
Annales Univ. Sci. Budapest., Sect. Comp. 58 (2025) 177–189

ON THE EQUATION F (n2 + 1) = bF (n2 − 1) + c
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Abstract. Under a suitable conjecture concerning prime numbers, we
provide a complete solution to the equation

F (n2 + 1) = bF (n2 − 1) + c for every n ∈ N, n > 1,

where F : N → C is a completely multiplicative function and b, c ∈ C,
c ̸= 0.

1. Introduction

Let P, N, Z and C denote the set of primes, positive integers, integers and
complex numbers, respectively. Let N1 := N\{1}. We denote by M (M∗) the
set of all complex-valued multiplicative (completely multiplicative) functions,
respectively. For each a ∈ Z and p ∈ P let ( a

p ) be the Legendre symbol. Let
P (m) be the largest prime divisor of m ∈ N and let pk denote the k-th prime
number. For each k ∈ N we denote by Fk the set of all arithmetical functions
F : N → C such that F (n2 + 1) = k for every n ∈ N.

Let E(n) = 1 and I(n) = n for every n ∈ N.
The problem of characterising the identity function as a multiplicative arith-

metical function satisfying certain equations has been studied by several au-
thors. C. Spiro [4] proved that if f ∈ M satisfies the relations

f(p + q) = f(p) + f(q) for every p, q ∈ P

and f(p0) ̸= 0 for some p0 ∈ P, then f is the identity function.
Key words and phrases: Completely multiplicative function, the identity function, Dirichlet
character.
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In [1], we gave all solutions of the equation

F (n2 + m2 + k) = H(n) + H(m) + K for every n ∈ N,

where k ∈ N is the sum of two fixed squares, K ∈ C and F, H are completely
multiplicative functions.

The equation
G(n) = F (n2 − 1) + D

was completely solved in [2], where G, F ∈ M∗ and D ∈ C.
Now we turn to the equation

F (Q(n)) = bF (Q(n) − ℓ) + c,

where ℓ ∈ N, b, c ∈ C and Q(x) ∈ Z[x]. The special case

(Q(n), ℓ, b, c) = {n3, 1, 1, D}

was solved in [3].
In this note we consider the case Q(n) = n2 + 1, ℓ = 1 and b, c ∈ C, c ̸= 0.

Unfortunately, we can solve the equation only under the following conjecture:

Conjecture 1. For every prime p > p93 = 487, there exists a positive integer
m such that p | m2 − 1 and

P

(
(m2 − 1)(m2 + 1)

p

)
< p.

We note that, with the help of Maple, we have verified that Conjecture 1
holds for every pk with 93 < k ≤ 106. In the range k ∈ {1, . . . , 93}, we could
not verify Conjecture 1 for the primes pk, where

k ∈ F :=
:= {1, 2, 3, 4, 5, 6, 11, 13, 14, 15, 16, 18, 24, 25, 28, 29, 30, 33, 39, 56, 67, 74, 93}.

Define the sets

K :=
{

p ∈ P
∣∣∣∣ (

−1
p

)
=

(
−7
p

)
= −1

}
and H = P \ K.

It is easy to show that

K =
{

p ∈ P
∣∣∣ p ≡ t (mod 28), where t ∈ {3, 19, 27}

}
.

In fact, for the proof of our main result, we require the following weaker
conjecture.
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Conjecture 2. For every prime p > p39 = 167 with p ∈ K, there exists a
positive integer ℓ such that p | ℓ2 − 1 and

P

(
(ℓ2 − 1)(ℓ2 + 1)

p

)
< p.

We have verified Conjecture 2 for every p = pk with 39 < k ≤ 106, and
we have checked that in the range k ∈ {1, . . . , 39}, Conjecture 2 holds for all
p = pk except:

p ∈ {p2 = 3, p11 = 31, p15 = 47, p39 = 167}.

In this paper we prove the following result.

Theorem 1. Assume that b, c ∈ C, c ̸= 0 and the function F ∈ M∗ satisfies
the relation

(1.1) F (n2 + 1) = bF (n2 − 1) + c for every n ∈ N1.

