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Abstract. In this paper, we aim to introduce a procedure for the nu-
merical solution of initial value problems associated with general Riccati-
type differential equations. The core idea of the method is based on the
approach developed by György Gát and Rodolfo Toledo, which has been
successfully applied to the solution of linear differential equations. Our
goal is to provide an iterative method that, starting from the initial
point, constructs a Walsh polynomial that approximates the theoretical
solution of the problem.

1. Introduction

The Walsh functions are widely used in the digital world. The main reason
for this is that they form an orthonormal system that can take only two values.
Recognizing this fact, in the 1970s several researchers began to study the appli-
cations of Walsh functions intensively, e.g., in telecommunications and signal
processing (see e.g., [10, 12]). Corrington [5] was the first to develop a method
for solving initial value problems for higher-order linear differential equations
using Walsh functions. Corrington’s method was quite complicated, left many
details unclear, and required a significant amount of computation.
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In 1975, C. F. Chen and C. H. Hsiao further developed Corrington’s method
by providing a solution based on Walsh functions for first-order linear systems
of differential equations. Their method was much simpler, easier to implement,
and worked with matrices that can be generated quickly. Chen and Hsiao’s
method differed significantly from Corrington’s method. Instead of successive
approximations, the solution of an initial value problem was approximated by
Walsh polynomials whose coefficients can be obtained from a system of linear
equations, providing the exact solution (and not its derivative!). However, the
method was developed exclusively for equations with constant coefficients. In
that year, Chen and Hsiao published several articles in which they demon-
strated the applicability of their method to solving various practical problems
(see [1, 2, 3, 4]). The method is also adaptable for solving first-order linear
partial differential equations using two-dimensional Walsh–Fourier series (see
[14]).

The basic idea of Chen and Hsiao’s method is to discretize the integral
equation equivalent to the problem by replacing every function involved with
the 2n-th partial sum of its Walsh–Fourier series, including the integral func-
tion itself. The exact solution is approximated by a Walsh polynomial. In
this way, a system of linear equations is obtained, whose unknowns are the
coefficients of the Walsh polynomial. This Walsh polynomial will be an ap-
proximate solution to the exact solution of the problem. However, Chen and
Hsiao did not address the analysis of the numerical solution. They did not
investigate whether the proposed numerical solution exists or whether it prop-
erly converges to the exact solution of the problem. On the other hand, in
order to achieve the desired accuracy, it is necessary to solve a very large sys-
tem of linear equations consisting of m2n equations, where m is the number of
equations in the problem, and 2n is the number of Walsh functions used in the
numerical solution. Moreover, after solving the system of equations, the Walsh
polynomial must be constructed from the obtained coefficients, which is also a
time- and computation-intensive task.

This was the reason why György Gát and Rodolfo Toledo began to work
on the mathematical analysis of the method (see [7, 8]). They first dealt with
the simplest case, namely the initial value problem

y′ + ay = q(x), y(0) = η,

where a, η ∈ R are constants and q : [0, 1) → R is a continuous and integrable
function. They proved that a numerical solution does not exist only if 2n+1 =
= −a holds, which can occur at most for a single value of n. Along with pro-
viding an error estimate, they were able to prove that the numerical solutions
converge uniformly to the exact solution of the problem as n → ∞. Fur-
thermore, they developed a fast iterative procedure that directly produces the
values of the Walsh polynomial without the need to solve systems of equations.
After that, they proceeded to study initial value problems with non-constant
coefficients and succeeded in generalizing the results obtained for the constant
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coefficient case. They proved that numerical solutions can be obtained except
for, at most, finitely many values of n. Similarly, they succeeded in proving
uniform convergence and in constructing an iterative procedure. These results
were published in [9].

It is important to note that they aimed to address the problem under the
most general conditions possible. This is reflected in the fact that the functions
involved are not necessarily continuous on the closed interval [0, 1]. The condi-
tion was that the functions be continuous on the interval [0, 1) and Lebesgue in-
tegrable. Success could be achieved under such conditions because the method
works with integral functions, which are already continuous on the closed in-
terval [0, 1]. Furthermore, instead of approximating the derivative of the exact
solution by step functions, as is done in other similar methods (see, e.g., [11]),
they provided an approximation directly for the exact solution itself.

