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Abstract. Reaction-diffusion systems are one of the most well-known
partial differential equations used to model physical as well as chemical
and biological phenomena. They consist of two parts describing different
processes: the so called non-linear kinetic term which represents the driv-
ing forces and a linear diffusion term which is responsible for the spread
of particles or individuals over a spatial domain. The non-linear part of-
ten depends on parameters which variation can influence the qualitative
behaviour of the whole system. This paper investigates the question of
how much the value of the system parameters can be changed such that
the asymptotic stability of the stationary solution is maintained. For
this purpose the framework of operator semigroup theory is studied and
used.

1. Introduction

While modelling real-world phenomena with differential equations it is of-
ten the case that the studied phenomenon – and thus also the system for
modelling it – depends on different parameters (for example environmental,
physical or chemical factors). Nevertheless, the system parameters are usu-
ally partially known or completely unknown: only approximate values from
measurements are available. Consequently, the qualitative behaviour of the
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model can be examined with the estimated values of the parameters. There-
fore, it is a legitimate expectation that the qualitative behaviour of the model
with the estimated parameters must be the same as the behaviour of the exact
model. In order to verify the correspondence of the qualitative properties of
the estimated and the original model we shall prove the following result. If the
estimated parameters are enough close to the exact values, then the behaviour
of the solutions of the system does not change. This means that the estimated
model reflects faithfully the properties of the exact model, and consequently,
of the considered phenomenon, too.

In case of ordinary differential equations we have answered the question of
how much the parameter can be changed such that a solution remains asymp-
totically stable (cf. [8]). The aim of this work is to extend our previous result,
i.e. to study the robustness of the asymptotic stability of a stationary solution
of the autonomous parameter-dependent reaction-diffusion system

ut(t, x) = D · ∆xu(t, x) + f(u(t, x); µ) (t ≥ 0, x ∈ Ω),(1.1)

subject to nonnegative initial resp. homogeneous Dirichlet or Neumann bound-
ary conditions, where D ∈ Rn×n is a positive diagonal matrix, Ω is a bounded,
simply connected region in Rd with piecewise smooth boundary, ∆x denotes
the vector Laplacian (cf. [3]), furhermore f ∈ C1(Rd × Π,Rn) and µ ∈ Π ⊂ Rp

represent the parameters.
In order to examine the asymptotic stability of an equilibrium (spatially

constant stationary solution) of system (1.1) denoted by u∗ = u∗(µ) usually
the linearized equation

(1.2) vt(t, x) = D · ∆xv(t, x) + Aµv(t, x), (t ≥ 0, x ∈ Ω)

resp. the spectral properties of the linear operator

D · ∆x + Aµ : X ↪→ X

are considered, where X is an appropriate Banach space, furthermore

f(u∗; µ) ≡ 0 (µ ∈ Π) and Aµ := ∂uf(u∗; µ).

Introducing V (t) := v(t, ·) for t ∈ R+
0 it is easy to see that the linear system

(1.2) is an abstract Cauchy problem

V̇ = AV, V (0) = V0

where A : X ↪→ X is a linear operator, X is a Banach space with norm ∥ · ∥,
V0 ∈ X is the initial value and V : [0, +∞) 7→ X is the unknown function.
Hence, v(t, ·) ∈ X holds for all t ≥ 0.

To handle the problem, we concern ourselves with a different approach,
more precisely we use a perturbation technique. Firstly, it is assumed that the
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approximate values µ∗ of the parameters are known (e.g. from measurements
or estimates) and u∗(µ∗) is asymptotically stable with respect to the norm of
X , secondly, a condition is given such that if another parameter value is enough
close to µ∗, then the stability of u∗ is preserved. In other words the results say
that if the exact values of the parameters are enough close to the approximate
values, then the stability properties of u∗ do not change. Under asymptotic
stability we mean that for any ε > 0 there exists a δ > 0 such that any other
solution v : R+

0 × Rn → Rn of system (1.1) satisfying ∥u∗(µ∗) − v(0, ·)∥ < δ,
also satisfies ∥u∗(µ∗) − v(t, ·)∥ < ε for all t ≥ 0, furthermore there exists
η > 0 such that lim

t→+∞
∥u∗(µ∗) − v(t, ·)∥ = 0 for all solutions v satisfying

∥u∗(µ∗) − v(0, ·)∥ < η.
We shall show that the asymptotic stability of the zero solution of the linear

system (1.2) is equivalent to the exponential stability of a certain operator
semigroup. This allows us to investigate the linear asymptotic stability of the
equilibrium solution of a reaction-diffusion system by applying the theory of
operator semigroups and evolution families.

