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Abstract. In this note, we investigate the structure of division rings
with involution. It is shown that if we impose a suitable condition on
some subset of symmetric elements then the algebraic structure of a
division ring is effected.

1. Introduction

Let R be an associative ring with identity 1 ̸= 0. Recall that an involution
on R is a map ⋆ : R → R which satisfies the following conditions for all elements
x and y in R:

(i) (x + y)⋆ = x⋆ + y⋆,

(ii) (xy)⋆ = y⋆x⋆,

(iii) (x⋆)⋆ = x.

Let R be such a ring, and let Z(R) denote the center of R. It is straightfor-
ward to check that Z(R) is preserved under the involution ⋆. The restriction
of ⋆ to Z(R) is therefore an automorphism which is either the identity or of
order 2. Accordingly, an involution which leaves the elements of Z(R) fixed is
called an involution of the first kind. An involution whose restriction to the
center is an automorphism of order 2 is called involution of the second kind.
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Throughout this note, we only investigate rings with involutions of the first
kind.

Recall that the set of symmetric elements, the set of traces, and the set of
norms of R are defined as follows:

R+ = {x ∈ R | x⋆ = x},

TR = {x + x⋆ | x ∈ R},

NR = {xx⋆ | x ∈ R}.

Clearly that the sets TR and NR both are contained in R+.
In a series of his papers (see e.g. [4]–[6]), Chacron has considered the

following conditions for a ring R with involution ⋆:

(C1) x⋆x = xx⋆, for all x ∈ R.

(C2) For each x in R, there exists a positive integer N depending on x such
that dN

x (x⋆) = 0, where dx : R → R is a map given by y 7→ yx − xy, and
dN

x is the N -th power of dx under composition.

(C3) For each x in R, there exists a positive integer N depending on x such
that x⋆xN = xN x⋆.

(C4) x + x⋆ is central for all x ∈ R.

(C5) xx⋆ is central for all x ∈ R.

In accordance with [10, Propostion 2.6], if the involution ⋆ satisfies (C1),
(C4) or (C5), then it is said to be commuting, symplectic or scalar respectively,
while (C2) and (C3) are called local power commuting condition and local Engel
condition respectively. The relationships between these conditions are imposed
on the following implications which are obvious:

(C5) =⇒ (C4) =⇒ (C1) =⇒ (C2) and (C3).

Over the past few years, there have been many works devoted to the study of
certain rings with involutions satisfying some of these conditions. It was shown
in [5, Theorem 4.7] that if R is a semiprime ring satisfying a polynomial identity,
then the conditions (C1), (C2), and (C3) are equivalent. If R is a semiprime
ring instead, then it was proved in [4, Theorem 2.3] that (C1), (C4) and (C5)
are equivalent. At the other extreme, it was shown in [6, Theorem 2.13] that
in case R is a non-commutative simple ring which is algebraic over its center,
then (C2) is equivalent to (C4) and R must be a quaternion algebra over its
center.

There are close relationships between the conditions introduced by Chacron
and the conditions on the set TR of traces and on the set NR of norms of R.
It is clear that ⋆ satisfies (C4) if and only if TR ⊆ Z(R), while ⋆ satisfies (C5)
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if and only if NR ⊆ Z(R). Thus, in view of [6, Theorem 2.13], if R is a non-
commutative simple ring algebraic over Z(R) such that TR ⊆ Z(R), then R is
a quaternion algebra over its center. This fact particularly says, in some sense,
that the condition TR ⊆ Z(R), or equivalently that ⋆ satisfies (C4), is really a
strong condition which imposes a special structure on the whole R.

In this note, we consider the case when R = D is a division ring, and the
influence of some subsets of the sets TD and ND on the structure of D. Let G
be a non-central subgroup of the multiplicative group D× of D. This means
that G is not contained in the center F of D. For such a subgroup G, let us
consider the sets TG and NG, defined as follows:

TG = {x + x⋆ | x ∈ G} and NG = {xx⋆ | x ∈ G}.

From [3], it can be seen that if we impose suitable conditions on the set TG∪NG

then the algebraic structure of whole D is effected. For instance, [3, Corol-
lary 5.6] says that if TG ∪ NG is contained in the center F of D, then D is a
quaternion division algebra over F and ⋆ is of the symplectic type, provided
G is a non-central normal subgroup of D×. Here, we consider the case when
G is a non-central subnormal subgroup of D×, and we obtain the same re-
sult provided either TG ⊆ F or NG ⊆ F . Moreover, we show the following
equivalences:

TG ⊆ F ⇐⇒ NG ⊆ F ⇐⇒ TD ⊆ F ⇐⇒ ND ⊆ F.

