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Abstract. In this paper, we reveal a new relationship between Rayleigh
quotients and residual errors associated with symmetric matrices and unit
vectors. We show that for a fixed value of the Rayleigh quotient, the
Fuclidean norm of the corresponding residual vectors admits both upper
and lower bounds. These bounds are related to the eigenvalues of the
matrix under consideration. Furthermore, we demonstrate how the derived
upper bound can be used to construct a simple Monte Carlo algorithm for
estimating the minimum and maximum eigenvalues.

1. Introduction

In this paper, we make use of well-known concepts and theorems related
to matrix eigenvalues and their estimation, which can be found in classical
references such as [1], [2], and [3]. For problems concerning the eigenvalues of
symmetric matrices, we recommend the texts [5] and [6]. In this section, we
briefly review the definitions used and some important statements related to
our work.

Let us consider the R™ Euclidean space endowed with the common inner
product:

n
(wy) =a"y=> i  (x,yeR").
=1
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Here 27 denotes the transpose of a vector or a matrix. The Euclidean norm is
induced by the inner product and is denoted by

||| := VaTa = /{z,x).

In the following, we will investigate the spectrum of symmetric matrices, i.e.
A € R™" real matrices for which A = AT. There are some fundamental
results worth mentioning regarding the estimation of eigenvalues of symmetric
matrices.

Proposition 1.1. The eigenvalues of a symmetric matrix are real, and there-
fore they can be ordered as follows:

>\min = )\1 < )\2 <--- < )\n—l < )\n = Al‘ﬂax-

Definition 1.1. The set of eigenvalues is called the spectrum of the matrix A,
and the quantity
0 (A) = miax |\;|
i—

is called the spectral radius of the matrix.

The spectral radius is an important quantity that characterizes the linear
transformation represented by the matrix, and its determination or estimation
plays a crucial role in analyzing the convergence of iterative methods. Another
important eigenvalue is the one with the smallest absolute value since the ratio
of the largest to the smallest absolute eigenvalue is proportional to the condi-
tion number of the matrix, which is the key metric for assessing the stability
of numerical algorithms involving the matrix. Since the eigenvalue with the
smallest absolute value is equal to o (A_l), most methods designed to estimate
the spectral radius can be adapted with minor modifications to estimate the
eigenvalue of the smallest absolute value as well.

1.1. Classical eigenvalue estimates

It is known that any matrix norm provides an upper bound for the spectral
radius.

Proposition 1.2. If ||.|| is a sub-multiplicative matriz norm then
o(A) <Al

Another widely applicable eigenvalue estimate is given by the Gershgorin
circle theorem, whose special case for symmetric matrices can be formulated
as follows.

Proposition 1.3. Let A € R™ "™ be a matriz, and define

R; = Z laij|, Gi:=lag — Ri, a; + Ryl
i
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Then the eigenvalues of the matriz A lie within the union of the intervals G,
i.€.

This again provides a useful estimate for the spectral radius.

Corollary 1.1.
0(4) < H,l:ELllX (asi + R;).

Suppose that A is an eigenvalue of the matrix A with corresponding eigen-
vector v. Then, for the eigenvalues (v, \), we clearly have

Av=X v <<= Av—- v=0.
Notice, that if v/ ~ v and X' ~ A, then
Av' =\ = 0.

Following this pattern, we can introduce the so-called residual vector for an
approximate eigenvalue p and the corresponding approximate eigenvector u.

Definition 1.2. The residual vector corresponding to an approximate eigen-
values (p,u) is defined as

r:=1r(4, p,u) = Au — pu.

Clearly, for a true eigenvalues (A, v), we have r = 0. Moreover, for any
approximate eigenpair (u,u), the smaller the norm ||r||, the closer (u,u) is to
an actual eigenpair of the matrix A.

For symmetric matrices, a particularly useful eigenvalue estimate is given
by the so-called Rayleigh quotient.