However, the solvability of the integral equation does not require the con-
tinuity of the functions appearing in the equation. It is known that if I is
an interval and f is a continuous vector-valued function, then the initial value
problem

y′ = f(x, y), y(ξ) = η (x ∈ I)

is equivalent to the integral equation

y(x) = η +
x∫

ξ

f(x, y(x)) dx (x ∈ I).

If f is not continuous in its first variable (x), but is continuous in its second
variable (y), then the integral equation may have a non-differentiable solution,
which of course cannot be a solution of the initial value problem. This is
exactly what happens in the case of systems of linear differential equations
when the functions involved are integrable on every closed subinterval of I
since, in that case, the integral equation has a unique continuous solution on
the entire interval I (see [6]). Recognizing this, Rodolfo Toledo [15] generalized
the method to systems of first-order linear differential equations as well.

The successes achieved in the case of linear differential equations motivate
the development of a numerical method based on Walsh functions for other
types of differential equations. A natural starting point is to consider initial
value problems related to Riccati-type differential equations. This is also the
aim of the present paper.
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2. Preliminaries

2.1. Notation and objectives

Consider the following initial value problem for a Riccati differential equa-
tion:

(2.1)
y′ + p1(x)y + p2(x)y2 = q(x),

y(0) = η,

where p1, p2, q : [0, 1) → R are continuous functions, and η ∈ R. We further
assume that the functions p1, p2, and q are Lebesgue integrable, that is,

1∫
0

|p1(x)| dx < ∞,

1∫
0

|p2(x)| dx < ∞, and
1∫

0

|q(x)| dx < ∞.

According to the Picard–Lindelöf theorem, there exists a number 0 < β ≤ 1
such that (2.1) admits a unique solution y on the interval [0, β). However, in
general, this solution cannot be extended beyond β.

Our objective is to develop a numerical procedure to approximate the so-
lution using Walsh polynomials of the form

(2.2) yn(x) =
2n−1∑
k=0

ckwk(x),

where ωi denotes the ith Walsh function ordered in the Paley sense. A similar
approach was proposed by Gát and Toledo in [9] for first-order linear differential
equations.

To this end, we consider the equivalent integral equation

y(x) = η +
x∫

0

(
q(t) − p1(t)y(t) − p2(t)y2(t)

)
dt.

We discretize this equation by replacing each function with the 2n-th partial
sum of its Walsh–Fourier series, including the integral term. That is, we seek
Walsh polynomials yn satisfying the relation

(2.3) yn(x) = η + S2n

x∫
0

(
S2nq(t) − S2np1(t) yn(t) − S2np2(t) y2

n(t)
)

dt

for all 0 ≤ x < 1, where S2nf denotes the 2n-th partial sum of the Walsh–
Fourier series of the integrable function f .
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It is important to clarify that the expression

S2n

 ·∫
0

f(t) dt

 (x)

refers to the 2n-th partial sum of the Walsh–Fourier series of the integral func-
tion

x∫
0

f(t) dt (x ∈ [0, 1).

2.2. The 2n-th partial sums of the Walsh–Fourier series

We begin by introducing the concept of the Walsh–Paley functions. Every
integer n ∈ N admits a unique dyadic expansion:

n =
∞∑

k=0
nk2k,

where each nk ∈ {0, 1}. This sequence (n0, n1, . . . ) is called the dyadic expan-
sion of n. Similarly, any real number x ∈ [0, 1) has a dyadic expansion of the
form

x =
∞∑

k=0

xk

2k+1 ,

where again xk ∈ {0, 1} for all k ∈ N. This expansion is not unique when x
is a dyadic rational, i.e., when x = i

2k for some i, k ∈ N with 0 ≤ i < 2k.
In such cases, we choose the representation that terminates with zeros. For
two numbers x, y ∈ [0, 1) with dyadic expansions (x0, x1, . . . ) and (y0, y1, . . . ),
respectively, we define their dyadic sum by

x ∔ y :=
∞∑

k=0
|xk − yk|2−(k+1).

