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Abstract. In the document-centric modeling of information systems,
the flow of data between individual documents and the collections stored
in the database plays an important role. The types of data that can be
stored in the collections and their constraints are given by the data mod-
els supported by the database management software. We show the se-
mantically fundamental usage difference between the documents and the
database. In addition to managing relational rows, the relational data
model that is the most important starting point also contains a basic
document type, namely the tabular document type, as a representation
of a relation consisting of relatively few rows. With this dual task in
mind, we introduce the extended relational model. In the standard rela-
tional model, each relation name identifies a collection of occurrences of a
single row type. Therefore, in schema-level instructions and operations,
each relation name/table name has a fixed set of attributes (ordered or
unordered). In our paper, we introduce a collection containing tables
of different but similar schemas. Actions can be specified at this level,
which applies to several tables at the same time. The similarity of the
schemes is given by belonging to a formal language over a finite set of
attribute names. Every sentence of a given formal language can be a po-
tential schema. An attribute name can therefore occur more than once
in a specific schema, and the order is fixed.
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An instance of a schema collection consists of a finite number of table
types. This is called an extended relation. Among the formal languages,
we first discuss the use of regular languages. In the case of context-free
languages, we use the language’s terminal and non-terminal symbols as
attribute names. With this, embedded relational schemas can also be han-
dled. We use graph representations of formal languages as schema graphs.
With the help of this, we specify the operations at the schema and instance
level. The definition and implication problems of functional dependencies
are investigated too. We show the close connection with the XML EL-
EMENT declaration. We also specify an implementation solution. After
introduction, we shortly examine its use in the document centric modelling
of information systems. A novel X-merge solution is specified between free
documents and X-relations.

1. Introduction

At the beginning, we make a small detour to the Information Technology
background. Our paper brings together three areas of our research conducted
over the last ten years in the form of a study paper. The two parts related to
technologies, the part related to the topic of database management and infor-
mation systems, are framed by a novel approach to the concept of information,
according to which the owner relates the information carrier to the meaning
during an information event. The proposed approach outlines a formal frame-
work in which information theory, relational data bases, document-centric per-
ception of information systems, and the lingua franca representation language,
namely XML, are integrated. The emergence of computing and digital tech-
nologies brought new possibilities for the physical carriers of information. A
new era in the development of humanity’s infosphere has begun [17] and is
being built at an extraordinary speed. It is very important to emphasize that
any management of information is always related to the representational forms
of the information. Considering that, the carriers of information are the focus
of our paper, in the following we distinguish the carriers of information from
the information itself, and call the carriers of information formations.

After the general information technology detour, we provide a brief histor-
ical overview of the development of the structure of two defining formations of
modern information systems, namely the development of the data models of
databases and the document structures of modern information systems. The
introduction and connection of our new data model to the world of documents
was motivated by this background.

The notion of information, no matter how central it is in information tech-
nologies, is under intense debate and has no agreed definition. Therefore, by-
passing the definition of the notion of information in the article [5] and [6],
the authors placed the emphasis on the carriers of the information. We briefly
outline the basis for this.
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No information exist without material form, it is carried by something,
that can be observed / perceived / shaped. This carrier is called a formation.
During an information event the formation is observed / created, and the in-
formation appears to the observer / creator and the meaning is associated with
the formation.

An information event or instance can be represented as a three-part tu-
ple. The information event consists of an observer/producer, formation, and
referent. The triplet can be temporally connected in three ways:

(a) Sensing (new referent) - Observer - (new) formation (R,O,F)
(b) Formation - Observer - Referent (F,O,R)
(c) Referent - Producer - Formation (R,P,F)
We give two basic laws:
The first basic law: Different meanings require different formations (distin-

guished by the observer/creator).
The second basic law: Detection/creation of a formation means information

if it is also possible to detect a previously created formation to which the
meaning is connected. The second basic law brings in the time dependence of
information and the quality of understanding and utilization. The modeling
of the semantics must also take this into account. This applies equally to
information events in the human sphere and the artificial sphere.

What does it mean that we have these two information processing machines:
the brain and the computer? (See [24, 7]) What do they process as a material
substance? They process the carriers of information, the formations. Infor-
mation processing of the brain is always belongs to some information event.
Usually, information processing inside the computers does not belong to infor-
mation event. It is carried out according to algorithmic semantics. See [15] the
paradox of Denning and Bell.

During the unfolding of the possibilities of /electronic/machine computa-
tion, the development history of database management systems and automated
information systems began at the same time. The representations of informa-
tion in both systems are based on digital coding that matches the capabilities
of computers.

Both systems are characterized by the fact that the past most important
carriers of information, the formations consisting of written characters appear-
ing on “paper”, have been replaced by the possibility of formations based on
digital signals. The use of digital formations was made necessary by computers,
and their use is also supported by computers. In automated information sys-
tems, two types of digital information carriers, i.e. formations, can be clearly
distinguished. One, the digital document is directly related to activities and
procedures, the other, the database is a collection of the most important factual
data.
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Returning to the formations of documents and databases, we also show
the differences in their role in information events. The document format is
suitable for direct display (for human perception) or as input for further tasks
performed by computers. In the case of databases, the necessary sub-formations
(e.g., relational rows) must first be extracted, possibly as a result of additional
operations, and typically queries (which must also be given to the machine
as a formation) must be performed and finally incorporated into a document
formation. Among the many connections between databases and documents,
in this paper, we will examine data insertion and exchange between documents
and databases (in both directions). For this, we build on the information system
modeling based on the [21, 20, 22, 23] document-centric principle. We show
the generalization of the easy-to-use “Merge” function for relational tables in
the case of extended relational tables, which form the central part of the paper.

2. History and background

In the 70-year history of database management systems, the emergence of
new data models marked important milestones. The main task of data models is
to ensure the management of large amounts of data with a predefined structure,
supporting user requirements and efficient implementation.

The first database models in the 60-es were IBM’s hierarchical data model,
and the CODASIL network data model. Codd in his seminal paper [14] em-
ployed a novel tool (the mathematical notion of a “relation”) to address some
of the inadequacies of the prevailing database models [29].

The 1975 ANSI-SPARC[4] report generated “the big debate” on data mod-
els that finally brought in the dominance of the relational data model. The suc-
cess of the relational model was partly due to the simple mathematical model
and the query languages that can be built on it. It soon became dominant, and
standard SQL remains a core database technology. The design theory of the
relational data model, the analysis of its query languages, and the extensions
of the model to complex value and object-oriented directions motivated the re-
search of the next twenty years. A very complete summary of these theoretical
research achievements can be found in the book [2].