Then the following assertions hold:
(a) If b = 0, then c = 1 and F ∈ F1 , furthermore

F (p) = 1 for every p ∈ P, p ≡ 1 (mod 4).

(b) If bc ̸= 0 and Conjecture 2 holds, then

(F, b, c) ∈ {(E, b, −b + 1), (I, 1, 2)}.

2. Lemmas

We first observe from the assumption F ∈ M∗ and (1.1) that

(2.1) En := F (n2 + 1) − bF (n − 1)F (n + 1) − c = 0 for every n ∈ N1.

Since

(2.2) (n2 + n + 1)2 + 1 = (n2 + 1)
(
(n + 1)2 + 1

)
for every n ∈ N,

it follows from (2.1) and (2.2) that

bF (n2 + n)F (n2 + n + 2) + c =
(

bF (n − 1)F (n + 1) + c
)(

bF (n)F (n + 2) + c
)

.

Therefore, we have the identity

(2.3)
Ln : = bF (n)F (n + 1)F (n2 + n + 2)−

− b2F (n − 1)F (n)F (n + 1)F (n + 2)−
− bcF (n)F (n + 2) − bcF (n − 1)F (n + 1) + c − c2 = 0,

which holds for every n ∈ N1.
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From now on, let F (2) := x and F (3) := y.
In the proof of our results, we will use the relation (2.1) for the values

n ∈ {2, 3, 4, 5, 6, 7, 8, 17, 21, 31, 41, 57}.

This yields the following system of equations:

(2.4)

E2 = F (5) − by − c = 0,

E3 = xF (5) − bx3 − c = 0,

E4 = F (17) − bxF (5) − c = 0,

E5 = xF (13) − byF (5) − c = 0,

E6 = F (37) − bF (5)F (7) − c = 0,

E7 = xF (5)2 − bx4y − c = 0,

E8 = F (5)F (13) − by2F (7) − c = 0,

E17 = xF (13)F (17) − −bx3F (5)F (11) − c = 0,

E21 = xF (5)F (29) − bx5y2 − c = 0,

E31 = xF (13)F (37) − bx6yF (5) − c = 0,

E41 = xF (29)2 − bx4yF (5)F (7) − c = 0,

E57 = xF (5)3F (13) − bx4F (7)F (29) − c = 0.

Lemma 1. If F ∈ M∗ and c ∈ C satisfy

(2.5) F (n2 + 1) = c for every n ∈ N,

then c ∈ {0, 1}.
If c = 0, then F ∈ F0.
If c = 1, then F (2) = 1 and

(2.6) F (p) = 1 for every p ∈ P, p ≡ 1 (mod 4).

Proof. From (2.2) and (2.5), we have

c = F
(

(n2 + n + 1)2 + 1
)

= F
(

(n2 + 1)((n + 1)2 + 1)
)

=

= F (n2 + 1)F
(
(n + 1)2 + 1

)
= c2,

which implies c ∈ {0, 1}.
If c = 0, then F (n2 + 1) = 0 for every n ∈ N and so F ∈ F0.
If c = 1, then F (n2 + 1) = 1 for every n ∈ N and so F ∈ F1.
We now prove (2.6). It is easy to check that F (2) = 1, F (5) = F (13) =

= F (17) = 1.
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Assume that F (q) = 1 for every q ∈ P, q ≡ 1 (mod 4), q < P and let
P ∈ P, P ≡ 1 (mod 4), P > 17. Since P ≡ 1 (mod 4), there is m, Q ∈ N with
m < P , such that

m2 + 1 = PQ.

Clearly, Q < P since PQ = m2 + 1 ≤ (P − 1)2 + 1. For any q ∈ P, q|Q, we
have m2 + 1 ≡ 0 (mod q) and

(−1)
q−1

2 =
(

−1
q

)
=

(
m2

q

)
= 1,

so q ≡ 1 (mod 4), and by our assumption F (q) = 1. Therefore F (Q) = 1, and
thus

1 = F (m2 + 1) = F (PQ) = F (P )F (Q) = F (P ).