The Walsh functions are finite products of the so-called Rademacher func-
tions:

rk(x) := (−1)xk , (x ∈ [0, 1), k ∈ N).

The Walsh–Paley system is defined by ordering the Walsh functions as follows:

wn(x) :=
∞∏

k=0
rnk

k (x), (x ∈ [0, 1), n ∈ N),

where n =
∑

nk2k is the dyadic expansion of n. The function wn is referred
to as the nth Walsh–Paley function or simply the nth Walsh function in Pa-
ley ordering. A Walsh polynomial is any finite linear combination of these
functions.
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The Walsh–Paley system forms an orthonormal system:
1∫

0

wn(x)wm(x) dx =
{

1, if n = m,

0, if n ̸= m.

Among other consequences, this orthonormality implies that two Walsh poly-
nomials are identical (almost everywhere) if and only if their Walsh coefficients
coincide.

Throughout this paper, we work with real-valued functions defined on [0, 1).
For any integrable function f satisfying

1∫
0

|f(x)| dx < ∞,

the Walsh–Fourier coefficients and the corresponding partial sums are defined
by

f̂k :=
1∫

0

f(x)wk(x) dx, (k ∈ N),

Snf(x) :=
n−1∑
k=0

f̂kwk(x), (n ∈ N, x ∈ [0, 1)).

It is particularly important that the 2n-th partial sum admits the represen-
tation

S2nf(x) = 2n

∫
In(x)

f(y) dy,

where
Ik(i) :=

[
i − 1
2k

,
i

2k

)
, (i = 1, . . . , 2k),

are the dyadic intervals of length 2−k, which contain the point x (see [13]).
For every integrable function f , the sequence S2nf converges to f in the

L1 norm (see [13], p. 142), i.e.,

lim
n→∞

1∫
0

|S2nf(x) − f(x)| dx = 0.

Continuity on [0, 1) does not imply integrability. However, if a continuous
function has a finite limit as x → 1−, it can be extended continuously to [0, 1]
and thus becomes integrable. In this case, one can show (see [13]) that S2nf
converges uniformly to f on [0, 1).

The following lemma is crucial for the analysis of the numerical scheme
developed in this paper. This lemma was proved in [9].
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Lemma 2.1. Let f : [0, 1) → R be constant on the dyadic intervals of length
2−n, and suppose x ∈ In(i) for some i = 1, . . . , 2n. Then

S2n

 ·∫
0

f(t) dt

 (x) = 1
2n

i−1∑
k=1

f

(
k − 1

2n

)
+ 1

2n+1 f

(
i − 1
2n

)
.

3. Construction of the numerical solution

The method developed by György Gát and Rodolfo Toledo has two types
of approaches:

1) From the discretized integral equation, we obtain a system of 2n linear equa-
tions, whose solutions provide the coefficients of the desired Walsh polyno-
mial (2.2).

2) The direct application of Lemma 2.1 to the discretized integral equation
leads to an iterative procedure, which, starting from the initial value, di-
rectly yields the values of the desired Walsh polynomial (2.2) on the dyadic
intervals.

The first approach was initially proposed by Chen and Hsiao for systems of
linear differential equations with constant coefficients. However, due to its high
computational cost, it is not suitable for obtaining high-precision numerical
solutions. Therefore, in this paper, we will present the second approach, that
is, we will work with the iterative method.