Our paper is organized as follows. In Section 2, firstly, we summarize some
relevant results on operator semigroups and evolution families, then we recall
perturbation results and prove a theorem about the robustness of exponential
stability of semigroups. In Section 3, we apply our theorem to reaction-diffusion
systems with a parameter dependent kinetic part.

2. Operator semigroups and evolution families

For the reader’s convenience in this section we mention some well known
definitions and results concerning both semigroup theory and evolution families
for which we refer mainly to [5], resp. [6] (see also [1, 2, 11, 12, 14, 15]). Then
we formulate and prove some lemmas and a theorem which is used to study
the robustness of the stability in Section 3.

2.1. General theory

Let (X , ∥ · ∥) be a real or complex Banach space and denote by L(X ) the
Banach algebra of bounded linear operators on X . We write Ls(X ) if we endow
L(X ) with the strong operator topology, which is the topology of pointwise
convergence on (X , ∥ · ∥) (cf. [5, 6]).

An operator P ∈ L(X ) will be called a projection if P 2 = P holds. The
complementary projection is always denoted by Q := I − P (where I is the
identity operator on X ). If P : R → L(X ), P(t) = P is a projection valued
function, then the function whose values are the complementary projections is
denoted by Q(t) := I − P(t) (t ∈ R). In the whole section we consider
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(i) one-parameter semigroups of bounded linear operators T (t) (0 ≤ t ∈ R)
on X . By this we mean the set

T := (T (t))t≥0 :=
{

T (t) ∈ L(X ) : t ∈ R+
0

}
,

such that the map R+
0 ∋ t 7→ T (t) is a homeomorphism from the additive

group (R+
0 , +) into the multiplicative semigroup (L(X ), ·), i.e. it satisfies

T (t + s) = T (t)T (s) (t, s ≥ 0), and T (0) = I;

(ii) two-parameter families of bounded linear operators U(t, s) (t, s ∈ R,
t ≥ s) on X – called evolution families –, i.e. the set

U := (U(t, s))t≥s := {U(t, s) ∈ L(X ) : t, s ∈ R, t ≥ s} ,

such that for all t, r, s ∈ R, t ≥ r ≥ s

U(t, s) = U(t, r)U(r, s) and U(s, s) = I

hold.

We say that T = (T (t))t≥0 is strongly continuous (C0-semigroup), if the
map R+

0 ∋ t 7→ T (t) is continuous in the strong operator topology on L(X ),
i.e. for every x ∈ X and τ ∈ R+

0 the limit relation

lim
t→τ

∥T (t)x − T (τ)x∥ = 0

fulfils.
To describe the exponential growth of the quantities ∥T (t)∥L(X ) (t ≥ 0)

resp. ∥U(t, s)∥L(X ) (t ≥ s) the following important characteristic of semigroups
resp. evolution families is useful.

Definition 2.1. By the exponential growth bound of a strongly continuous
semigroup T = (T (t))t≥0 resp. an evolution family U = (U(t, s))t≥s we under-
stand the number

ω(T ) := inf
{

w ∈ R : ∃ M ≥ 1 with ∥T (t)∥L(X ) ≤ Mewt for t ≥ 0
}

resp.

ω(U) := inf
{

w ∈ R : ∃ M ≥ 1 with ∥U(t, s)∥L(X ) ≤ Mew(t−s) for t ≥ s
}

.

The following properties are essential for semigroups.

Definition 2.2. A semigroup T := (T (t))t≥0 is called

1. (uniformly) exponentially bounded, if ω(T ) < +∞ holds;
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2. (uniformly) exponentially stable, if ω(T ) < 0,

3. exponential dichotomic (T possesses an exponential dichotomy), if there
exists a projection P ∈ L(X ) and two constants K ≥ 1 and δ > 0 such
that

(a) T (t)P = PT (t) (t ≥ 0),
(b) the restriction T (t)| : Ker(P ) → Ker(P ) is an isomorphism (t ≥ 0),
(c) the following estimations hold:

∥T (t)x∥ ≤ K · e−δt∥x∥ (t ≥ 0, x ∈ Im(P )),
∥T (t)x∥ ≥ 1

K
· eδt∥x∥ (t ≥ 0, x ∈ Ker(P )).