This proves (2.6) and completes the proof of Lemma 1. ■

Lemma 2. If F ∈ M∗ satisfies (1.1) and bc ̸= 0, then

F (2)F (3)F (5) ̸= 0.

Proof. (i) The proof of x = F (2) ̸= 0.
From (2.4), we have

E3 = xF (5) − bx3 − c = 0,

which, together with c ̸= 0, implies x = F (2) ̸= 0.
(ii) The proof of y = F (3) ̸= 0.
Assume that y = 0. Then from E2 and E4 in (2.4), we obtain:

(2.7) F (5) = F (17) = c.

Consequently,

c3 = F (5)F (17)2 = F (1445) = F (382 + 1) = bF (382 − 1) + c =
= bF (3)F (13)F (37) + c = c,

which gives

(2.8) c2 = 1.

Thus, we have

(2.9) x = xc2 = F (2)F (5)2 = F (50) = bF (48) + c = bx4y + c = c.

On the other hand, from (1.1) and (2.8)–(2.9), we have

c2 = F (2)F (5) = F (10) = F (32 + 1) = bF (32 − 1) + c = bF (2)3 + c = bc3 + c.
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This with (2.8) implies c = b + 1, and hence

1 = c2 = (b + 1)2 = b(b + 2) + 1 ⇒ b(b + 2) = 0.

Since b ̸= 0, it follows that

(2.10) b = −2 and c = b + 1 = −1.

Now, from (2.7) and (2.10), we have

(2.11) x = F (2) = −1, F (5) = −1 and F (17) = −1.

Now from (2.4), we compute:

0 = E5 = xF (13) − bx3y − c = −F (13) + 1,

0 = E17 = xF (5)F (29) − bx5y2 − c = F (29) + 1,

0 = E57 = xF (5)2F (13) − bx4F (7)F (29) − c =
= −F (13) + 2F (7)F (29) + 1.

From this, we get

F (13) = 1, F (29) = −1 and F (7) = 0.

Now consider:

0 = E6 = F (37) − bF (5)F (7) − c = F (37) + 1 =⇒ F (37) = −1,

0 = E31 = xF (13)F (37) − bx6yF (5) − c = −F (37) + 1 =⇒ F (37) = 1,

which are impossible. Therefore, our assumption y = 0 leads to a contradiction,
so y ̸= 0.

(iii) The proof of F (5) ̸= 0.
Assume that xy = F (2)F (3) ̸= 0, but F (5) = 0. Then from (2.4), we get:

(2.12)

E2 = −by − c = 0,

E3 = −bx3 − c = 0,

E7 = −bx4y − c = 0,

E8 = −by2F (7) − c = 0,

E41 = xF (29)2 − c = 0,

E57 = −bx4F (7)F (29) − c = 0.

From E3 and E2, we get:

c = −bx3, y = −c

b
= x3.
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Using E7:
E7 = −bx3(x4 − 1) = 0 =⇒ x4 = 1.

Also

E8 = −by2F (7) − c = −bx3(x3F (7) − 1) = 0 =⇒ F (7) = 1
x3 = x.

Thus, we have

E57 = −bx4F (7)F (29) − c = −bx3(x2F (29) − 1) = 0,

which implies
F (29) = x2

and
E41 = xF (29)2 − c = x3(x2 + b) = 0.

Hence
b = −x2.

Therefore, we have

x4 = 1, b = −x2, c = x5, y = x3, F (7) = x, F (29) = x2.

Now compute:
L2 = bx6yF (5) − b2x3yF (5)F (7) − bcF (5)F (7) − bcx3y+

+ c − c2 = x5(x8 − x5 + 1) = x (−x + 2) = 0,

which leads to x = F (2) = 2. This shows that 1 = x4 = F (2)4 = 24 = 16,
which is impossible.