Throughout this note, if X is either a ring or a group then Z(X) stands for the
center of X. An element x ∈ X is said to be central if x ∈ Z(X); otherwise x
is non-central. A subset S of X is non-central if and only if there is at least
one non-central element in S.

2. Division rings with involution

Let D be a division ring with involution ⋆ and center F . In this section,
we investigate the structure of D under the influence of a condition imposed
on some subset of symmetric elements of D. The main result is Theorem 2.2,
which generalizes [3, Corollary 5.6].

Since finite-dimensional central simple algebras play a crucial role in our
investigation, let us firstly establish the necessary background by recalling some
fundamental facts about these algebras. Let A be a finite-dimensional central
simple algebra over a field F . Then, by the well-known Wedderburn-Artin
Theorem, there is a unique integer r and a unique up to isomorphism division
ring D with center F such that A ∼= Mr(D). It is known that the dimension of
D over F is a square; that is, [D : F ] = k2, for some integer k ≥ 1. It follows
that [A : F ] = r2k2, and hence [A : F ] is also a square. Accordingly, the degree
of A is defined to be deg(A) =

√
[A : F ]. Let A be such an F -algebra with
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involution ⋆. As F is invariant under ⋆, it can be checked that the set of traces
TA = {x + x⋆ | x ∈ A} of A is a F -subspace of A, while the set of norms
NA = {xx∗ | x ∈ A} is not. The dimension [TA : F ] of TA over F is given in
the following lemma.

Lemma 2.1. Let A be a finite-dimensional central simple F -algebra of degree
m with involution ⋆, and d = [TA : F ]. Then, either d = m(m+1)

2 or d =
m(m−1)

2 .

Proof. This lemma is an immediate corollary of [10, Proposition 2.6]. ■

The evaluation of the dimensions above shows that the F -subspace TA is
significantly large in A. As noted in the introduction, NA is a subset of A+,
but it is not an F -subspace. However, there is the connection between NA and
the F -subspace TA. A straightforward calculation shows that if NA ⊆ Z(A),
then TA ⊆ Z(A) as well. Indeed, for any x ∈ A, we have

(1 + x)(1 + x)⋆ = (1 + x)(1 + x⋆) = 1 + x + x⋆ + xx⋆.

Because both (1 + x)(1 + x)⋆ and xx⋆ are contained in Z(A), we get x + x⋆ ∈
∈ Z(A), yielding that TA ⊆ Z(A). This implies that NA, despite not being a
subspace, significantly influences to the structure of A.

Corollary 2.1. Let D be a centrally finite division ring with center F , n a
positive integer, and ⋆ an involution on Mn(D). If TMn(D) ⊆ F , then either

(i) n = 1, and D = F or D is a quaternion division algebra over F , or

(ii) n = 2, and D = F and ⋆ is the ordinary symplectic involution on M2(F );
that is, the involution ⋆ is given by:(

a b
c d

)⋆

=
(

d −b
−c a

)
.

Proof. Let [D : F ] = k2, for some integer k ≥ 1. It follows that A := Mn(D)
is a F -central simple algebra of degree m := kn. In view of Lemma 2.1, there
are two possible cases:

Case 1. [TA : F ] = m(m+1)
2 . In this case, the involution ⋆ must be of

orthogonal type. Moreover, as TA ⊆ F , we get that m(m+1)
2 = 1, from which

it follows that m = 1. This means that n = k = 1, and so A = D = F .

Case 2. [TA : F ] = m(m−1)
2 . As in Case 1, the condition TA ⊆ F implies

that m(m−1)
2 = 1. It follows that m = 2, which means that n = 2 and k = 1,

or else n = 1 and k = 2.

Case 2.1. n = 2 and k = 1. In this case, we have D = F and so
A ∼= M2(F ). By [4, Theorem 2.3], the involution ⋆ is scalar.
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Assume that
(

a b
c d

)
∈ A and

(
a b
c d

)⋆

=
(

m n
p q

)
. Since ⋆ is a symplec-

tic and scalar, it follows that
(

a b
c d

)
+

(
a b
c d

)⋆

∈ F , and
(

a b
c d

) (
a b
c d

)⋆

∈

F . Therefore, (
a + m b + n
c + p d + q

)
∈ F

and (
am − bc −ab + bq
cm − cd −cb + dq

)
∈ F,

which implies that b + n = c + p = −ab + bq = cm − cd = 0. Hence, n = −b,
p = −c, q = a, m = d, and we have(

a b
c d

)⋆

=
(

d −b
−c a

)
.

Case 2.2. n = 1 and k = 2. It follows that A = D and [D : F ] = 4, which
means that A is a quaternion algebra over F . The proof of the corollary is now
complete. ■

The following lemma follows immediately from [4, Theorem 2.3].