We remark (cf. [1]) that

(i) the semigroup (T (t))t≥0 is strongly continuous if and only if for all x ∈ X
the map

ξx : R+
0 → X , ξx(t) := T (t)x(2.1)

is continuous;

(ii) a strongly continuous semigroup is exponentially bounded.

In [12] a characterization of the exponential stability is to find in terms of
the exponential dichotomy.

Theorem 2.1. (cf. [12]) The C0-semigroup (T (t))t≥0 is exponentially stable
if and only if it possesses an exponential dichotomy with P = I.

For the last result of this section we shall use some properties of the evo-
lution families. Hence, firstly, we recall the needed notions from the theory of
evolution families.

Definition 2.3. An evolution family U = (U(t, s))t≥s is said to be

1. (uniformly) exponentially bounded, if ω(U) < +∞ holds,

2. (uniformly) exponentially stable, if ω(U) < 0 holds,

3. exponential dichotomic (or U possesses an exponential dichotomy), if
there exists a family of projections (P(t))t∈R and two constants K ≥ 1
and δ > 0 such that

(a) U(t, s)P(s) = P(t)U(t, s) (t ≥ s),
(b) the restriction U(t, s)| : Ker(P(s)) → Ker(P(t)) is an isomorphism

(t ≥ s),
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(c) the following estimations hold:

∥U(t, s)x∥ ≤ K · e−δ(t−s) · ∥x∥ (t ≥ s, x ∈ Im(P(s)),
∥U(t, s)x∥ ≤ 1

K
· eδ(t−s) · ∥x∥ (t ≥ s, x ∈ Ker(P(s)).

Clearly, if (T (t))t≥0 is a semigroup, then

UT := (UT (t, s))t≥s, UT (t, s) := T (t − s) (t ≥ s)

defines an evolution family. Using the definition of UT we can formulate

Lemma 2.1. The semigroup (T (t))t≥0

1. possesses an exponential dichotomy if and only if UT possesses an expo-
nential dichotomy;

2. is exponentially stable if and only if the evolution family UT is exponen-
tially stable.

Proof. For the first statement compare [13]. The second statement follows
directly from the definition of UT . ■

2.2. Perturbation results

The linear operator A defined by

dom(A) :=
{

x ∈ X : lim
t→0+

T (t)x − x

t
exists

}
and

Ax := lim
t→0+

T (t)x − x

t
(x ∈ dom(A))

is called the generator of T (cf. [11]).
In what follows, we assume that the linear operator A : X ↪→ X is a genera-

tor of a strongly continuous semigroup (T (t))t≥0 and examine the perturbation
of semigroups and evolution families.

It follows from the Bounded Perturbation Theorem (cf. [6]) that if
B ∈ L(X ) then A + B generates a strongly continuous semigroup, denoted by
(TA+B(t))t≥0. For the sake of the completeness we recall a theorem from the
book of Engel and Nagel on the perturbation of an evolution family (U(t, s))t≥s.

Theorem 2.2. (cf. [6], Ch. VI., 9.20. Corollary) Let (U(t, s))t≥s be an ex-
ponentially bounded evolution family on the Banach space X and let B ∈
∈ Cb(R, Ls(X )). Then there exists a unique bounded (UB(t, s))t≥s evolution
family on X , for which

UB(t, s)x = U(t, s)x +
t∫

s

UB(t, τ)B(τ)U(τ, s) dτ (t ≥ s, x ∈ X )
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holds. Furthermore for all x ∈ X and s ∈ R, we have UB(t, s)x ∈ dom(B(t))
for almost all t > s, the function BUB(·, s)x is locally integrable on [s, +∞),
finally

UB(t, s)x = U(t, s)x +
t∫

s

U(t, τ)B(τ)UB(τ, s) dτ (t ≥ s, x ∈ X )(2.2)

holds.

In order to study the perturbed semigroup (TA+B(t))t≥0 we apply the above
Theorem 2.2 to the evolution family (UT (t, s))t≥s.

Lemma 2.2. Let B ∈ Ls(X ) and consider the evolution family

UT (t, s) := T (t − s) (t ≥ s).

Then for the evolution family (UB(t, s))t≥s coming from Theorem 2.2

UB(t, s) = TA+B(t − s) (t ≥ s)

holds.