Definition 1.3. Let A € R"*" be symmetric matrix: A = A7, and 0 # u € R"
be a vector. The Rayleigh quotient for A and w is defined as
(Au,u)  (Au,u)

= u(A,u) = = -
= (A, u) () Tl

Proposition 1.4. Let A € R™ ™ be a symmetric matriz, and let v € R™ be
an arbitrary vector. Then the Rayleigh quotient u = u(A,u) lies between the
smallest and largest eigenvalues, that is

>\min S 1% é >\max~

Proposition 1.5. Let A € R™ ™ be a symmetric matriz, and let w € R™ be
an arbitrary vector. Then the Rayleigh quotient p := p(A,u) minimizes the
Euclidean norm of the residual vector, i.e.

vneR o [[Au—nu| = ||Au = pul.
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This latter result means the following: suppose that the matrix is sym-
metric and we already have an approximate eigenvector, denoted by u. Then
the Rayleigh quotient provides the best (in the Euclidean sense) eigenvalue
approximation corresponding to wu.

1.2. Foreword

This article is part of a volume dedicated to the memory of Ferenc Schipp.
Professor Schipp had a deep and enduring interest in visual patterns, beautiful
illustrations, and the mathematics that underlies them. Relationships between
patterns and the conjectures they inspire were frequent topics in his seminars
and celebratory departmental meetings. The hyperbolic fractal shown in Fig-
ure 1, for example, was generated by a program he wrote himself and shared as
a Christmas greeting with the staff of the Department of Numerical Analysis
at Eotvos Lorand University in 2023.

Figure 1. Christmas tree generated by a hyperbolic fractal. The figure was
created by Ferenc Schipp using a program he wrote himself.

It is perhaps thanks to Professor Schipp’s influential teaching and inspiring
curiosity that I approached the writing of this article with such enthusiasm.
My primary aim has been to explore the mathematical structure underlying
a striking pattern recently encountered, and to provide an explanation for its
emergence.

In April 2023, during the Numerical Methods 2 course, we administered the
first midterm exam, which included a programming task. Together with my
colleague Anna Krebsz, we aimed to design an exercise related to eigenvalue
computation that would result in a visually compelling plot. The task we
proposed was the following;:

e Let A be a symmetric matrix.

e Generate a set of random unit vectors u;, and for each vector compute
the Rayleigh quotient u; with respect to A.

e Next, compute the residual r; corresponding to the eigenvalue approxi-
mation u; and eigenvector approximation u;.
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e Plot the points (p, ||7;]|) in a Cartesian coordinate system, where the
horizontal axis corresponds to the Rayleigh quotient and the vertical axis
shows the norm of the residual.

Figure 2 illustrates the result for 100, 500, and 2500 randomly selected unit
vectors u; applied in the case of the same 4 x 4 symmetric matrix. As can be
seen, the resulting points form a strikingly regular structure. At the time of the
exam, we found this phenomenon intriguing, though we did not yet have a full
explanation for it. In the present article, we analyze the underlying geometric
and algebraic reasons for the patterns seen in Figure 2, and we demonstrate
how this structure can be leveraged to estimate the eigenvalues of symmetric
matrices.

Figure 2. An interesting pattern emerges when plotting the Euclidean norm of
the residual vectors as a function of the Rayleigh quotients corresponding to
randomly chosen unit vectors wu;.

2. Upper and lower estimates

For many randomly chosen unit vectors u;, a careful examination of Figure 3
reveals the emergence of semicircular patterns. In the example considered, the
eigenvalues of the matrix A are —1,0,2,5, and based on the figure, we may
conjecture that the intersection points of the semicircles with the x-axis are
precisely the eigenvalues. We can examine the figure from another perspective.
Suppose we fix the Rayleigh quotient u. It is clear that infinitely many vectors u
can yield the same Rayleigh quotient, but different vectors may lead to different
residual vectors. Note that we can establish both a lower and an upper bound
for the length of the residual vector in this case. The lower bound is determined
by the arc of the circle that intersects the z-axis at the eigenvalues closest to
. The upper bound is given by the arc of the circle intersecting the axis
at the smallest and largest eigenvalues. In this section, we prove that these
conjectures are indeed correct.