The rapid extension of the Internet and the World Wide Web produced a
large amount of data that cannot be easily managed in a relational or object-
oriented database. The semistructured data model was the database commu-
nity’s attempt to apply traditional database management techniques to such
data, see Suciu[27]. After the release in 1998 of the XML 1.0 Recommendation
by the World Wide Web Consortium [30], XML has evolved to become the
de-facto standard format for data exchange over the World Wide Web. XML
was originally developed to describe and present individual documents, it has
also been used to build databases. See the book [1].
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In our paper, we use elements of these two models to build novel data
models. Therefore, we do not mention here Big Data technologies, semantic
data models, the emergence of Data Science, and the AI-based technologies
evolving during the last two decades.

We use the tuple type constructor from the relational model. We will handle
collections of tuples, however, the tuple type can be chosen from several types
over a finite set of attributes. Using a similar technique to the type definition
of the XML DTD, the allowed types are specified by a formal language.

The central part of the article is the introduction of the extensions of the
relational model and the analysis of the new models. In this, we intensively
use the graph representations of formal languages. More details on this can be
found in the Appendix (see Section 9).

In the history of the digitization of information systems, in addition to the
initial processing based on batched, sequential data files, the management of
information was based on the flow of paper-based documents in the systems.
With the advent of direct access storage devices, sequential data files have been
replaced by increasingly complex databases, but paper-based documents have
not yet been replaced by digital documents. On-line transaction management
increasingly enabled the direct integration of database services in the filling
out and electronic management of user and administrative documents. This
also includes documents that can participate in an information event in a vi-
sualization suitable for human perception (screen, print). The development of
technology, along with the digitization of client-server systems, web services,
ERP systems, BPS and everyday administrative, financial and other services in
general, supplemented by mobile technologies, made a very wide range of dig-
ital documents available and accessible. The production of final, displayable
documents can be the result of complex processes, during which documents
are also transferred between computers, which does not constitute an infor-
mation event. The world of the documents outlined above and their situation
are the focus of our paper [22] dealing with the document-centric modeling of
information systems.

This approach is also valid in today’s revolutionary developing data pro-
cessing world, where natural language processing, large language models (LLM)
and generative artificial intelligence tools appear during the production and
processing of documents.

3. Formal definition of extended relations

In the ELEMENT declaration of the XML Document Type Definition, the
Element type can be specified by a regular expression. We use this for defining
a system of tuple types over a finite set of attribute names. Over the finite set U
of attribute names, we assign tuple type <A1:x1,. . ., Am:xm> to the finite list
of attribute names, w = A1, . . . , Am. An attribute name can appear in the list



62 A. Benczúr, B. Molnár and Gy. I. Szabó

more than once, which means that the order of the Ai:xi pairs becomes fixed.
In the instance of data collection, we allow several types, with the constraint
that the list w is an element of a formal language L over a predefined U . In
this way, we introduced the extended relational model, in which an extended
relational table can contain several types of tuples, with the restriction that
the attribute list specifying the tuple type must be a sentence of a given formal
language L. In this paper, we introduce the models based on our previous
papers [28] and [9] for regular languages in Section 4. Then, as a new result
and the extension of our paper [8], the specifications are given for context-free
languages in Sections 5 and 6.

We can also consider our model as identifying the occurrences of several
relational tables with a single name, and using this level for defining the op-
erations. In the paper [18] we found a very early version of querying multi-
databases, which we did not cite in our former papers. The operations of
the relational algebra are defined at the level of the extended relations and
functional dependencies are also investigated. Our main technique is based on
graph representation of formal languages. For readers, not familiar with formal
languages we recommend Révész’s book [26]. Some explanations and further
use of graph representations are given in the Appendix (see Section 9).

In the standard relational data model, attribute names are considered as
sets in schemas. When specifying the row type, the order of the attributes does
not matter, the order of the columns in the table representation form can be
reordered. Therefore, the rows of the table can also be considered as functions,
where the attribute names are the arguments of the function.

The type constructor of the relational model is the tuple constructor. For-
mally, over the finite set of attribute names U = {A1, . . . , An} the set of pairs
{Ai:xi | i = 1, . . . , n} gives the tuple type. A tuple instance is given by the
valuation xi = vi, i = 1, . . . , n.

In our data model, the first deviation from this is that we allow mul-
tiple occurrences of an attribute name in specifying the row type. With
this, the order of the attributes becomes fixed, the type is given by the word
w = A1 . . . Ak, where Ai ∈ U , i = 1, . . . , k. We extend this option to nested re-
lations as well, so that the schema of the nested relation can also be a sequence
of attribute names.

After the informal introduction here we give a formal specification of sorts
and their interpretations using the styles of Complex Values Section from [2].

Let R be the set of relation names, U be the set of elementary attributes,
V be the set of nested attributes. The set of elementary values is denoted by
dom. Sorts, denoted by τ , will be defined by tuple and set constructors as
follows:

τ = dom|tuple|set,
tuple = <A1: τ1,. . . ,Ak: τ k>,
set = {tuple1,. . . ,tuplen},
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where k≥0, n≥0, {A1,. . . ,Ak} are not necessary different attribute names. The
sequence w= A1,. . . ,Ak is the type of the tuple. For Ai ∈ U , τ i is of sort
dom, for Ai ∈ V , τ j is of sort set.

The set of values of sort τ (i.e., the interpretation of τ), denoted [τ ], is
defined by

1. [dom] = dom,
2. [{tuple1,. . . ,tuplej}] = {{v1, . . . , vj} | j ≥ 0, vi ∈ [tuplei], i ∈ (1, j)},

and
3. [ <B1 : τ1, . . . , Bk : τk> ] =

={<B1 : v1, . . . , Bk : vk >| vj ∈ [τ j], j ∈ (1, k)}.

A relation schema of arity k is defined the same way as in the standard
model: R(A1: τ1,. . . ,Ak: τk). The main difference is that an attribute may
have more than one occurrence.

Finite collections of rows of any type can be handled similarly to the semi-
structured data model see [1]. Each line must contain its own description and
structure.

Occurrences of a given attribute A in w = A1 . . . Ak can be characterized by
positional numbers j1, . . . , jk. If we consider the pairs <Aj, j l> as new attribute
names, we can get back the original relational tuple constructor. However, the
second component of the name, the positional number, can be used to produce
the serialization corresponding to the word w.

The XML standard supplemented the semi-structured data model with the
feature that the permitted cases of structures can be defined by formal language
specifications using the XML DTD and XSLT. In the construction of the next
level of our data model, we follow this path.