Proof. Let (T̂ (t))t≥0 be an arbitrary C0-semigroup. Substituting

U(t, s) = UT (t, s) = T (t − s), UB(t, s) = T̂ (t − s) (t ≥ s)

and finally s = 0 into the equation (2.2) gives

T̂ (t)x = T (t)x +
t∫

0

T (t − τ)BT̂ (τ) dτ (x ∈ X ).

The above equation holds for the perturbed semigroup (TA+B(t))t≥0, too
(cf. [6], Ch. III. 1.7 Corollary). Hence, following from the uniqueness of the
semigroups we have

TA+B(t) = T̂ (t) (t ≥ 0),
therefore

UB(t, s) = TA+B(t − s) (t ≥ s)
holds. ■

The following theorem states the exponential stability of the perturbed
evolution family (UB(t, s))t≥s.

Theorem 2.3. (cf. [6], Ch. VI., 9.25. Corollary) Let (U(t, s))t≥s be an expo-
nentially bounded evolution family on X and assume that it possesses an expo-
nential dichotomy with constants K, δ > 0, furthermore let B ∈ Cb(R, Ls(X)).
If

ω(U) < 0 and supt∈R∥B(t)∥ <
δ

K
,

then ω(UB) < 0 holds.



148 Sz. György and S. Kovács

Now, we can formulate a theorem which is a very useful tool in the study
of exponential stability of solutions of reaction-diffusion systems.

Theorem 2.4. Assume that the C0-semigroup (T (t))t≥0 is exponentially stable
with positive constants M , w > 0, i.e.

∥T (t)∥L(X ) ≤ Me−wt (t ≥ 0)

holds. If an operator B ∈ Ls(X ) satisfies the condition

∥B∥L(X ) <
w

M
,

then the semigroup (TA+B(t))t≥0 is exponentially stable.

Proof. Following from Lemma 2.1 the evolution family UT is exponentially
stable, i.e. ω(UT ) < 0. Based on the previous Theorem 2.3 we can see that the
perturbed evolution family UB is also exponentially stable. Then we get from
Proposition 2.2 that

UB(t, s) = TA+B(t − s) (t ≥ s),

therefore based on Proposition 2.1 the perturbed semigroup (TA+B)t≥0 is ex-
ponentially stable. ■

We should mention that the above result is also a consequence of the
Bounded Perturbation Theorem. Nevertheless we believe that our method con-
tains interesting and useful ideas, such as the use of the evolution family UT or
the characterization of the exponential stability via the exponential dichotomy.

In addition, it is worth noting that using two different ways gives the same
upper bound on the exponential stability of operator semigroups.

3. Reaction-diffusion systems

In this section, we are going to apply the abstract result proved in Theo-
rem 2.4 to obtain some information of stability preserving in reaction-diffusion
systems.

As it was mentioned, the autonomous system of reaction-diffusion equations

ut(t, x) = D · ∆xu(t, x) + f(u(t, x); µ) (t ≥ 0, x ∈ Ω)(3.1)

is considered with positive diagonal matrix D ∈ Rn×n, where Ω ⊂ Rd is
a bounded, simply connected region with piecewise smooth boundary, f ∈
∈ C1(Rd × Π,Rn) and µ ∈ Π represents the parameters, Π ⊂ Rp is an open
subset, p ∈ N. We focus on the stability of solutions in two types of boundary
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conditions: firstly we are interested in solutions Φ : Ω × R+
0 → Rn that satisfy

the Dirichlet boundary condition

u(t, x) = 0 (t, x) ∈ (R+
0 × ∂Ω),

and secondly the no-flux or homogeneous Neumann boundary condition

(n · ∇)u(t, x) = 0 (t, x) ∈ (R+
0 × ∂Ω).

In what follows u∗ ∈ Rn denotes an equilibrium of the kinetic system

˙̃u = f(ũ, µ).

It is easy to see that u∗ is a stationary solution of the reaction-diffusion system
(3.1), too. Linearizing system (3.1) around u∗ we obtain the linear system

vt(t, x) = Aµv(t, x) (t ≥ 0, x ∈ Ω)(3.2)

where

Aµ := D · ∆x + Aµ : X ↪→ X and Aµ := ∂uf(u∗; µ).