Now we return to the analysis of the discretized integral equation (2.3),
that is,

yn(x) = η + S2n

x∫
0

(
S2nq(t) − S2np1(t) yn(t) − S2np2(t) y2

n(t)
)

dt

Note that the functions appearing under the integral are constant on the dyadic
intervals of length 2−n, which allows us to apply Lemma 2.1 to rewrite the
integral. Let i = 1, 2, . . . , 2n, and assume i−1

2n ≤ x < i
2n . Then, we have

yn

(
i − 1
2n

)
= yn(x) =

= η + S2n

 ·∫
0

S2n q(t) − S2n p1(t)yn(t) − S2n p2(t)y2
n(t) dt

 (x) =

= η + 1
2n

i−1∑
k=1

(
S2n q

(
k−1
2n

)
− S2n p1

(
k−1
2n

)
yn

(
k−1
2n

)
− S2n p2

(
k−1
2n

)
y2

n

(
k−1
2n

))
+

+ 1
2n+1

(
S2n q

(
i−1
2n

)
− S2n p1

(
i−1
2n

)
yn

(
i−1
2n

)
− S2n p2

(
i−1
2n

)
y2

n

(
i−1
2n

))
.
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This means that for each step, one must solve a quadratic equation of the
form

1
2n+1 S2n p2

(
i−1
2n

)
y2

n

(
i−1
2n

)
+

(
1 + 1

2n+1 S2n p1
(

i−1
2n

))
yn

(
i−1
2n

)
=

= η + 1
2n

i−1∑
k=1

(
S2n q

(
k−1
2n

)
− S2n p1

(
k−1
2n

)
yn

(
k−1
2n

)
− S2n p2

(
k−1
2n

)
y2

n

(
k−1
2n

))
+

+ 1
2n+1 S2n q

(
i−1
2n

)
,

in order to compute yn

(
i−1
2n

)
. This is feasible since the right-hand side only

depends on the values of yn at points strictly less than i−1
2n .

The algorithm proceeds from i = 1 up to i = 2n, or until the quadratic
equation becomes unsolvable. At the initial step (i = 1), the equation simplifies
to

(3.1) 1
2n+1 S2n p2(0) y2

n(0) +
(

1 + 1
2n+1 S2n p1(0)

)
yn(0) = η + 1

2n+1 S2n q(0),

which must be solved for yn(0).
At each step, we solve a quadratic equation using the standard quadratic

formula. However, it is essential to determine which root should be selected in
the algorithm. Observe that at the initial step (k = 1), the ”smaller” root of
(3.1) is given by

yn(0) =
−1 − 1

2n+1 S2np1(0) −
√

D
1

2n S2np2(0)
,

where

D :=
(

1 + 1
2n+1 S2np1(0)

)2
+ 4

2n+1 S2np2(0)
(

η + 1
2n+1 S2nq(0)

)
,

but this means that yn(0) does not converge to η as n → ∞, since it is asymp-
totically of the form

( −2
0

)
.

For this reason, the algorithm consistently selects the ”larger root” of the
quadratic equation at each step.

4. Implementation of the iterative method in Matlab

4.1. Code implementation

The implementation of the algorithm in Matlab is straightforward. The
function odeRiccatiWalsh0 takes as input the value of n, the parameters of
the Riccati differential equation (provided as function handles), and eta, which
specifies the initial condition y(0) = η. The function returns three outputs:
the starting points of the dyadic intervals of length 2−n, the corresponding
approximate values of the solution on these intervals, and a status flag. This
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third output is zero if the solution was successfully computed on all intervals;
otherwise, it gives the index of the first interval where the computation failed.
In such a case, the returned solution contains the value Inf from that interval
onward.

1 function [t,yNum,szing]=odeRiccatiWalsh0(n,p1,p2,q,eta,atol,rtol)
2 % It solves numerically the intial value problem
3 % y'+p1(x)y+p2(x)yˆ2=q(x), y(0)=eta
4 % using Walsh functions, where the real functions p1, p2 and q ...

are defined on the interval [0,1[.
5

6 % Input variables
7 % n: it sets the dimension of the solution
8 % p1: coefficient function of the linear term (function handle)
9 % p2: coefficient function of the quadratic term (function handle)

10 % q: free term (function handle)
11 % atol: absolute tolerance used only for numerical integration
12 % rtol: relative tolerance used only for numerical integration
13

14 % Auxiliary variables
15 dim = 2ˆn;
16 FSp1 = zeros(1,dim);
17 FSp2 = zeros(1,dim);
18 FSq = zeros(1,dim);
19

20 % Output variables
21 szing = 0;
22 t = 0:1/dim:1-1/dim;
23 yNum = zeros(1,dim);
24