The semantics of the relational row type can be based on the natural mean-
ing of the attribute names for the user. (This is not essential for the machine).
With the previously introduced word-based tuple constructor, the “linguistic”
meaning of the word can be used to assign structural semantics to the tuple
type. A next level provides a possibility for this, we specify a language over
U∪V , and words belonging to it are the allowed tuple types. Let L(G) be a
language defined by grammar G over the attribute set U∪V . This makes it
possible to consider a set of rows consisting of occurrences of any of the row
types defined by several words w1, w2, . . . , wN as a single extended relation.
This is the second level of the model. At this level, it is also possible to de-
fine, use, and implement features similar to traditional relational operations
and constraints. Naturally, these options strongly depend on the type of the
chosen grammar G. In our paper, we will build and analyze this into regular
and context-free grammars. The construction is based on the labeled graphs
assigned to the grammars.
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Formal languages are specified with generative grammars by a quadruple
G(N, Σ, P, S), where N is a finite set of linguistic (non-terminal) symbols, Σ
is a finite set of terminal symbols, P is a finite set of derivation rules of the
form α ⇒ β, α ∈ (N ∪ Σ)∗, β ∈ (N ∪ Σ)∗, and finally S ∈ N is the initial or
sentence symbol. Applying the rule α ⇒ β to a word xαy ∈ (Σ)∗ results in the
word x β y. The word y can be derived from x, in notation x ⇒ ∗y, if y can
be obtained from x by applying a finite number of rules. The language L(G)
defined by the grammar G is the set of words derivable from S. These words are
called sentences of the language L(G). Formally: L(G) = {w | S ⇒ ∗w}. For
those interested in formal languages, we recommend the book by Révész [26].

We continue the formal specification of tuple and set types with the formal
specification of extended relations. The scheme of the relation R ∈ R over the
finite attribute sets U ∈ U and V ∈ V is defined by the formal languages LR
and {Lv| v ∈ V } over the terminal symbols Σ= U∪V

The occurrence I(R) of the relation R is given in two steps. The first
step consists of a finite number of relation schemas: R{w1, . . . ,wn|wi ∈ LR,
i=1,. . . ,n}. For an embedded attribute B ∈ V occurring in the scheme w, the
selectable types are specified by the language LB. Each occurrence of B has
its own finite set of schemas. In the next step, each scheme w ∈ R has a finite
number of tuple instances of the tuple type specified by w.

In our paper, we will use regular languages in the case of non-nested at-
tributes, while we use context-free grammar for nested attributes. In both
cases, we build the model on two kinds of graph representations: the graph of
finite-state automata and the graph representation of regular expressions. The
traversals of the graphs give the schemes. We use this method of schema specifi-
cation throughout the discussion. We assign extended relation schemes to finite
subgraphs and define operations and dependencies at the graph representation
level.

4. Extended relations defined by regular languages

4.1. First approach: extended relational schemas and instances
specified by regular grammars

This subsection is a brief summary of our first approach from [28]. We start
with the observation that Instances of a particular type of XML Element can
be considered a data collection. The declaration of a DTD Element consisting
of simple values can be considered as a general relational schema definition.
An instance from the extended schema is a tuple type from the language given
by the regular expression. Occurrences of an Element corresponding to a tuple
type of a relation make a relation instance. Such an extension is included in [1].
Our aim was to find a representation of the extended relation that can be used
to define and analyze functional dependencies. We have introduced the dual
language of regular grammars, which can also be specified by traversing the
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vertices of the graph of the finite state automaton belonging to the grammar.
Tuple types are given by the traversals of the graph. Functional dependencies
are analyzed on this graph.

All of these started with a seemingly silly “What if?” question: What if
we looked at the rows of a relational table as if we had obtained them with
generative grammar?

Let us show it with an example:
Let R(A, B, C, D, E) be a relational schema and <A : a, B : b, C : c, D : d,
E : e> be a tuple. Consider the following regular grammar (set of production
rules) S ⇒ a A, A ⇒ b B, B ⇒ c C, C ⇒ d D, D ⇒ e E, E ⇒ ε. It generates
a regular language and produces the tuples of the relation R. The produced
word is abcde, and the relational scheme is given by the sequence of the language
symbols ABCDE as they are used in the production. This way we received two
words: a regular language word and a dual language word. Appendix (see
Section 9) contains some additional discussion on dual languages.

As a generalization, let G(N,T,S,P) be a regular grammar, where N is the
set of non-terminals, T is the set of terminals and S is the start symbol.
P: {A ⇒ bB | ε, A,B ∈ N, b ∈ DomB ⊆ T} is the set of production rules. G
generates the regular language L(G).

The derivation: S ⇒ a1A1, A1 ⇒ a2A2 ,. . . , Ak-1 ⇒ akAk , Ak ⇒ ε Can
be represented as tuple: <A1 : a1, A2 : a2,. . . ,Ak : ak>. The associated
two words are ω = a1a2. . . ak ∈ L(G) and ω′ = A1A2. . . Ak ∈ L(G’), where
G’(N’, N, S, P’) is the dual grammar of G. The dual sentence ω′ ∈ L(G′)
is an extended tuple type. A tuple instance of sort ω′ is called an extended
tuple. The extended relational schema is a finite set of the sentences of the
dual language. An instances of the extended relation contains a finite set of
extended tuples.

Functional dependencies are given by a pair X ⊆ Y of attribute subsets of
a relational schema. A table instance satisfies the given functional dependency
if it contains no two tuples having the same values on X and different values on
Y. In order to extend the notion of functional dependencies, we need a way to
specify ordered substrings from dual sequences. For specifying substrings, we
use the graph of the finite-state automaton (FSA) that can be given directly
from a regular grammar.

Let L(G) be regular language and let M(G) be the graph representation
of its FSA. The node labels along traversals on M(G) (from START to END)
build up the dual language L(G’) associated to L(G).

To define regular functional dependencies on L(G) we can select two subse-
quences as lists of nodes along a path in M(G), as the left and right side of the
dependency, let we state this as the syntactic specification for the dependency.
The details of the selection will be given in Section 5. An extended instance
having the scheme of sentences R ⊆ L(G) satisfies this dependency, when there
exist no two extended tuples in R so, that they are identical in all the attributes
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along the left side subsequences, but on the subsequences selected for the right
side, they differ on at least one position. We proved in [28] that the decision
problem of implication for extended functional dependencies is decidable. The
proof is based on the Chase technique visualized on two colored version of the
M(G) graph.

4.2. Second approach: extended relational schemas and instances
specified by regular expressions

This section is based on our paper [9]. Our previous model in Section 3
could be effectively used for handling functional dependencies (FD). In the
relational model FDs offer the basis for normalization (e.g. Boyce-Codd Nor-
mal Form, 3rd Normal Form), to build a non-redundant, well-defined database
schema. However, the FSA based model cannot handle the join operation
among instances (what is used to define lossless join decomposition) because
the projection of a schema according to a set of nodes or two joined schemas
would not necessarily lead to a new, valid schema. We need an improved model
for regular databases. The main difference is that we use regular languages to
define sequences of attributes as tuple types directly. This approach is closely
related to XML declaration of an Element consisting of a regular expression
over Elements with simple values. Our actual model based upon a graph rep-
resentation for regular expressions. With the help of the graph constructed for
the regular expression, in addition to functional dependencies, the operations
of relational algebra can also be defined, which makes normalization defin-
able. We shall call the selected version of graph representation the schema
graph. This graph is more redundant than the FSA graph, but it supports
subsequence selection and by this, it is capable for handling database schema
normalization. Let us start with the definition of extended relations given by
a regular language.
Definition 1. (Extended Relation for Regular Types, shortly XRelation.) Let L
be a regular language over the set of attribute names U . Let w = w1 . . . wn ∈ L
be a sentence, then we say that w is a regular tuple type over U . Let dom be
sets of data values, then {w1 : a1, . . . , wn : an | ai ∈ dom} is the set of possible
tuples of type w. A finite subset of these tuples is an instance of the regular
relation. We say that the set of the tuple types for all w ∈ L compose the
schema of a regular relation based on L. The tuple types of all tuples in an
instance compose the schema for the instance.

