(7)F(8)F(9)F(10) — bcF(8)F(10)—
—beF(T)F(9) — ® +c=bF(2)*F(3)?F (37 — b’ F(7)F(2)*F(3)?F(5)—
—beF(2)2F(5) — beF(T)F(3)* — ¢ 4 ¢ =
= b’y — ba’y? + b2ady? + bea® + bexdy + bey + ¢ — a:) =0.
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Define:
Wi = —E(3),
Wy = —L(2),
Wy = —2L(8)/c
Wy = —yL(3),

W5 = —2*(by + ¢)E(12).

Then we have the following system of equations

Wi =ba®—bay —cx+c¢=0,

Wo = b223y — bty + bex® + bey + ¢ — ¢ = 0,

Wy = b2y — ba®y? + b22y? + bea® + bea®y + bey + 2 — 2 =0,

Wy = b33y — b22y? + b?cady® — bex®y + b2cy® + beay + bey? — bexy—
et + Py —cey=0,

Wy = b*aSy* + bPeaby® — b228y® — bea®y? + b2eaby? + 203ca’y® + 2% a3y +
+ 202 a3y? + 26223y + beaty + b2y? — 2bcx’y + at + bePy—
P+l -2 =0.

These yield the following system of five polynomial equations in variables
b,c,z,y. Using a computer algebra system (Maple), we find that the system
has the following solutions:

(b) C7 x? y) E{(b’ 07 07 y)’ (07 17 17y)7 (b7 _b + 17 1’ 1)7 (17 27 2’ 3)7
(-1,1,1,1),(=2,—1,—1,0)}.

From these, the only tuples consistent with beF'(2)F(3)F(5) = bexy(by+c) # 0
are
(b,c,w,y) € {(b, b+ 1,1,1),(1,2,2,3)}.

Substituting these into the earlier formulas gives the corresponding function
values:

(b ey, F(5), F(7). F(11), F(13), F(IT) ) €
e {(b, b+1,1,1,1,1,1,1),(1,2,2,3,5,7, 11, 13, 17)},

completing the proof of Lemma 3. |
3. Proof of Theorem 1

Proof of Theorem 1 (a). If b = 0 and ¢ # 0, then F(n? + 1) = ¢ for every
n € N, and so Theorem 1 (a) follows from Lemma 1. |
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Proof of Theorem 1 (b). Assume that F' € M* satisfies (1.1) and be # 0.
Then, by using Lemma 2 and Lemma 3, we have bcF(2)F(3)F(5) # 0. Thus,
by using Lemma 3, we will prove our theorem by considering two separate
cases.

Case 1: (b,c,z,y,F(5),F(7),F(11),F(13), F(17)) = (b,—b+1,1,1,1,1,1,1)
Case 2: (b,c,z,y, F(5), F(7), F(11), F(13), F(17)) = (1,2,2,3,5,7,11, 13, 17).

Proof of Case 1. In this case, we can assume that F(n) = 1 for every n < P,
where P > 17. We aim to prove that F(P) = 1.

It is clear from our assumptions that F(P) = 1 if P ¢ P. So we now assume
PecP.

(a) We first prove that FI(P) =1if P € H.
(al). Let P € H and () = 1.

Then P = 1 (mod 4) and similarly as in the proof of Lemma 1, there is
m,Q € N,m < P such that

m?+ 1= PQ.
Clearly, @ < P. From our assumptions, F(Q) =1 and

m+1

Fm—1) =1, F(m+1) = F2)F(—

)=1.
Thus we have
F(m®+1) = F(PQ) = F(P)F(Q) = F(P),
and from equation (1.1)
Fm*+1)=bF(m—-1)Fm+1)+1-b=b+1-b=1.
Therefore, we proved that F(P) =1 if (%) =1.

(a2). Now suppose P € H and (%) =1
Then there exist m,Q € N, m < P such that

m?+m+2 = PQ,

since (%) =1 and
m>+m+2=0 (mod P) <= (2m+1)2=-7 (mod P).
Clearly, m < P, @ < Pand m # P —1,m # P — 2. So we have

F(Q) =1, Fim—1)=1, F(m)=1, Fim+1) =1, F(m+2) = 1.
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Now apply equation (2.3), we have

Ly : = bF(m)F(m + 1)F(m? +m + 2)—
—b*F(m — 1)F(m)F(m + 1)F(m + 2)—
—beF(m)F(m+2) —beF(m — 1D)F(m+1) +¢c—c =0.

Substituting all values as 1:
Ly, =bF(P) —b* —2bc+c—c* =0.
Recall ¢ =1 — b, we have
Ly = bF(P) —b* —2b(1 —b) + (1 = b) — (1 — b)*> = bF(P) — b =0,

which implies F(P) = 1.
Therefore, the theorem is proved for all p € H.
(b) Now we prove that F(P)=11if P € K.

To apply Conjecture 2, by using P > py, = 3, we first verify the special
cases:
F(P) =11if Pe {p11 =31,p15 = 47,p39 = 167}

(b1) If P = py; = 31, then from Eg and E32, we compute:

bF(2)*F(5) + ¢

P = ==

=b+c=1

and
F()?F(41) —¢  1—c¢

F@1) = bF(3)F(11) b

=1

(b2) If P = p15 = 47, then F(n) = 1 for every n < 47. Thus we infer from
E27 and E46 that

bF(2)*F(13)F(7) + ¢

F(73) = FF() =b+c=1
and
_FQ9)F(73) —c 1—c
F7) = bF(3)2F(5) 5!
Consequently

F(P)=1 for P=47.

(b3) If P = p3g = 167, then F'(n) = 1 for every n < 167. Thus we infer
from E107, E8351 that

E(107) = F(2)F(5)%F(229) — bF(2)3F(53)F(3)® —c = F(229) —1 =0
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and
E(8351) = F(53)F(2)F(13)?F(17)F(229)—
—bF(2)F(5)*F(167)F(29)F(2)°F(3)? — ¢ =
= F(229) — bF(167) — c = 0.
Consequently

F(229) =1 and F(167) = F(P) = 1.

Now we use Conjecture 2. Since F(n) = 1 for every n < p3g = 167, we infer
from Conjecture 2 that there exists a positive integer ¢ such that

2 2
Pl> —1 and P(W) <P

Thus, it follows from our assumptions that

-1
P

F(?+1)=1,F(* 1) :F( )F(P) — F(P),
which with (1.1) imply that
1=F{*+1)=bF(? -1)+c=bF(P)+c=bF(P)+1—b.

Therefore F(P) =1 and we proved that (F, b, ¢) = (E, b, —b+1).
Proof of Case 2. Assume that

<b7 c,x,y,F(5),F(7),F(11),F(13),F(17)) =(1,2,2,3,5,7,11,13,17).

Similar way as in the proof of Case 1, we can deduce that F(n) = n for
every n € N. Thus, we have (F, b, ¢) = (I, 1, 2).
This completes the proof of Theorem 1. ]

4. Remark

Conjecture 3. Let H be a complez valued function defined on the set of Gaus-
stan integers satisfying the equations

H(af) = H(a)H(B) for every «,p € Z[i]

H(?+1)=F(a? —1)+2 for every a € Z]i].

Then either H(a) = a or H(«) = @ for every « € Z[i], where @ is the conjugate

of a.

This conjecture is weaker than the assertion (b) in Theorem 1.
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