25 % Computation of the integral means
26 for i = 1:dim
27 FSp1(i) = integral(p1NumF,(i-1)/dim,i/dim, ...
28 'ArrayValued',true,'AbsTol',atol,'RelTol',rtol);
29 FSp2(i) = integral(p2NumF,(i-1)/dim,i/dim, ...
30 'ArrayValued',true, 'AbsTol',atol,'RelTol',rtol);
31 FSq(i) = integral(qNumF,(i-1)/dim,i/dim, ...
32 'ArrayValued',true,'AbsTol',atol,'RelTol',rtol);
33 end
34

35 % Iterative computation of the approximated solution
36 % Calculation stops when the quadratic equation has no real ...

root (D < 0)
37 szum = eta;
38 for i = 1:dim
39 a = FSp2(i)/2;
40 b = 1+FSp1(i)/2;
41 c = szum+FSq(i)/2;
42 D = bˆ2+4*a*c;
43 if a == 0
44 yNum(i) = c/b;
45 elseif D ≥ 0
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46 yNum(i) = (-b+sqrt(D))/(2*a);
47 else
48 for j = i:dim
49 yNum(j) = Inf;
50 end
51 szing = i;
52 break
53 end
54 szum = szum+FSq(i)-FSp1(i)*yNum(i)-FSp2(i)*yNum(i)ˆ2;
55 end
56 end

4.2. The modified solution

Most numerical methods for solving differential equations determine the
value of the solution only at a few points and apply linear interpolation else-
where. The result is a piecewise linear solution. However, Walsh polynomials
are step functions, which makes our developed method difficult to compare
with other well-known numerical methods. Recognizing this, Rodolfo Toledo
(see [15]) proposed the following modification: We retain the values of the re-
sulting Walsh polynomial only at the midpoints of the intervals; we also add
the initial point (ξ, η) and apply linear interpolation through these points. At
the right half of the last interval, the interpolation is extended accordingly.

In this way, we obtain a piecewise linear solution, which we refer to as the
modified solution. As shown in [15], this modification significantly improves
the accuracy of the approximation for linear differential equations. Empirical
evidence suggests that in the original Walsh polynomial solution, the difference
between the exact and numerical solutions is typically halved when the value
of n is increased by one. In contrast, for the modified solution, this difference
is reduced to nearly a quarter. As the next section will show, similar behavior
can be observed in the case of Riccati differential equations as well.

4.3. Examples

In this section, we present some examples where classical numerical methods
either do not work or are not sufficiently effective.

Consider the following problem:

y′ + y2 = 0, y(0) = −2

on the interval [0, 1). The exact solution of this problem is known:

y(x) = 1
x − 1

2
(0 ≤ x < 1

2 ).

The solution has a singularity at x = 1/2. The next figures below illustrate the
solutions obtained using the original and the modified methods for n = 5.
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Walsh polynomial solution for n=5 Modified solution for n=5

We observe that no value was obtained for the last interval [7/16, 1/2). This is
not an isolated case. We ran the algorithm up to n = 10 and experienced the
same phenomenon, namely that no value was obtained on the last interval of
length 21−n because in that interval, we must solve a quadratic equation whose
discriminant is negative.

To examine the accuracy, we computed the maximum absolute difference
between the exact and the numerical solutions over certain intervals. This is
shown in the table below for Walsh polynomial solutions. It can be observed
that the difference roughly halves when n is incremented by one. Near 1/2,
the absolute difference increases since the exact solution is unbounded in that
region.