If the regular language is given by a regular expression, then there exist a
great number of algorithms for the efficient construction of a finite automaton
from a given regular expression. There are two main types of them accord-
ing to the working-method of the resulting state machines: non-deterministic
(NFA, e.g. Glushkov-automaton) and deterministic (DFA, e.g. Brzozowski’s
construction). The classical algorithm of Berry and Sethi [10, 3] constructs
efficiently a DFA from a regular expression when all symbols are distinct. We
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use here another algorithm to construct a graph representation from a regular
expression ([9]). We call the graph representation of L the schema graph.

A graph representation of a regular language is an edge-, or node-labeled
directed graph with one entry point and one exit point. Routes from the point
of entry to the point of exit are called traversals. The series of labels in the
traversals make up the language.

Definition 2. (Regular Expression Syntax.) Let U be a finite set of symbols
(alphabet), then a regular expression RE over U (denoted by REU , or simply
RE, if U is understood from the context) is recursively defined as follows:

RE := 0|1|α|(RE)|RE + RE|RE◦RE|RE∗ | RE?, · · · where α ∈ U

The regular expression RE generates the regular language L(RE). L(0)
is the empty language, L(1) is the language consisting of the empty string ε
alone. Note that 0 and 1 are not symbols from the alphabet U , 0 represents
the empty regular expression, 1 represents the empty string ε.

We need a construction for the graph representation of regular expressions.
We will construct a graph from vertices picked from a suitably large symbol set
Γ. We assume that {IN, OUT} ⊆ Γ and by picking a vertex v ∈ Γ we remove
it from Γ. The vertices IN and OUT get the labels IN and OUT, respectively.

Algorithm 1. Construction of the Graph-Representation for a regular expres-
sion according to Definition 2.

Input: regular expression RE (built from the alphabet U ),
Output: vertex labeled digraph G(RE) = (V, E) representing RE.

1. if RE = 0, then V = ∅ and E = ∅.;

2. if RE = 1, then V = {IN, OUT} and E = {(IN, OUT );

3. if RE = A, A ∈ U, then we pick a node v ∈ Γ, set V = {IN, OUT, v},
and E = {(IN, v), (v, OUT)}. We label the node v with A.

4. if RE1 and RE2 are regular expressions, then G(RE1 + RE2) will be
formed by uniting the IN and OUT nodes of G(RE1) and G(RE2), re-
spectively.

5. if RE1 and RE2 are regular expressions, then in order to build the graph
G(RE1 ° RE2) we first rename the OUT node of G(RE1) and the IN
node of G(RE2) to JOIN, then unite them using the JOIN node as a
connecting switch in order to get a more compact graph (Figure 1).

6. if RE is a regular expression and G(RE) = (V, E), then G(RE?) =
= (V,E ∪ (IN, OUT)).
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7. if RE is a regular expression, then in order to build the graph G(RE*) we
first pick a node v ∈ Γ, then we create the graph G*(RE) = G(RE) ∪ {v}
(It means that V* = V ∪ {v}, the node v gets the special label STAR).
Let us denote {a1, ..., an} the nodes with ingoing edge from IN and
{z1, ..., zn} the nodes with outgoing edge to OUT, respectively. Let us
create the graph GIN(RE, STAR) =

⋃n
1 (v, ai) and the graph GOUT(RE,

STAR) =
⋃n

1 (zi, v), respectively. Then G(RE*) = G*(RE) ∩ GIN(RE,
STAR) ∪ GOUT(RE, STAR) ∪ (IN, STAR) ∪ (STAR, OUT). (Figure 2)

8. Output = G(REU).

Figure 1. Concatenation and disjunction

Figure 2. The Kleene-star
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We say that an (IN,. . . ,OUT) walk on G(RE) is a traversal on G(RE). Let
T be the set of traversals on G(RE). Denoting the sequence of node labels from
U along the traversal t by w(t), we can easily prove that L(G)={w(t)|t∈T}.

We shall use the following notations: E, E i denotes regular expressions.
The corresponding schema graphs are G(E) and G(E i), the extended relations
are XR and XRi. We omit the explicit notation of the attribute set U. The
nodes IN, OUT, JOIN and STAR are auxiliary nodes, the other called ordinary
node.

The definition of set operations on XRelation is straightforward, since XRe-
lation instances are sets of tuples. The schema of the instances is the set of the
occurrence of tuple types. It is also possible to define set operations between
XRelations defined by different regular languages. It is based on the fact that
regular languages are closed under set operations.

The benefit of introducing G(E) is that we can use the traversals to se-
lect schemas, or sets of schemas and define subsequence selections. We use
subsequence selection in defining projections, join attributes, functional depen-
dencies and join dependencies.

We should delete nodes from the graph G(E) by shortcutting two nodes on
the same path. Shortcutting is allowed only between ordinary nodes. After a
number of shortcutting, the remaining G(SE) graph is a projection graph on
G(E). Each traversal w on G(E) defines a traversal on G(SE), which gives a
subsequence S(w) of the original attribute sequence.

The projection onto S(w) of the relation instance belonging to relation
schema w is defined in standard way. The projection of a tuple t of sort w onto
S(w) is denoted by t[S(w)]. Note, that the complement of a selection graph is
a selection graph too. The union / intersection of selections can be defined at
the traversal level. From a traversal w on G(E) we select a node if it is on one
/ both of the selection paths. In the case of union, all the nodes participating
in any of the selection graphs will be a node in the united selection graph. The
shortcuts are defined in consecutive order along traversals. Selection graphs
are closed under union, complement, and intersect.

Definition 3. (Join – equijoin by coinciding substrings.) Let XR1 and XR2
be XRelations, and S1E1, S2E2 selection expressions on E1 and E2 respectively
with G(S1E1) = G(S2E2). Suppose that for two traversals w1 ∈ G(E1) and
w2 ∈ G(E2) the condition S1(w1) = S2(w2) holds. The following construction
specifies the join-schema defined by SE1 and SE2:

For two consecutive nodes A and B in S1(w1) = S2(w2), AxB is the path
in G(SE1), and AyB is the path in G(SE2), than the conjunctive joined path
between A and B will be AxyB. The result of conjunctive join of tuples t of
sort w1, s of sort w2 and with t[S1(w1)] = s[S2(w2)] is:
t ▷◁ s[A x y B] = t[A x]o s[y B].