Thus, Lemma 2 is proved. ■

Lemma 3. If F ∈ M∗ satisfies (1.1) and bc ̸= 0, then(
b, c, x, y, F (5), F (7), F (11), F (13), F (17)

)
∈

∈
{

(b, −b + 1, 1, 1, 1, 1, 1, 1), (1, 2, 2, 3, 5, 7, 11, 13, 17)
}

.

Proof. Assume that bc ̸= 0. Then Lemma 2 implies that bcF (2)F (3)F (5) ̸=
̸= 0.

By applying (2.4) concerning E(2), E(4), E(5), E(8), E(17), E(21), E(6),
we obtain the following expressions:

(2.13)

F (5) = bF (3) + c = by + c,

F (17) = bF (3)F (5) + c = b2y2 + bcy + c,

F (13) = bF (2)3F (3) + c

F (2) = bx3y + c

x
,

F (7) = F (5)F (13) − c

bF (3)2 = b2x3y2 + bcx3y + bcy + c2 − cx

bxy2 ,
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(2.13)

F (29) = bF (2)5F (3)2 + c

F (2)F (5) = bx5y2 + c

x(by + c) ,

F (11) = F (2)F (13)F (17) − c

bF (2)3F (5) =

= b3x3y3 + b2cx3y2 + bcx3y + b2cy2 + bc2y + c2 − c

bx3(by + c) ,

F (37) = bF (5)F (7) + c =

= b3x3y3+2b2cx3y2+bc2x3y+b2cy2+2bc2y−bcxy+cxy2+c3−c2x
xy2 .

From (1.1), we also have

(2.14) E(n) = F (n2 + 1) − bF (n2 − 1) − c = 0 for every n ∈ N1.

Thus we infer from (2.13) and (2.14) that

E(3) = F (10) − bF (2)F (4) − c = −bx3 + bxy + cx − c = 0,

E(12) = F (5)F (29) − bF (11)F (13) − c =

= − 1
x4(by + c)

(
b4x6y4 + b3cx6y3 − b2x8y3 − bcx8y2 + b2cx6y2+

+ 2b3cx3y3 + 2b2c2x3y2 + 2bc2x3y + bcx4y + b2c2y2−

− 2bcx3y + c2x4 + bc3y − c2x3 + c3 − c2
)

= 0.

By applying the above relations with n ∈ {2, 3, 8}, we infer from (2.3) that

L(2) = bF (2)F (3)F (8) − b2F (1)F (2)F (3)F (4) − bcF (2)F (4) − bcF (3)−
− c2 + c = bF (2)4F (3) − b2F (2)3F (3) − bcF (2)3 − bcF (3) − c2 + c =

= bx4y − b2x3y − bcx3 − bcy − c2 + c = 0,

L(3) = bF (3)F (4)F (14) − b2F (2)F (3)F (4)F (5) − bcF (3)F (5) − bcF (2)F (4)−
− c2 + c = bF (3)F (2)3F (7) − b2F (2)3F (3)F (5) − bcF (3)F (5)−

− bcF (2)3 − c2 + c = −1
y

(
b3x3y3 − b2x5y2 + b2cx3y2 − bcx5y + b2cy3+

+ bcx3y + bc2y2 − bcx2y − c2x2 + cx3 + c2y − cy
)

= 0,

L(8) = bF (8)F (9)F (74) − b2F (7)F (8)F (9)F (10) − bcF (8)F (10)−
− bcF (7)F (9) − c2 + c = bF (2)4F (3)2F (37 − b2F (7)F (2)4F (3)2F (5)−
− bcF (2)4F (5) − bcF (7)F (3)2 − c2 + c =

= −c

x

(
b2x5y − bx5y2 + b2x3y2 + bcx5 + bcx3y + bcy + c2 − x

)
= 0.
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Define:
W1 = −E(3),
W2 = −L(2),
W3 = −xL(8)/c,

W4 = −yL(3),
W5 = −x4(by + c)E(12).