Lemma 2.1. If ||lul]| = 1 then
w2+ el = [l Au]?,

that is, for any unit vector u, the point (u, ||r]|) lies on a circle centered at the
origin with radius || Aul|.
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Figure 3. The points (u;, ||r;]]) are bounded from above by a semicircle whose
intersections with the z-axis correspond to the extremal eigenvalues. From
below, we also observe semicircular arcs emerging, whose intersections with
the axis correspond to pairs of adjacent eigenvalues of the matrix A.

Proof.

Pl = (r,7) = (Au — pu, Au — pu) =
= || Au® = 2 (Au, pu) + ||pu))® =
= ||AUH2 — 2 (Au, u) +p? (u,u) =

- Y

= | Aull* = 24% + pi* = || Au]® - ?

2 2
= =AW

Lemma 2.2. .
min X? < ® + [|r* < max 7.
i= i=

Proof. Due to Lemma 2.1, we have p? + ||r||> = ||Aul|?, so it is sufficient to
show that the bounds in the statement hold for the quantity ||Aul/?>. Observe
that

| Aul|? = (Au, Au) = (A%u,u).

Thus, ||Aul|? is the Rayleigh quotient of the matrix A% with respect to the
vector u. It follows that the values of || Aul|? must lie between the smallest and
largest eigenvalues of A2. Since the eigenvalues of A% are the squares of the
eigenvalues of A, the claim follows. |

It is well known that if a scalar ¢ € R is added to the diagonal elements of
matrix A, then the eigenvalues are shifted by ¢ as well. In the following lemma,
we show that the Rayleigh quotient behaves in the same way.

Lemma 2.3. Let t € R and define A’ = A+ tI. Let i/ and r' denote the
Rayleigh quotient and the residual vector of the matriz A’, respectively. Then

(i) ' =p+t, and

(ii) ' =r.
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Proof. To prove (i), we use the linearity of the inner product:
= (Au,u) = ((A+ thHu,u) = (Au,u) + t{Tu,u) = p +t.
Furthermore,
v =Au—pu=(A+thHu— (p+t)u =
= Au+tu — pu —tu = Au — pu =,

which means that the residual error remains unchanged when the eigenvalues
of A are shifted. Note that this result is consistent since both the eigenvalues
and the Rayleigh quotients of A are shifted by the same amount. |

In the following theorem, we prove the upper bound:

Theorem 2.1. Let
Amin + /\max
2
be the center of the spectrum and d := Amax — Amin its diameter. Then

Or—d2+HrW<i<g>2,

that is, for any unit vector u, the point (u, ||r||) lies on or inside the semicircle
centered at (c,0) with diameter d.

C =

Proof. Let A’ := A — cI. Then the eigenvalues A, of A’ are simply those of A
shifted by —c:

and in particular,

)\min + )\max _ d

)\/ in — )\min - = 5
min 2 2
Amin + A d
)\/ _ )\max __ Z‘min max .
max 2 2

Applying the upper bound from Lemma 2.2 to the matrix A’, we obtain:
(1) + 1" [* < miax(X)%.

Using the facts that v’ = r, 4/ = p — ¢, and max;(\;)? = (d/2)?, the claim

follows. |

Finally, we prove the lower bound:
Theorem 2.2. Let¢; := % and d; := Njy1—X; fori=1,...,n—1. Then
di\?
mar = ()

that is, for any unit vector u, the point (u,||r||) lies on or outside the circle
centered at c; with diameter d;.
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Proof. Let A’ := A—c;I. Note that the eigenvalues of the transformed matrix
satisfy:
At ds

.
Ai + A1 ;

_&
2 2

Aip1 = Aig1 —
Due to the ordering of the eigenvalues, we have min; |A}| = d;/2. Applying the
lower bound from Lemma 2.2 to A’, we obtain:

n d; 2
I+ 02 = 12+ G 2 2 im0 = () .