In the disjunctive version, the join graph between A and B will be defined
by A(x + y)B. See the difference in Figure 3.
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Figure 3. Conjunctive and disjunctive join

The definition of functional dependencies on Xrelation needs two consecu-
tive selection graphs. The first one defines the right hand side of the depen-
dency, the second the left side.

Definition 4. (Functional dependency on Xrelations.) We should pick up two
sets of nodes from the graph G(E): one set for the right side, specified by
G(SE), and its schema graph is denoted by G(Y ), another one for the left side,
specified on G(Y ) by a selection graph C and denoted by G(X). The instance
I(XR) satisfies G(X) → G(Y ) if for any t ∈ I(XR) of sort w1, s ∈ I(XR) of
sort w2, and S(w1) = S(w2) and t[X] = s[X] then t[Y ] = s[Y ]. Here t[Y ] and
t[X] denote the projection defined by SE and SY respectively.

Implication problem of extended functional dependencies is decidable by
the use of a special version of the Chase procedure (see [2, 19]).

We don’t go into the discussion of general join dependencies. Closing this
part, we only show here lossless join decomposition property of functional de-
pendencies. The functional dependency G(X) → G(Y ) as denoted in Defini-
tion 4. defines the projection onto G(Y ) and onto the union of selections G(X)
and G(Z), where G(Z) denotes the complement selection of G(Y ).

Claim 1. If an instance I(XR) of the XR defined by G(E) satisfies the func-
tional dependency G(X) → G(Y ) then the equijoin by G(X) of the projections
of I(XR) onto G(Y ) and G(X) ∪ G(Z) gives back the instance I(XR).

5. Extended relations defined by context free languages

The first version of the extended relation schemes given by context-free
languages was published in the IDEAS conference paper [8]. In this section
of the paper, we discuss it in more detail. The new model can be matched
to the joint declaration of several XML Elements, which can be considered
context-free grammar. In the regular case, defining with a dual language (FSA
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graph) and defining with a direct language (regular expression graph) proved
to be equally suitable. For context-free languages, a dual language generated
by a grammar would be obtained, for example, by using the traversal of in-
ternal nodes of derivation trees. However, there would be many traversals to
choose from, and we would get difficult-to-interpret types. A good graphical
representation could not be found either. We were looking for a choice that is
close to the XML DTD element declaration when defining elements together
at multiple levels. In our solution, we use both language symbols and terminal
symbols to define a schema. Terminals will represent an attribute with an or-
dinary value, non-terminal (linguistic) symbols will represent an attribute with
a complex value type. For this, the rules of the context-free language must be
given in a special form. For each non-terminal symbol, a regular grammar or
a regular expression generating a language over terminals and non-terminals is
specified.

For each grammar, we assign a finite state automaton. Edges with a non-
terminal label cannot be traveled, but their endpoints can be connected by the
current version of the finite state automaton belonging to the label of the edge.
We build the extended scheme graphs on the unlimitedly expandable graph de-
fined in this way. Same way as in Subsection 4.2, we can introduce and examine
functional dependencies using the schema graphs. In the construction of the
schema, a terminal symbol represents an ordinary attribute, and a nonterminal
represents an attribute with complex value.

In the case of using regular expressions in rule specifications, the graph
representation is based on the graph representation of regular expressions in
Subsection 4.2. The extension of the graph uses subgraph substitutions for
nonterminal symbols. Subsection 5.2 contains the details.

5.1. Graph representation for context-free languages by RSM ex-
tension

In the case of context-free languages, specifying a graph representation is a
complex task. It is not sufficient to specify a single graph but we need to give
possibly several graphs that call each other recursively. Such a representation
can be find in [25], the graphs of the so-called Recursive Finite State Machine.
RSM behaves as a set of finite state machines (or FSM). Each FSM is called a
box or a component state machine. Edges in the FSM of a box may be labeled
by a box name as well. A box works almost the same as a classical FSM,
but it also handles additional recursive calls while traveling through an edge
with a box label and employs an implicit call stack to call one component from
another and then return execution flow back. RSMs are equivalent to context-
free languages. This kind of computational machine extends the definition
of finite state machines and increases the computational capabilities of this
formalism.
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We introduce recursive state machines (RSM) from [25].

Definition 5. A recursive state machine R over a finite alphabet Σ is defined
as a tuple of elements

(
M, m, {Ci}i∈M

)
where:

• {M} is a finite set of labels of boxes,

• m ∈ M is an initial box label,

• set of component state machines or boxes,
where Ci =

(
Σ∪M, Qi, q0

i , Fi, δi

)
,

• Σ∪M is a set of symbols, Σ∩M = ∅,

• Qi is a finite set of states, where Qi∩Qj = ∅, ∀i̸=j,

• q0
i is an initial state for the component state machine Ci,

• Fi is a set of final states for Ci, where Fi⊆Qi,

• δi is a transition function for Ci, where δi : Qi × (Σ∪M) → Qi.

A version of the RSM construction will be given in the following. To do
this, we start by introducing a special form of context-free grammars. Each
language symbol is assigned a single regular grammar whose terminal symbols
are the terminal and linguistic symbols of the original grammar.

Definition 6. (Extended Context-Free Grammar (ECFG).) G = (N, T, S, P )
is a context-free grammar given by regular languages, where T is the set of
terminal, N is the finite set of non-terminal symbols, P is the set of produc-
tion/derivation rules, and S is the sentence symbol. The right side of produc-
tion rules are given by regular languages: for all p in P , p = {A => w | w ∈
∈ L(GA), A ∈ N, GA = {N ∪ T, N A, PA, SA} is a regular grammar}

This special form of CFG rules gives the possibility to construct an in-
finitely expanding graph for each nonterminal. Similarly, to the schema graph
introduced in Section 4.1, finite versions of the graph can be used as schema
graphs.

During the construction of graph representations for each language symbol,
we shall build the finite state automata by expansion iteration. First, for each
A ∈ N , we construct a finite-state automaton for its rules, the graph BoxA,
with StartA and EndA states of entering and leaving respectively. M A is the
extended graph for nonterminal A. During the expansion we will get graphs
that have edges labeled by elements of T and N . The restriction of graph F on
the terminals is denoted by T F . The restricted graph is an ordinary FSA and
so it defines its regular language, L(T F ). During graph extension we receive a
sequence of growing regular languages for each nonterminal.
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Construction 1. Expanding the FSA graphs for the non-terminals of the
grammar G in Definition 6.

Let’s start with the graph MS = BoxS.
The first sub-language, L(T MS), is obtained by erasing all edges with non-

terminal labels and taking the language generated by the remaining automaton.
If this language is not empty, then each sentence can be directly produced from
S, so it is an element of the language L(G).