The equilibrium u∗ is an asymptotically stable solution of the original system
(3.1) if the zero solution is an asymptotically stable solution of the linearized
system (3.2) (cf. [4]). For both types of boundary conditions, a Banach space
X and a domain of the operator Aµ are defined, such that Aµ generates a
strongly continuous semigroup. The following result describes the correspon-
dence between the asymptotic stability of the zero solution of the linearized
system (3.2) and the exponential stability of the semigroup generated by the
operator defining the right-hand side of system (3.2).

Theorem 3.1. Let µ ∈ Π be an arbitrary fixed value of the parameter, and sup-
pose that the coefficient operator of the linear system (3.2) generates a strongly
continuous semigroup on some Banach space X (equipped with norm ∥ · ∥) de-
noted by T := (T (t))t≥0. Then, the asymptotic stability of the zero solution
of system (3.2) is equivalent to the uniform exponential stability of the semi-
group T .

Proof.
Step 1. The uniform exponential stability of T implies that there exists

ε > 0 such that limt→+∞ eεt∥T (t)x∥ = 0 holds for all x ∈ X (cf. [6]). This
guarantees the asymptotic stability of the zero solution of the linear system
(3.2), because every solution u of (3.2) can be expressed in the form

(3.3) v(t, ·) = T (t)v(0, ·) =: T (t)v0 (t ≥ 0),

using the semigroup T , where v0 := v(0, ·) ∈ dom(Aµ).
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Step 2. Assume that the zero solution of the linear system (3.2) is asymp-
totically stable, hence there exists a number δ > 0 such that for all solutions
u : R+

0 × Rn → Rn of system (3.2)

(3.4) lim
t→+∞

∥v(t, ·)∥ = 0

holds, provided ∥v(0, ·)∥ < δ satisfies. Therefore, using notation (3.3) and limit
relation (3.4) we have

(3.5) 0 = lim
t→+∞

∥v(t, ·)∥ = lim
t→+∞

∥T (t)v0∥.

Due to the estimate ∥T (t)v0∥ ≤ ∥T (t)∥L(X ) · ∥v0∥, the above inequality (3.5)
implies that there exists a t0 > 0, for which ∥T (t0)∥L(X ) < 1 holds. This is
equivalent to the fact that T is uniformly exponentially stable (cf. [6], Ch. V.,
Prop. 1.7), which completes the proof. ■

3.1. Dirichlet boundary condition

Hereinafter let X := L2(Ω,Rn). In this subsection we shall show that
the Dirichlet Laplacian, or in other words the coefficient operator of the linear
system (3.2) defined on an appropriate domain generates an analytic semigroup.

Theorem 3.2. The operator

dom(Aµ) := H2(Ω,Rn) ∩ H1
0 (Ω,Rn), Aµ := D · ∆x + Aµ

generates an analytic semigroup in L2(Ω,Rn) for all µ ∈ Π.

Proof. The one-dimensional Laplacian operator

∆xu :=
d∑

i=1
∂iiu (u ∈ H2(Ω) ∩ H1

0 (Ω))

is sectorial (cf. [10]). Then we define D := d · ∆x, dom(D) := dom(∆x),
where d > 0 is the diffusion coefficient. This operator is also sectorial, because
σ(D) = σ(d · ∆x) = σ(∆x) (cf. [6] Ch. II., section 2/a, subsection 2.2),
furthermore R(λ, ∆x) ≤ M/|λ| implies

∥R(λ, D)∥ = ∥(λ − D)−1∥ = 1
d ·

∥∥∥∥∥
(

λ

d − ∆x

)−1
∥∥∥∥∥ ≤ 1

d · M

|λ/d|
= M

|λ|
.

Then, the n-dimensional diffusional operator is defined by

D := D·∆x := (d1·∆x, . . . , dn·∆x), dom(D) := dom(∆x)×· · ·×dom(∆x),

where D ∈ Rn×n, D = diag(d0, . . . , dn) contains the positive diffusion coef-
ficients. Based on [10] the operator D is sectorial, too, therefore it generates
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an analytic semigroup (cf. [6], Ch. II., Theorem 4.6). Finally, since Aµ is
bounded, the operator Aµ also generates an analytic semigroup on L2(Ω,Rn)
(cf. [11], Ch. 3. Corollary 2.2). ■

Next, the asymptotic stability of u∗(µ) is examined, using the spectral
bound of D:

s(D) := sup{ℜ(λ) : λ ∈ σ(D)}

where σ(D) ⊂ C denotes the spectrum of the operator D. Clearly, s(D) is well
defined, because the spectrum of D is contained in a left half-plane.