Then we have the following system of equations

W1 = bx3 − bxy − cx + c = 0,

W2 = b2x3y − bx4y + bcx3 + bcy + c2 − c = 0,

W3 = b2x5y − bx5y2 + b2x3y2 + bcx5 + bcx3y + bcy + c2 − x = 0,

W4 = b3x3y3 − b2x5y2 + b2cx3y2 − bcx5y + b2cy3 + bcx3y + bc2y2 − bcx2y−
− c2x2 + cx3 + c2y − cy = 0,

W5 = b4x6y4 + b3cx6y3 − b2x8y3 − bcx8y2 + b2cx6y2 + 2b3cx3y3 + 2b2c2x3y2+
+ 2b2c2x3y2 + 2bc2x3y + bcx4y + b2c2y2 − 2bcx3y + c2x4 + bc3y−
− c2x3 + c3 − c2 = 0.

These yield the following system of five polynomial equations in variables
b, c, x, y. Using a computer algebra system (Maple), we find that the system
has the following solutions:

(b, c, x, y) ∈{(b, 0, 0, y), (0, 1, 1, y), (b, −b + 1, 1, 1), (1, 2, 2, 3),
(−1, 1, 1, 1), (−2, −1, −1, 0)}.

From these, the only tuples consistent with bcF (2)F (3)F (5) = bcxy(by+c) ̸= 0
are

(b, c, x, y) ∈ {(b, −b + 1, 1, 1), (1, 2, 2, 3)}.

Substituting these into the earlier formulas gives the corresponding function
values: (

b, c, x, y, F (5), F (7), F (11), F (13), F (17)
)

∈

∈
{

(b, −b + 1, 1, 1, 1, 1, 1, 1), (1, 2, 2, 3, 5, 7, 11, 13, 17)
}

,

completing the proof of Lemma 3. ■

3. Proof of Theorem 1

Proof of Theorem 1 (a). If b = 0 and c ̸= 0, then F (n2 + 1) = c for every
n ∈ N, and so Theorem 1 (a) follows from Lemma 1. ■
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Proof of Theorem 1 (b). Assume that F ∈ M∗ satisfies (1.1) and bc ̸= 0.
Then, by using Lemma 2 and Lemma 3, we have bcF (2)F (3)F (5) ̸= 0. Thus,
by using Lemma 3, we will prove our theorem by considering two separate
cases.
Case 1: (b, c, x, y, F (5), F (7), F (11), F (13), F (17)) = (b, −b + 1, 1, 1, 1, 1, 1, 1)
Case 2: (b, c, x, y, F (5), F (7), F (11), F (13), F (17)) = (1, 2, 2, 3, 5, 7, 11, 13, 17).

Proof of Case 1. In this case, we can assume that F (n) = 1 for every n ≤ P ,
where P > 17. We aim to prove that F (P ) = 1.

It is clear from our assumptions that F (P ) = 1 if P ̸∈ P. So we now assume
P ∈ P.

(a) We first prove that F (P ) = 1 if P ∈ H.
(a1). Let P ∈ H and

( −1
P

)
= 1.

Then P ≡ 1 (mod 4) and similarly as in the proof of Lemma 1, there is
m, Q ∈ N, m < P such that

m2 + 1 = PQ.

Clearly, Q < P . From our assumptions, F (Q) = 1 and

F (m − 1) = 1, F (m + 1) = F (2)F (m + 1
2 ) = 1.

Thus we have

F (m2 + 1) = F (PQ) = F (P )F (Q) = F (P ),

and from equation (1.1)

F (m2 + 1) = bF (m − 1)F (m + 1) + 1 − b = b + 1 − b = 1.

Therefore, we proved that F (P ) = 1 if
(

−1
P

)
= 1.

(a2). Now suppose P ∈ H and
(

−7
P

)
= 1.

Then there exist m, Q ∈ N, m < P such that

m2 + m + 2 = PQ,

since
( −7

P

)
= 1 and

m2 + m + 2 ≡ 0 (mod P ) ⇐⇒ (2m + 1)2 ≡ −7 (mod P ).