Iteration step: We have constructed the Fi graph and the corresponding
L(T Fi) language. Choose an edge (p, q) in Fi with an A ∈ N label. Insert the
graph p → BoxA → q parallel with the A edge. Do this for all occurrences of
edges with label A. This will be the Fi+1 graph. The new language will be
L(T Fi+1). Obviously L(T Fi+1) contains L(T Fi). The vertex labels of graphs
are defined by the non-terminal symbols of regular grammars in the rules.
Repeated use of vertex labels is not a problem with pastes. For example, the
language L(G) can be produced as an expanding series of regular languages
generated by extending the graph MS The procedure is not deterministic, but
it can be made deterministic by always inserting a BoxA graphs in a cyclic
order of N .

Example 1. – two boxes, A and B

Production rules: P: {A ⇒ ap1 , p1 ⇒ Bp2 |b, p2 ⇒ b,
B ⇒ bq1 , q1 ⇒ Aq2 |b, q2 ⇒ a }

Figure 4. Example – two boxes, A and B,
Production rules: P: {A ⇒ ap1, p1 ⇒ Bp2 | | b, p2 ⇒ b, B ⇒ bq1,
q1 ⇒ Aq2 | b, q2 ⇒ a}
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Stopping the extensions, we get a given final version FSA for each nonter-
minal. Each FSA defines one language over terminals and another over N ∪T .
Following the approach in Section 4.1 we can use the FSA-s as extended rela-
tional schema graphs.

We can get the simplest case, the schema graph defined by edges with
terminal labels if we delete all the edges labeled with nonterminal. The result
is an edge-labeled schema graph. It is possible to use it in the same way as the
node-labeled schema graph is used in Section 4.1.

Using the notation in Construction 1 , let MA for A ∈ N denote from now
on the actual version of the graphs in the construction. We call a subgraph from
these graphs an extended schema graph if it satisfies the following restrictions:

Let w = w1 . . . wn be a sequence of edge labels along a traversal in MA from
StartA to EndA We call it an admissible traversal if it is an ordinary sequence
where all labels are terminal or, if a nonterminal B occurs in the sequence, than
there is at least one admissible traversal from the StartB node to the EndB
node of the inserted version of MB .

Claim 2. An admissible sequence can be extended to an ordinary sequence by
a series of substituting non-terminals by admissible traversals. (This process is
equivalent to a derivation tree of the final ordinary sequence.)

The definition of tuple types starts with a selection of an admissible se-
quence. The terminal labels specify simple attributes with elementary value
types, and a nonterminal label specifies possible complex types. Then for each
nonterminal, an admissible traversal should be selected as a tuple type. At the
end, an ordinary sequence gives the flat tuple type. During the substitution
of a nonterminal, we have to decide if a simple tuple is to be included in the
outer tuple, or a set of tuples, as a nested relation value is the choice.

Definition 7. (Shema graphs for Extended relations defined by context-free
languages.) MS is the schema graph of the extended relation defined by CFG
G, and the graphs MA for A ∈ N are the schema graphs for nested attributes.
Schemas are given by tuple types. A tuple type is given by an admissible
sequence.

Example 2. From Figure 4 a sequence of a schema selection is: w = a B b >
a B[b A a] b > a B[b A[a b] a] b.

From this selection, the final ordinary sequence is a b a b a b. The nonter-
minal B may be an attribute with complex vale of tuple-type b A a. Replacing
A in this type by the ordinary sequence a b, we get the schema a B[b a b a] b.

Functional dependencies for extended relations.
The verification of a functional dependency does not depend on the sort

of values. So in the selection of defining attribute sets for an FD, we don’t
take care of the elementary or complex attribute types. The next definitions
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are similar to regular functional dependencies that are presented in [15, 16].
They are syntactically defined on the graph for the accepting FSA of a regular
language, and semantics were given for them on sentences of the language. We
extend this definition to ECFG with nested attributes so that the syntax of
the FDs will be defined on the graphs from Construction 1. We don’t need
to make distinction between attribute types since only the equality of two
values play role in checking satisfaction of FD-s. This new extended functional
dependency is defined on scopes. The scope is related to a nonterminal, A ∈ N ,
and defined on the extended graph MA of grammar GA = {NUT, N A, PA,
SA}. The following definitions specifies the selection of a sequence of edges for
each traversal of the MA. The edge labels give the sequence of attributes.
Definition 8. (Assignment) Let A ∈ N be a non-terminal symbol, GA =
= {N ∪ T, NA, PA, SA} is the regular grammar and let MA = (V, E) be the
schema graph of GA (Definition 7). We call A the scope of selection. We
say that the tuple Y = (Y 1, Y 2), where Y 1 ⊆ E and Y 2 is a sub graph of
the transitive closure of MA is an assignment on MA. Y 1 is taken from non-
recurred part of MA and from the first traversals of cycles, Y 2 refers to nodes
and edges whose are (could be) repeatedly visited during a traversing.

Let Y be an assignment, Y selects a unique subsequence from a given
sentence w = {v1, v2, . . . , vn} ∈ L(GA) as follows:
Definition 9. (Selection on Scope A). Let Y = (Y1, Y2) be an assignment on
MA for the scope A and let w be a traversing on MA. The edges in Y1 will
be selected in order of their exploration (when visited). For each edge e ∈ Y2
when (may be several times) the edge will be closed between its endpoints
during the traversing on w, the first and the last edge of the connecting path
will be selected in their succession order (when visited at all). It may occur that
a labeled edge has been selected already, this case we don’t select duplicates.
The edges in Y2 will give selection by each visiting (if any) during the traversing
on walk (w). The selection will be processed for all edges in Y2 autonomously.
By the end of the edge-selection the labels of the selected edges build up the
(possibly empty) sequence w(Y ) = (vi1 , . . . , vik

) (1≤i1 < i2 < · · · < ik≤n)
(k≫0).

Note: It is possible that more than one edges from Y2 close at the same
time. In this case the first edges are selected in the traversal order; the last
edges are the same.

Let ω = (v1, v2, . . . , vn), be a tuple type defined by the traversing w on
MA. Let t =< v1:x1, w2:x2, . . . , vn:xn > be a tuple of type ω. We interpret
the selected w(Y ) = (vi1 , . . . , vik

) sequence of symbols as list of “attributes”
and the projection of the tuple t to w(Y ) is t[Y ] =< vi1 :xi1 , . . . , vik

:xik
>?. If

w(Y ) = {}, then t[Y ] = {} as well.
Concerning the regular language L(GA) we can define functional depen-

dency over MA, considering the non-terminal A as the scope for the functional
dependency (Definition 9).
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Definition 10. (Scoped Functional Dependency). Let A be a scope in the
ECFG G and let MA be the corresponding graph representation. Let X =
= (X1, X2) and Y = (Y1, Y2) be two assignments (Definition 8) over MA. A
functional dependency defined over MA (FDA) is an expression of the form
X → Y . The R (finite) database instance of A satisfies the X → Y functional
dependency (denoted by R | = X → Y ), if for any two tuples t1, t2 ∈ R of
type w1 and w2 and w1(X) = w2(X), w1(Y ) = w2(Y ) and t1[X] = t2[X] then
t1[Y ] = t2[Y ] also comes true. We call the case Y = MA key dependency.