Theorem 3.3. Assume that for a certain parameter value µ∗ ∈ Π the equi-
librium solution u∗(µ∗) is an asymptotically stable stationary solution of the
nonlinear system (3.1). Furthermore, suppose that the inequality

∥Aµ∗∥L(X ) < −s(D)(3.6)

holds, and the function A(µ) is Lipschitz-continuous, i.e. there exists a positive
constant L > 0 such that for all µ1, µ2 ∈ Π

∥A(µ1) − A(µ2)∥L(X ) ≤ L∥µ1 − µ2∥Rp

is fulfilled. Then, there exists R > 0 such that, for all parameter values µ̃ ∈ Π
satisfying the condition

∥µ̃ − µ∗∥Rp < R,(3.7)

the stationary solution u∗(µ̃) is asymptotically stable.

Proof. Denote by TD = (TD(t))t≥0 the analytic semigroup generated by the
operator D. The spectral bound of D has the property s(D) = ω(TD), because
D is sectorial. Furthermore, the spectrum σ(D) consists of isolated nega-
tive (real) eigenvalues, consequently TD is exponentially stable with constants
M > 0 and w := s(D), i.e. ω(TD) < 0 holds. Hence, if condition (3.6) ful-
fils, then the semigroup (Tµ∗(t))t≥0 generated by Aµ∗ is exponentially stable
with some constants M ≥ 1 and w = s(D) + ∥Aµ∗∥L(X ), because applying the
Bounded Perturbation Theorem from [6] the estimate

∥Tµ∗(t)∥L(X ) ≤ Me(s(D)+∥Aµ∗ ∥L(X ))t (t ≥ 0)(3.8)

is valid, moreover |ω(Tµ∗)| > |s(D) + ∥Aµ∗∥L(X )|. Let us define

(3.9) R :=
∣∣ s(D) + ∥Aµ∗∥L(X )

∣∣
L · M

.

Writing the operator A
µ̃

= D · ∆x + A(µ̃) as

D · ∆x + A(µ̃) = (D · ∆x + A(µ∗)) + (A(µ̃) − A(µ∗)),
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then condition (3.7) (with R defined in (3.9)) implies that the norm of the
operator B := A(µ̃) − A(µ∗) ∈ L(X ) can be estimated as

∥B∥L(X ) = ∥A(µ̃) − A(µ∗)∥L(X ) ≤ L · ∥µ̃ − µ∗∥Rp <

∣∣s(D) + ∥Aµ∗∥L(X )
∣∣

M
.

Hence, the inequality

∥B∥L(X ) <
|ω(T

µ̃
)|

M

also holds. Thus, based on Theorem 2.4, the semigroup T
µ̃

is exponentially
stable, hence, the zero solution of the linearized system

vt = (D · ∆x + A(µ∗) + B)v = (D · ∆x + A(µ̃))v

is asymptotically stable due to Thm. 3.1. Then, u∗(µ̃) is an asymptotically
stable solution of the reaction-diffusion system (3.1). ■

Example 3.4. Consider the case n = 2 and p = 1, i.e. the given system
consists of two equations, which depend on one parameter. Assume that the
matrix A(µ) := Aµ in (3.2) is diagonal, more precisely it has the form

A(µ) :=
[

a 0
0 µ

]
(µ ∈ Π),

where a ∈ R is a fixed value (not a parameter) and µ ∈ Π is the parameter,
Π ⊂ R is an open interval. We assume furthermore that µ∗ ∈ R is a parameter
value for which |µ∗| > |a| holds and the stationary solution u∗(µ∗) ∈ R2 of the
reaction-diffusion system (3.1) is asymptotically stable. It is easy to see that
the equality

∥A(µ1) − A(µ2)∥2 = |µ1 − µ2|

holds for all µ1, µ2 ∈ Π, which means that A is Lipschitz continuous with
L = 1, where ∥ · ∥2 denotes the usual euclidean, resp. the spectral norm in R2,
resp. in R2×2. Consequently, the stationary solution is asymptotically stable
with parameter value µ̃ ∈ R, provided

|µ∗ − µ̃| <
|s(D) + ∥A(µ∗)∥2|

M

fulfils with some positive constants M . Because ∥A(µ∗)∥2 = |µ∗|, the above
inequality means that in case of

µ∗ − |s(D) + |µ∗| |
M

< µ̃ < µ∗ + |s(D) + |µ∗| |
M

(3.10)

the semigroup (T
µ̃
(t))t≥0 is exponentially stable, resp. the equilibrium solution

u∗(µ̃) is asymptotically stable.