3. Monte Carlo eigenvalue estimation

Using the inequalities derived in the previous section, we gain the ability
to simultaneously estimate the largest and smallest eigenvalues of a symmetric
matrix, and thus its spectral radius as well. As a consequence of Theorem 2.1,
any point (g, [|7:]|) lies inside the semicircular disk centered at (c,0) with di-
ameter d. It is easy to see that if we consider the set of all points corresponding
to unit vectors u; € R™, then this circle is the smallest semicircle covering the
point set. Based on this observation, we can reinterpret the task outlined in
the introduction in a constructive manner as follows:

1. Select a few random unit vectors u; € R™.

2. Compute the corresponding Rayleigh quotients j; and norms of residual
vectors ||r;]|.

3. Determine the smallest semicircle covering the resulting set of points. Let
its center be (¢,0) and its diameter d.

In other words, we generate points from randomly selected vectors and then fit
the smallest semicircle covering the resulting set. If we use a sufficiently large
number of samples, we may expect that ¢ =~ ¢ and d = d, which leads to the
following simple approximations for the smallest and largest eigenvalues of the
matrix:

Amin & ¢ — d/2,
Amax % €+ df2,

and for the spectral radius:

0(A) = 9(A) := max{|5—c?/2 , e+ J/Q‘}
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Note that our estimate is very similar to the spectral radius approximation
induced by the Gershgorin circle theorem.

To apply the method presented above, it is necessary to determine the
smallest semicircle that covers the set of points (p, ||r;]|). Computing the
minimal enclosing circle for a set of points is a well-studied problem with several
known algorithms. In our case, we used a modified version of Welzl’s algorithm
to compute the smallest enclosing semicircle.

3.1. Welzl’s algorithm

Welzl’s algorithm is a randomized, recursive method for computing the
smallest enclosing circle of a finite set of points in the plane [7, 4]. The algorithm
proceeds as follows.

1. Shuffle the input set P of points to ensure random processing order.

2. Recursively compute the minimal circle enclosing all the points in P ex-
cept a randomly chosen p € P.

3. If p lies inside the current circle, return it unchanged.

4. If p lies outside, compute a new minimal enclosing circle that includes
p and the subset R C P of points known to lie on the boundary with
|R| < 2.

5. Continue recursion with updated R, until a unique circle defined by up
to three boundary points is found.

A pseudocode of this method can be seen in Algorithm 1, where SEC(R)
returns the trivial enclosing circle of 3 or fewer points.

Algorithm 1 WELZL(P, R)

Require: Set of points P and R on the boundary.
Ensure: Smallest circle enclosing all points in P.
if |P| =0 or |R| =3 then
return SEC(R)
end if
: Choose random p € P
: C + WELzZL(P \ {p}, R)
. if C encloses p then
return C
else
return WELZL(P \ {p}, RU {p})
: end if

© P2 NPTk wh e

—
=]

Calling WELZL(P, (), the algorithm terminates with the smallest enclosing
circle with expected linear time complexity. In the following, we show how
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Welzl’s algorithm can be modified to solve the minimal enclosing semicircle
problem.

3.2. Modified Welzl’s algorithm

Welzl’s original algorithm relies on the fact that the smallest enclosing circle
(SEC) of a point set is defined by at most three points. Therefore, at each step
of the recursive algorithm, one must be able to compute the smallest enclosing
circle determined by 1, 2, or 3 points. In the case of the smallest enclosing
semicircles (SESC), the recursion can proceed in the same manner; however,
we observe that the center of the SESC must necessarily lie on the z-axis.
This constraint simplifies the problem: to compute the SESC, at most 2 points
are required. There is no need for a 3rd defining point, unlike in the general
(full-circle) case.

Now suppose that Py := (z1,y1) and P, := (22,y2) are two points in the
plane with y1,y2 > 0, and we want to construct the SESC. Let us denote the
center of the circle by Py := (x0,0), and let the radius be R. We will show
that, eventually there are just two cases, as can be seen in Figure 4.

P,

'Y
PO

Figure 4. The geometric problem arising in the fitting of the smallest enclos-
ing semicircle (SESC) involves constructing a circle passing through two given
points, with the constraint that its center lies on the z-axis. The illustrations
show the two possible cases: when SESC is defined by one single point or two
points.

For a single point, the SESC is trivial. Now assume that yo > y;. In the
case of the SESC corresponding to Ps, clearly zg = 2 and R = yo. It is easy
to see that if in this case the semicircle also contains P;, then the SESC for the
point set {P;, Py} is the same semicircle. This condition is satisfied if Py lies
closer to the center than the radius, that is

(z1—20)* + (11 —0)* < R* <= (21 —22)* <93 — ui.