It is possible to extend the scoped functional dependency with the scoped
FD on a nonterminal attribute B. It is applicable when B is used as un-nested,
simple tuple insertion. For a formal definition, we insert the edge labeled by
B into Y 1 with additional specification of a scoped selection B(Z1, Z2) on B.
The new assignment requests the insertion of the selected sequence in place
of B.

In the case of scope S FDS specifies the functional dependency on the
extended relation, and the in case of other non-terminals FDA specifies con-
straints for the values of the embedded relation values for nested attribute A.

The implication problem for scoped FD-s is decidable based on a version
of the Chase algorithm using two colored versions of the schema graph. The
proof is the same as in the case of regular extended relations in Section 4.1, see
in [28].

5.2. Graph representation for context-free languages given by reg-
ular expressions

This section presents the model based on the second graph representation.
The starting point is the choice of a special form of context-free grammar.
For each non-terminal, we define a regular expression over terminals and non-
terminals as the set of possible substitution rules. The graph representation
uses the construction described in Section 3. Nonterminal nodes are closed
between an IN and OUT node. The IN and OUT nodes of the non-terminal
node can also be connected here with the current graph belonging to the node-
label. A finite subgraph of an infinitely expandable graph is considered a
schema graph. For this, we define specific nested relational schemas.

We can replace the regular grammars in the Definition 6 of ECFG by
equivalent regular expressions. In this section, regular expressions shall be
used to define the rules for extended context-free languages. The following
definition rephrases Definition 6.

Definition 11. (Extended Context-Free Grammar (ECFG)). G = (N, T, S, P )
is a context-free grammar given by regular languages, where T is the set of
terminal symbols, N is the finite set of non-terminal symbols, P is the set of
production/derivation rules, and S is the sentence symbol. The right side of
production rules are given by regular expressions: for all p in P , p = {A ⇒
⇒ w | w ∈ L(EA(N ∪ T )), A ∈ N, EA is a regular expression over N ∪ T}.
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This special form of CFG rules gives the possibility to construct an in-
finitely expanding graph for each nonterminal. Similarly, to the schema graph
introduced in Section 5.1, finite versions of the graph can be used as schema
graphs.

The advantage of using regular expressions instead of regular grammar is
the more convenient and frequent use in data modeling. In particular, it is
the basic formal tool in XML DTD declarations. The following special DTD
structure demonstrates the use of the ECFG. Let select a set T of ELEMENT
names for simple structure, and a second set N for complex structures. The
form of the DTD:

For each x ∈ T the declaration is:
<!ELEMENT x (#PCDATA )>
For each X ∈ N the declaration is:
<!ELEMENT X (EX(N ∪ T)>, where EX(N ∪ T) is a regular expression

over N ∪ T.

Example 3. Let G be the following ECFG :
G={R => (a b (A + B)*), A => (c B*), B => (d A*)},
An associated XML DTD fragment:
<!ELEMENT TABLE(R*)>
<!ELEMENT R (a,b,(A|B)*)>
<!ELEMENT A (c,B*)>
<!ELEMENT B (d, A*)>
<!ELEMENT a (#PCDATA )>
<!ELEMENT b (#PCDATA )>
<!ELEMENT c (#PCDATA )>
<!ELEMENT d (#PCDATA )>

In Construction 2 we shall use the graph constructed by Algorithm 1 for
regular expressions. Similarly, as in the RSM case, we shall extend the graphs
by adding subgraphs for nonterminal nodes. The technical solution is the
elementary extension step.

You can insert the appropriate expression graph in place of a non-terminal
vertex, so you can get newer, longer traversals. All the finite traversals through
the infinite graph obtained by infinitely extending the graph of the sentence
symbol give the sentences of the language.

For each regular expression EA(N ∪ T) defining the production rule for
A, the language LA⊆ (N∪T )∗ denotes the generated language and the cor-
responding graph-representation can be constructed according to Algorithm 1
using U = N ∪ T as input alphabet. During derivation by the grammar G we
substitute the non-terminal A by a sentence from LA, so the vertex-labels set
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by Algorithm 1 will be picked from either N or T. In order to demonstrate the
path that leads to the ordinary attributes of a schema we use the dotted list of
non-terminal symbols that will be used during the derivation process leading
to the given terminal symbol. In the first step we use the start symbol S as the
beginning. In order to create a graph for the extended context-free language
L(G) generated by the grammar G we should repeat the construction for all
vertices, labeled with a symbol X ∈ N. A nonterminal node is considered as
a regular expression in brackets, so it has its own IN and OUT nodes. In the
elementary extension step for node A we add an expression graph connecting
the IN and OUT of A.

Construction 2. (Construction of the infinite graph for an extended context-
free language.) The result is denoted by G∗(EA) graph for each A ∈ N . G∗(EA)
is the full language graph of nonterminal A.

Let G be an ECFG as it is given in Definition 3. We start with the
construction of graphs G(EA) from EA(N ∪ T ) using Algorithm 1 for each
A ∈ N to create the starting expression graphs. Note, that for a nonterminal
node A we use the IN → A → OUT form.

1. Elementary extension step: Suppose that an IN → A → OUT
nonterminal node that occurs in the current version of an extended graph
F has no more paths from IN to OUT . We call this occurrence of A
non-extended nonterminal node. Take a copy of the G(EA) graph and
unite the two IN node and OUT node. See Figure 5.

2. Infinite iteration step: (deterministic version) in a cyclic order on N ,
for a nonterminal A perform all the possible elementary extension steps.
Follow for the next nonterminal.

3. Suspend step: in order to have a finite subgraph, the construction after
a cycle of iteration can be suspended. The result after k cycles is denoted
by Gk(EA) and k is the level of the language graph.

Example 4. Let G({R, A, B},{a, b, c, d}, R, P) be an extended context-free
grammar where P = {R => (a b (A + B)*), A => (c B*), B => (d A*)}.

Figure 6 (left) shows the starting graphs for each nonterminal and Figure 6
(right) shows the first extension step for G(ER).

Instead of using the small G(EA) graph we can use the current version
of the extended graph for nonterminal A in an equivalent way to create the
infinite graph. Our aim is to create a language graph as a representation form
for extended relations and tuple-types.

Definition 12. Schema graph for ECFG extended relations. Let us fix a
version Gk(EA) and delete all non-extended nodes with non-terminal label.
Then, delete all nodes with no outgoing edge repeatedly. The remaining graph
SCHk(EA) is a schema graph for scope A.



Document centric information system 79

Figure 5. Elementary extension steps

Figure 6. Starting expression graphs (left); The first level construction for
G(ER) (right)

The most important property of the schema graph is that any traversal
from its IN and OUT node can be extended to a traversal containing only nodes
with terminal labels. The proof is based on the fact that for any remaining
nonterminal B for the IN→B→OUT path then the extension with SCH l(EB),
must be a schema graph of lower level. The proof can be finished by induction
on the levels of extensions. In the following we omit to use the upper index
denoting the level of a schema graph unless it has some role.