Lemma 2.2. Let A be an unital semi-prime ring with center Z, and ⋆ be an
involution on A. Then, TA ⊆ Z if and only if NA ⊆ Z.

Lemma 2.3. Let D be a division ring with center F , n a positive integer,
and ⋆ an involution on Mn(D). If TMn(D) ⊆ F , then D is centrally finite.
Consequently, either assertion (i) or (ii) of Corollary 2.1 holds for D.

Proof. In view of Lemma 2.2, the involution ⋆ is both symplectic and scalar.
Hence, for each a ∈ Mn(D), the elements s := a⋆ + a and p := a⋆a are both
contained in F . It is straightforward to check that a2 − sa + p = 0. This shows
that the matrix ring Mn(D) is algebraic of bounded degree 2, and so is D. By
the famous result of Jacobson [8, Theorem 7], D is finite dimensional over F
as desired. ■

Lemma 2.4. Let R be a ring with involution ⋆, G a subgroup of R×. Let Z[G]
be the subring of R generated by G over the center Z of R. If TG ⊆ Z, then
the restriction of ⋆ to Z[G] is a symplectic involution on Z[G].

Proof. Take an arbitrary element x ∈ Z[G], and write it in the form

x = a1g1 + a2g2 + · · · + angn,

where ai ∈ Z and gi ∈ G. Because ⋆ leaves fixed elements in Z, it follows that

x + x⋆ = a1(g1 + g⋆
1) + a2(g2 + g⋆

2) + · · · + an(gn + g⋆
n).
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As TG ⊆ Z, we conclude that gi + g⋆
i ∈ Z for all i ∈ {1, . . . , n}, and so

x + x⋆ ∈ Z, which implies that x⋆ ∈ Z[G]. Hence, the restriction of ⋆ to Z[G]
is also an involution on Z[G] which is clearly symplectic. ■

Lemma 2.5. Let D be a division ring with center F , and H a subset of D×.
For an element g ∈ D, let F (g) be the subfield of D generated by g over F . If
h−1gh ∈ F (g) for any h ∈ H, then F (g) is H-invariant.

Proof. Every element in F (g) can be written in the form a(g)b(g)−1, where
a(t), b(t) are two polynomials in F [t] such that b(g) ̸= 0. For any 0 ̸= h ∈ H,
we have

h−1a(g)b(g)−1h = (h−1a(g)h)(h−1b(g)−1h) = (h−1a(g)h)(hb(g)h−1)−1.

Write
a(g) = a0 + a1g + · · · + angn,

b(g) = b0 + b1g + · · · + bmgm,

where ai, bj ∈ F for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. Because h−1gh ∈ F (g), it
is easily checked that the elements h−1a(g)h and hb(g)h−1 belong to F (g). It
follows that h−1a(g)b(g)−1h ∈ F (g), and the proof of the lemma is proved. ■

Lemma 2.6. Let D be a division ring with center F , G non-central subnormal
subgroup of D×, and ⋆ an involution on D. Then, NG ⊆ F if and only if ⋆ is
scalar.

Proof. The “if” part is clear. Now, assume that NG ⊆ F . To prove ND ⊆ F ,
it suffices to show that ND× ⊆ F . Because G is subnormal in D×, there exist
a smallest integer r ≥ 1 and a series of subgroups

G = Gr ⊴ Gr−1 ⊴ · · · ⊴ G1 ⊴ G0 = D×,

in which Gi is normal in Gi−1 for all 1 ≤ i ≤ r. For each i, we claim that
if NGi

⊆ F then NGi−1 ⊆ F . Assume by contrary that NGi−1 ̸⊆ F . Fix an
element g ∈ Gi\F . For any x ∈ Gi−1, since x−1gx ∈ Gi, we have

a := x−1gxx⋆g⋆(x⋆)−1 = (x−1gx)(x−1gx)⋆ ∈ F,

which implies that

(2.1) gxx⋆g⋆ = axx⋆.

Since NGi
⊆ F and g ∈ Gi, we have b = gg⋆ ∈ F . Replace g⋆ = bg−1 in (2.1),

we get bgxx⋆g−1 = axx⋆, which implies that

(xx⋆)−1gxx⋆ = b−1ag ∈ F (g).