Note that due to the condition y > y1, the SESC of P; cannot contain Ps.
Therefore, if the above inequality is not satisfied, then the SESC will be the
semicircle that passes through both points P; and P,. This can be computed
as follows. We may assume that 1 # x, since if they were equal, one of the
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semicircles would necessarily contain the other point. So we have two equations:
((Ei —1'())2+yi2 :R2 (Z: 172)
Subtracting one from the other:
(z1 — m0)* + 97 = (22 — z0)* + 15,
x% —2x120 + x% + yf = :cg — 2xoxg + xg + yg,
2(x2 — x1)w0 = 75 — 2] + 3 — yi,

T1 + X2 Y5 — Ui
2 2(3?2—351)'

Tro =
Knowing zy, R can be easily determined e.g. as

R=/(z1 —z0)? +15.

Using the formulas above, we can construct the modified Welzl’s algorithm for
computing SESC as follows. The changed parts are highlighted in red.

1. Shuffle the input set P of points to ensure random processing order.

2. Recursively compute the minimal semicircle enclosing all the points in P
except a randomly chosen p € P.

3. If p lies inside the current semicircle, return it unchanged.

4. If p lies outside, compute a new minimal enclosing circle that includes
p and the subset R C P of points known to lie on the boundary with
|R| < 1.

5. Continue recursion with updated R, until a unique semicircle defined by
up to two boundary points is found.

An illustration of the algorithm in action is shown in Figure 5. As seen
there, fitting a semicircle can, in favorable cases, quickly provide a good ap-
proximation for the minimal and maximal eigenvalues. However, one can also
observe (see, e.g., the middle image) that the method may overestimate the
maximal eigenvalue, but now we show a formula that quantifies the error of
this approximation *.

Theorem 3.1. Let g(A) be a Monte Carlo eigenvalue estimation of the spectral
radius, as we introduced it at the beginning of Section 3. Then

o(A) < V2 o(A).

11 would like to thank the reviewer of the article for the idea.
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Figure 5. To simultaneously estimate the minimal and maximal eigenvalues, we
fit a circle to the (u;, ||r;||) points corresponding to randomly chosen u; vectors.
In the example, the matrix is 4 x 4, with minimal and maximal eigenvalues —1
and 5, respectively. The red dashed circle shows the theoretical upper bound.
The circles fitted to the point set are drawn in blue. From left to right, the
results of the semicircle fitting are shown after inserting the 2nd, 3rd, and 5th

points, respectively.

Proof. For simplicity, let us suppose, that ¢ = (0,0) € R? and ¢ =~ ¢ and d~d
are the approximate center and diameter of the spectrum. Let us examine how
the worst possible estimate can arise. First, recall that the SESC corresponding
to a point set obtained from the Monte Carlo procedure either hits a single point
or passes through at least two. We may assume the first setting, since any
covering semicircle passing through two points would certainly yield a better
approximation, resulting in an SESC with a smaller radius. Furthermore, we
may also assume that the point under consideration lies on the boundary of
the theoretical, exact SESC, as this maximizes the radius of the semicircle.
Therefore, let (x1,y1) be a point in the set such that

d\2
Then (x1,y1) can be written as R(cosa,sina) for some suitable o € [0,7],
and the SESC defined by this point has center ¢ = Rcosa and diameter
d = 2Rsin a. The corresponding estimate for the spectral radius is therefore

0(A) = max {R|cosa +sina|, R|cosa —sina|} < RV2 =2 o(A).

By using the translation invariance of eigenvalues and the spectral radius es-
timates, it follows that the above result holds for any center ¢, which completes
the proof. |

4. Conclusion

In our experiments, we tested the scalability of the Monte Carlo eigenvalue
estimation. While smaller matrices yielded relatively accurate approximations
fairly quickly, for larger matrices we observed inaccurate estimates that only
improved with a very large number of test vectors. This issue may stem from
the distribution of the random unit vectors. In high dimensions, vectors with
uniformly random components rarely produce extremely large residuals: yet
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such points are precisely what would be needed to improve estimates of the
extremal eigenvalues. Consequently, we find this estimation method to be
more suitable for theoretical settings.
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