n
[

0, 1
8

) [
1
8 , 2

8

) [
2
8 , 3

8

) [
3
8 , 7

16

) [
7

16 , 15
32

) [
15
32 , 31

64

) [
31
64 , 63

128

) [
63

128 , 127
256

)
3 3.43e-01 7.48e-01 Inf Inf Inf Inf Inf Inf

4 1.93e-01 4.22e-01 1.60e+00 Inf Inf Inf Inf Inf

5 1.03e-01 2.28e-01 8.71e-01 3.30e+00 Inf Inf Inf Inf

6 5.35e-02 1.19e-01 4.64e-01 1.76e+00 6.72e+00 Inf Inf Inf

7 2.79e-02 6.10e-02 2.40e-01 9.35e-01 3.56e+00 1.35e+01 Inf Inf

8 1.37e-02 3.08e-02 1.22e-01 4.83e-01 1.87e+00 7.15e+00 2.72e+01 Inf

9 6.91e-03 1.55e-02 6.18e-02 2.45e-01 9.68e-01 3.76e+00 1.43e+01 5.45e+01

10 3.46e-03 7.78e-03 3.10e-02 1.23e-01 4.91e-01 1.93e+00 7.53e+00 2.86e+01

Next, we show the same difference, but now with respect to the modified
solution. In the table below, it can be seen that the difference now decreases
roughly to a quarter when n is incremented by one.

n
[

0, 1
8

) [
1
8 , 2

8

) [
2
8 , 3

8

) [
3
8 , 7

16

) [
7

16 , 15
32

) [
15
32 , 31

64

) [
31
64 , 63

128

) [
63

128 , 127
256

)
3 2.12e-01 2.38e-01 Inf Inf Inf Inf Inf Inf

4 4.38e-02 1.77e-01 5.68e-01 Inf Inf Inf Inf Inf

5 1.05e-02 4.02e-02 3.90e-01 1.23e+00 Inf Inf Inf Inf

6 2.61e-03 9.83e-03 8.84e-02 8.17e-01 2.55e+00 Inf Inf Inf

7 6.51e-04 2.44e-03 2.16e-02 1.85e-01 1.67e+00 5.21e+00 Inf Inf

8 1.62e-04 6.10e-04 5.38e-03 4.52e-02 3.78e-01 3.38e+00 1.05e+01 Inf

9 4.06e-05 1.52e-04 1.34e-03 1.12e-02 9.24e-02 7.64e-01 6.79e+00 2.11e+01

10 1.01e-05 3.81e-05 3.35e-04 2.80e-03 2.29e-02 1.86e-01 1.53e+00 1.36e+01
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In summary, we have observed the interesting phenomenon that, in this
problem, our procedure generates solutions whose domain expands and grad-
ually gets ”closer” to the domain of the exact solution, while their values tend
to approach the values of the exact solution.

Let us examine another stiff problem:

y′ + 100y2 = 100x2 + 1, y(0) = 1

on the interval [0, 1), whose exact solution is given by

y(x) = x + e−100x2

5
√

π erf(10x) + 1
(x ∈ [0, 1)),

where erf denotes the error function, defined by

erf(x) := 2√
π

x∫
0

e−t2
dt.

The next figures illustrate the results obtained using the original iterative al-
gorithm and its modified version for n = 5.

Walsh polynomial solution for n=5 Modified solution for n=5

This example is particularly interesting because the exact solution decreases
abruptly in the right neighborhood of 0. As a result, our solution exhibits a
notable deviation from the exact solution in this region, and the absolute error
decreases slowly as n increases. However, despite the fact that the iteration
starts from 0, it is capable of correcting itself and providing appropriate ap-
proximations over most of the interval. Most methods developed for non-stiff
problems were not able to achieve this. The following table shows the max-
imum absolute difference over certain subintervals for the modified solution.
We attempted to subdivide the ”problematic” region into smaller intervals. As
we move away from this region, the deviation tends to decrease by roughly a
factor of four with each increment in n.
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n
[