Clearly, m < P , Q < P and m ̸= P − 1, m ̸= P − 2. So we have

F (Q) = 1, F (m − 1) = 1, F (m) = 1, F (m + 1) = 1, F (m + 2) = 1.
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Now apply equation (2.3), we have

Lm : = bF (m)F (m + 1)F (m2 + m + 2)−
− b2F (m − 1)F (m)F (m + 1)F (m + 2)−
− bcF (m)F (m + 2) − bcF (m − 1)F (m + 1) + c − c2 = 0.

Substituting all values as 1:

Lm = bF (P ) − b2 − 2bc + c − c2 = 0.

Recall c = 1 − b, we have

Lm = bF (P ) − b2 − 2b(1 − b) + (1 − b) − (1 − b)2 = bF (P ) − b = 0,

which implies F (P ) = 1.
Therefore, the theorem is proved for all p ∈ H.
(b) Now we prove that F (P ) = 1 if P ∈ K.
To apply Conjecture 2, by using P > p2 = 3, we first verify the special

cases:
F (P ) = 1 if P ∈ {p11 = 31, p15 = 47, p39 = 167}.

(b1) If P = p11 = 31, then from E9 and E32, we compute:

F (41) = bF (2)4F (5) + c

F (2) = b + c = 1

and
F (31) = F (5)2F (41) − c

bF (3)F (11) = 1 − c

b
= 1.

(b2) If P = p15 = 47, then F (n) = 1 for every n < 47. Thus we infer from
E27 and E46 that

F (73) = bF (2)3F (13)F (7) + c

F (2)F (5) = b + c = 1

and
F (47) = F (29)F (73) − c

bF (3)2F (5) = 1 − c

b
= 1.

Consequently
F (P ) = 1 for P = 47.

(b3) If P = p39 = 167, then F (n) = 1 for every n < 167. Thus we infer
from E107, E8351 that

E(107) = F (2)F (5)2F (229) − bF (2)3F (53)F (3)3 − c = F (229) − 1 = 0
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and

E(8351) = F (53)F (2)F (13)2F (17)F (229)−
− bF (2)F (5)2F (167)F (29)F (2)5F (3)2 − c =

= F (229) − bF (167) − c = 0.

Consequently
F (229) = 1 and F (167) = F (P ) = 1.

Now we use Conjecture 2. Since F (n) = 1 for every n ≤ p39 = 167, we infer
from Conjecture 2 that there exists a positive integer ℓ such that

P |ℓ2 − 1 and P
( (ℓ2 + 1)(ℓ2 − 1)

P

)
< P.

Thus, it follows from our assumptions that

F (ℓ2 + 1) = 1, F (ℓ2 − 1) = F
(ℓ2 − 1

P

)
F (P ) = F (P ),

which with (1.1) imply that

1 = F (ℓ2 + 1) = bF (ℓ2 − 1) + c = bF (P ) + c = bF (P ) + 1 − b.

Therefore F (P ) = 1 and we proved that (F, b, c) = (E, b, −b + 1).
Proof of Case 2. Assume that(

b, c, x, y, F (5), F (7), F (11), F (13), F (17)
)

= (1, 2, 2, 3, 5, 7, 11, 13, 17).

Similar way as in the proof of Case 1, we can deduce that F (n) = n for
every n ∈ N. Thus, we have (F, b, c) = (I, 1, 2).

This completes the proof of Theorem 1. ■

4. Remark

Conjecture 3. Let H be a complex valued function defined on the set of Gaus-
sian integers satisfying the equations

H(αβ) = H(α)H(β) for every α, β ∈ Z[i]

H(α2 + 1) = F (α2 − 1) + 2 for every α ∈ Z[i].

Then either H(α) = α or H(α) = α for every α ∈ Z[i], where α is the conjugate
of α.

This conjecture is weaker than the assertion (b) in Theorem 1.
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[2] Kátai, I., B.M.M. Khanh and B.M. Phong, On the equation G(n) =
F (n2 −1)+D, Ann. Univ. Sci. Budapest., Sect. Comp., 53 (2022), 159–173.
https://doi.org/10.71352/ac.53.159
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