Stability preserving in reaction-diffusion systems 153

Following from the inequality (3.8) it is easy to see that in case of

(3.11) ∥A(µ̃)∥2 < −s(D)

the semigroup (T
µ̃
(t))t≥0 and hence the stationary solution is asymptotically

stable. But it can be easily seen that our result in (3.10) gives a completely
different condition on the parameter value µ̃ as (3.11).

3.2. Neumann boundary condition

After the Dirichlet-boundary condition we focus on the case of the homoge-
neous Neumann boundary condition, which means in the case of applications
that there is no migration across the boundary of the given domain Ω. Consider
the operator

Dv := D · ∆xv (v ∈ dom(D))

with domain

dom(D) :=
{

ϕ ∈ H2(Ω,Rn) ⊂ X : (n · ∇x) ϕ (x, t) = 0
(
(x, t) ∈ ∂Ω × R+

0
)}

where n denotes the outer unit normal to ∂Ω.

Theorem 3.5. For each parameter value µ ∈ Π the coefficient operator

D · ∆x + Aµ = D + Aµ

of the linear reaction-diffusion system (3.2) generates a C0-semigroup.

Proof. The operator D generates a (T (t))t≥0 C0-semigroup (cf. [9]), and there
exist constants M∆x

≥ 0 and w∆x
∈ R such that

∥T (t)∥L(X ) ≤ M∆x
ew∆x t (t ≥ 0)

holds (cf. [6]). Considering Aµ as a linear operator acting on X , the Bounded
Perturbation Theorem implies that the operator D + Aµ generates a C0-semi-
group. ■

Thus, the robustness of the asymptotic stability of the stationary solution
u∗ (with fixed diffusion coefficients) can be examined similarly as in the case
of the Dirichlet boundary condition.

Theorem 3.6. Suppose that with a certain value µ∗ of the parameter the sta-
tionary solution u∗(µ∗) is an asymptotically stable solution of the nonlinear
reaction-diffusion system (3.1), such that the zero solution of the linearized
system (3.2) is asymptotically stable. Assume furthermore that the map

A : Π → L(X ), A(µ) := Aµ
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is Lipschitz continuous with constant L > 0. Then, there exists an R > 0 such
that for all parameter values µ̃ satisfying

∥µ̃ − µ∗∥Rp < R,(3.12)

the equilibrium solution u∗(µ̃) is also an asymptotically stable solution of sys-
tem (3.1).

Proof. The asymptotic stability of the zero solution of the linearized sys-
tem (3.2) implies the exponential stability of the generated strongly continu-
ous semigroup Tµ∗ , i.e. there exist w > 0 and M ≥ 1 constants, such that
∥T (t)x∥ ≤ Me−wt∥x∥ holds for all x ∈ X . Let us define

R := w

L · M
.

Then, similarly as in the case of Thm. 3.3 we write the operator

A
µ̃

= D · ∆x + A(µ̃)

in form of

D · ∆x + A(µ̃) = (D · ∆x + A(µ∗)) + (A(µ̃) − A(µ∗)),

then condition (3.12) (with the above defined R) implies that the norm of the
operator B := A(µ̃) − A(µ∗) ∈ L(X ) can be estimated as

∥B∥L(X ) = ∥A(µ̃) − A(µ∗)∥L(X ) ≤ L · ∥µ̃ − µ∗∥Rp <
w

L · M
.

Thus, (T
µ̃
(t))t≥0 is exponentially stable, which has a consequence that the zero

solution of the linearized system is asymptotically stable with parameter value
µ̃ (cf. Thm. 3.1), which implies the asymptotic stability of u∗(µ̃). ■

4. Discussion

Summarizing, we have worked on two topics in this paper. On the one hand,
by giving a bound estimation for the perturbed operator we dealt with the
robustness of exponential stability of strongly continuous semigroups. On the
other hand, we showed how much parameter change in the kinetic term of a
reaction-diffusion system with homogeneous Dirichlet, resp. Neumann bound-
ary conditions doesn’t cause loss of exponential stability of its (spatially con-
stant) stationary solution. Thus, in the last section, we have shown that the
exponential stability of stationary solutions is a robust property for reaction-
diffusion systems.
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