Because x was chosen arbitrarily in Gi−1, in view of Lemma 2.5, the last equa-
tion shows that the subfield F (g) is NGi−1 -invariant. Let N be the subgroup
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of D× generated by NGi−1 . Then, F (g) is N -invariant, and so it is N ∩ Gi−1-
invariant. Observe that N ∩ Gi−1 is subnormal in Gi−1, and so it is subnormal
in D×. Because NGi−1 is non-central, N is also non-central, and in view of
[11, 14.4.5], N ∩ Gi−1 is a non-central subnormal subgroup of D×. In view of
[12, Theorem 1], it follows that either F (g) ⊆ F or F (g) = D. The first
case cannot occur because g /∈ F . If the second case occurs, then D is non-
commutative, a contradiction. Thus, the claim is shown. Now, by induction
on r, we conclude that ND ⊆ F , and so ⋆ is scalar. ■

Proposition 2.1. Let D be a division ring with center F , and G a subgroup
of D× such that F (G) = D. Let ⋆ be an involution on D. If TG ⊆ F , then D
is a centrally finite division ring.

Proof. Assume that TG ⊆ F . Let F [G] be the subring of D generated by G
over F . According to Lemma 2.4, we conclude that the restriction of ⋆ to F [G]
is an symplectic involution on F [G]. Hence, by [4, Theorem 2.3], the restriction
of ⋆ to F [G] is scalar. So, for each a ∈ F [G], we have aa⋆ ∈ Z(F [G]) ⊆ CD(G),
where CD(G) is the centralizer of G in D. Since F (G) = D, CD(G) = CD(D) =
= F, and so, aa⋆ ∈ F . If we set s := a⋆ + a and p := a⋆a, then s and p are
both in F . It is straightforward to check that a2 − sa + p = 0, from which it
follows that a satisfies the polynomial x2 − sx + p ∈ F [x]. This shows that
the prime ring F [G] is algebraic of bound degree 2 over the field F , and by
[9, Theorem 3], F [G] satisfies a polynomial identity. By [1, Lemma 1], F [G]
has a division ring of quotients, consisting of all elements of the form sr−1,
where r, s ∈ F [G] and r ̸= 0, which coincides with F (G) = D. According to
[1, Theorem 1], we conclude that D = F (G) satisfies a polynomial identity,
and so [D : F ] < ∞ by [9, Theorem 1]. ■

We are now ready to prove our main theorem.

Theorem 2.2. Let D be a division ring with center F , and ⋆ an involution
on D. If G is a non-central subnormal subgroup of D×, then the following
assertions are equivalent:

(i) TG ⊆ F ,

(ii) TD ⊆ F ,

(iii) ND ⊆ F ,

(iv) NG ⊆ F .

Moreover, if one of these conditions holds then D is a quaternion division
algebra over F , and ⋆ is symplectic.

Proof. Firstly, we show that (i) ⇔ (ii). It is clear that (ii) implies (i). Now,
assume TG ⊆ F . Because G is a non-central subnormal subgroup of D×,
according to a Stuth’s result (see [12, Theorem 1]), we have F (G) = D, and
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so [D : F ] < ∞ by Proposition 2.1. In view of [7, Lemma 2.3], it follows that
D = F (G) = F [G], and by Lemma 2.4, ⋆ is a symplectic involution on D. This
implies that TD ⊆ F , and so (ii) holds. The equivalence (ii) ⇔ (iii) follows from
Lemma 2.2, while the implication (iii) ⇒ (iv) follows immediately from the fact
that NG ⊆ ND. Finally, the implication (iv) ⇒ (iii) follows from Lemma 2.6.

To finish the proof of the theorem, assume that (ii) holds. Then, in view
of Proposition 2.1, we get [D : F ] < ∞. Hence, by Corollary 2.1, D is a
quaternion division algebra over F , and ⋆ is symplectic. ■

Corollary 2.2. Let D be a division ring with center F , ⋆ an involution on
D, and G a non-central subnormal subgroup of D×. Then, the conditions
(C1)–(C5) are all equivalent for D, and these conditions are also equivalent to
the followings conditions:

(i) x + x⋆ is central for all x ∈ G,

(ii) xx⋆ is central for all x ∈ G.

Moreover, if one of these conditions holds then D is a quaternion division
algebra over F .

Proof. The equivalences of (C1)–(C5) follow from [4] and [5]. By Theorem 2.2,
the conditions (i) is equivalent to (C4), and the condition (ii) is equivalent to
(C5). ■

We close the paper with an interesting question which we shall investigate
in a near future.

Remark. Let D be a division ring with involution ⋆ of the first kind, and K an
arbitrary subfield of D which is unnecessary invariant under ⋆. If TD∪ND ⊆ K,
then every element a ∈ D satisfies the quadratic equation x2−sx+p = 0, where
s = a + a⋆ and p = a⋆a. This means that D is left algebraic of bound degree 2
over K. According to [2, Theorem 1.3], we get that D is a centrally finite
division ring with center F , and [D : F ] ≤ 4; that is, D is either a field or
a quaternion division ring. At this point, it is reasonable to ask if the main
results of the current paper should be also true if we replace the center of D
by an arbitrary its subfield?
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