0, 1
128

) [
1

128 , 1
64

) [
1

64 , 1
32

) [
1

32 , 1
16

) [
1

16 , 1
8

) [
1
8 , 1

4

) [
1
4 , 1

2

) [
1
2 , 1

)
3 3.51e-01 4.38e-01 4.47e-01 4.16e-01 1.79e-01 2.10e-01 1.01e-01 1.96e-03

4 2.93e-01 3.24e-01 3.20e-01 1.80e-01 2.35e-01 1.71e-01 7.46e-03 3.40e-04

5 2.07e-01 2.08e-01 1.49e-01 9.74e-02 6.19e-02 1.09e-02 1.34e-04 8.31e-05

6 1.14e-01 1.03e-01 7.15e-02 1.91e-02 7.61e-03 1.31e-03 3.38e-05 2.07e-05

7 5.98e-02 5.09e-02 6.49e-03 4.33e-03 1.71e-03 3.21e-04 8.48e-06 5.19e-06

8 2.80e-02 8.84e-03 1.43e-03 1.07e-03 4.34e-04 8.20e-05 2.12e-06 1.29e-06

9 1.06e-02 2.07e-03 3.51e-04 2.73e-04 1.10e-04 2.09e-05 5.30e-07 3.24e-07

10 3.46e-03 5.12e-04 8.74e-05 6.89e-05 2.79e-05 5.28e-06 1.32e-07 8.11e-08

Finally, we consider a problem where the functions involved are unbounded
on the interval [0, 1), yet remain integrable. Let us examine the following
problem:

y′ − y2
√

1 − x
+ y√

1 − x
= 2x + x2 − 1√

1 − x
− (x2 − 1)2

√
1 − x

, y(0) = −1

defined on the interval [0, 1), whose exact solution is simple:

y(x) = x2 − 1 (x ∈ [0, 1)).

In the case of linear differential equations, for problems of this type, the method
based on Walsh functions worked well. The same holds true in the present case,
as shown in the table below. It presents the maximum absolute difference on
dyadic subintervals of length 1/8 with respect to the modified solution.

n
[

0, 1
8

) [
1
8 , 2

8

) [
2
8 , 3

8

) [
3
8 , 4

8

) [
4
8 , 5

8

) [
5
8 , 6

8

) [
6
8 , 7

8

) [
7
8 , 1

)
3 7.07e-03 7.06e-03 6.52e-03 6.22e-03 6.16e-03 6.58e-03 1.20e-02 1.37e-02

4 1.84e-03 1.75e-03 1.62e-03 1.54e-03 1.53e-03 1.61e-03 1.94e-03 5.25e-03

5 4.74e-04 4.38e-04 4.05e-04 3.87e-04 3.82e-04 4.02e-04 4.73e-04 2.11e-03

6 1.20e-04 1.09e-04 1.01e-04 9.67e-05 9.57e-05 1.00e-04 1.17e-04 8.79e-04

7 3.02e-05 2.73e-05 2.53e-05 2.41e-05 2.39e-05 2.51e-05 2.93e-05 3.49e-04

8 7.59e-06 6.84e-06 6.33e-06 6.04e-06 5.98e-06 6.28e-06 7.34e-06 1.34e-04

9 1.90e-06 1.71e-06 1.58e-06 1.51e-06 1.49e-06 1.57e-06 1.83e-06 5.01e-05

10 4.76e-07 4.27e-07 3.95e-07 3.77e-07 3.73e-07 3.92e-07 4.58e-07 1.84e-05

5. Conclusion

The iterative procedure based on Walsh functions, developed by György
Gát and Rodolfo Toledo for solving initial value problems associated with lin-
ear differential equations with non-constant coefficients, can be generalized to
handle general Riccati-type differential equations as well. The method works
under similar general conditions, even when the coefficient functions are un-
bounded.

The procedure is capable of dealing with singularities in the exact solutions
by progressively approaching the domain of definition of the exact solution as
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the value of n increases. Regarding the accuracy of the numerical solutions, the
behavior is similar to that observed in the case of linear differential equations:
if the exact solution is not too steep, then the error of the Walsh polynomial
solution is roughly halved, and that of the modified solution is reduced to
approximately a quarter when n is increased by one.

Based on these results, we recommend a complete mathematical analysis
of the method.
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Hungary
toledo@inf.elte.hu

https://orcid.org/0000-0002-9590-2538

	Introduction
	Preliminaries
	Notation and objectives
	The 2n-th partial sums of the Walsh–Fourier series

	Construction of the numerical solution
	Implementation of the iterative method in Matlab
	Code implementation
	The modified solution
	Examples

	Conclusion