Any traversal of SCH(EA) defines a tuple-type containing possible non-
terminal symbols. Each non-terminal B symbol has its own SCH(EB) schema
graph as it is given in SCH(EA) connecting the IN and OUT nodes of B. The
next step is to select a traversal on this SCH(EB) as a tuple type for B. Still
a data modeling decision remains: one option is to accept the tuple-type for B
as one tuple included in the tuple generated for the outer path; another option
is to define B as a nested table-type.

In the first case, we include each attribute x in the B.x form into the outer
tuple schema as a dotted notational form, in the second case the list of the
attribute is closed in brackets after B, like B (list of attributes).

A more general option for assigning data-type to a non-terminal node B
is to use its given schema graph SCH(EB) and the domain is the set of the
instance of the extended relation. We omit the discussion of this option.



80 A. Benczúr, B. Molnár and Gy. I. Szabó

Definition 13. (Schema graph with nested attributes for ECFG extended
relations.) Let SCH(EA) be the selected schema graph for the scope A ∈ N ob-
tained for ECFG G by Construction 2. Each occurrence of nodes with label B
may represent either a sequence of attributes formed by a traversal of its exten-
sion SCH(EB), or a nested relation type, defined by its extension SCH(EB)
schema graph. In the letter case the bold face version of the nonterminal will
be used. A traversal of SCH(EB) gives a tuple type. Denote the sequence of
node labels before reaching the IN node of B by x, and after leaving the OUT
node by y. If B is of simple version and z is a traversal from its IN node to
OUT node, then the resulting traversal will be y z x. In the nested case, we
get the traversal x B y, and the attribute B is a nested relation of schema z,
or, considering a more general possibility, the value type for B is an ECFG
extended relation defined by SCH(EB).

Example 5. Using the grammar G form Example 2 the sequence of Fig-
ures 6 and 7 is an example how the schema graph SCH(ER) obtained from
G2(ER). Deleting the nodes in red circles result in SCH2(ER) Denoting both
occurrences of B as nested attribute, we can get the nested schema graph by
deleting nodes in blue circles.

Figure 7. A possible schema graph for G({R, A, B}, {a, b, c ,d}, R, P) , where
P= {R => (a b (A + B)*), A => (c B*), B => (d A*)}

Each time of the selection of one or more cycles for a Kleene-star it is
possible to select different traversals for the non-terminals.
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After the selection of the schema graphs and the nested attributes is done,
the graph became a simple graph of a complex regular expression. So all the
definitions used in Part 2. are applicable.

The representation of a legal traveling of the schema graph is a sequence of
terminal and non-terminal symbols. For a nested attribute B the traversal in
SCH(B) is given in brackets [ ]. We use the prefix dot-notation for the labels
of the traversals of non-nested attribute B, like B.x.

There are the following possible generated (ordinary and nested) traversals
from G2(ER):

R(a.b), R(a b A.c), R(a bA.c A.B[d]), and using the Kleene-star of A :
R(a b A.c A.B[d]A.B[d]), . . .

R(a b B[d]), R(a b B[dA.c]), and using the Kleene-star of B :
R(a b B[d A.c A.c]), R(a b B[d A.c A.c A.c]), . . .

and finally using the Kleene-star of R any sequence of the former traversals is
an accepted traversal.

Our aim is the construction of relational schemas with attribute names of
possible having some meaning. So the above notation of the traversals needs the
separation by comma of the node-labels. For the nested attribute the brackets
{ } notation expresses the set type of the domain of the attribute.

Some rewritten form: R(a, b, A.c, A.B{d}, A.B{d}),
R(a, b, B[d, A.c, A.c, A.c])

Functional dependency for ECFG extended relations.

Before defining functional dependency for ECFG extended relations it is
important to make all the type selections for nonterminal nodes. If B has a
simple tuple type, then the list of attributes should be included in the attribute
sequence used to specify a functional dependency. In the case of B having
nested relational type, the attribute B should be considered as an ordinary
member of the attribute list.

Let SCH(EA) be the schema graph for scope A and for all nodes with
nonterminal labels the selection of a simple or bold version is given. After
deleting the schema graphs for bold attributes, the remaining graph is a simple
graph representation of a regular expression in the form given in Algorithm 1.
This way we reduced the definition of functional dependencies to the case in
Section 4.2, Definition 2–4.

6. Instances of extended relations, operations, implementations

6.1. ECFG extended relation instances

Instances of relational databases with complex values consist of a finite
number of complex relational schemas and a finite set of values of the sort
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given by each schema. (See [2] Chapter 20.) Following this, we define the
instance of a nested ECFG extended relation.

For the given ECFG we can suppose, without any loss of generality, that
the language L(A) associated with any non-terminal symbol A is not empty.
Using this assumption, any traversal generated by Construction 1 and 2 can be
extended to a legal schema instance by a finite number of construction steps.
Using the notation in Definition 12 legal schema instances for a scope A are
traversals of the selected schema graphs SCHk(EA). Using the level k of the
schema graph requires that the schema selection remains inside to the current
graph of the construction. See in Figure 7.

Let SCH(G) denote the set of schemas given by language L(G).
A schema instance from SCH(G) specifies a tuple-type. For a non-terminal

symbol B in this sort a tuple-type is given from SCH(B). The associated value
of B in a relation instance can be a simple tuple (un-nested case) or a table as
a set of tuples from this type (nested case). Attributes with terminal names
can take only simply values. Using the dotted prefix notation for denoting the
nonterminal of the current sub-traversal proved to be helpful in defining nested
operations.

Definition 14. Relation instance of the context-free schema SCH(G) is given
by the pair (R,I), where R is a finite subset of SCH(G), and I is the set
of complex-valued relation instances for each element of R. For r ∈ R the
corresponding instance is denoted by I (r).

6.2. Operations on complex relations
Set operations are defined over two instances (R1, I 1), and (R2, I 2). of

the context-free schema SCH(G). The operations have to be defined on the
relation instance level as ordinary set operation. The schema of the result
depends on the results of the operations on pairs of relation instances.

The Union operation: (R1, I 1) ∪ (R , I 2) = (R, I ) where the new
extended schema R = R1 ∪ R2 is the union two subset of schema instances
from SCH(G). Then for each schema r ∈ R1 ∩ R2 the relation instance is I(r)
= I 1(r) ∪ I 2(r). For r ∈ R1 − R2 the relation instance I(r) = I 1(r)
and for r ∈ R2 − R1 the relation instance I(r) = I 2(r).

The Intersect operation: (R1, I 1) ∩(R2, I 2) = (R, I ) , where for each
schema r ∈ R1 ∩ R2 the relation instance is I(r) = I 1(r) ∩ I 2(r). The
schema of the result is R = (R1 ∩ R2) – {r| I 1(r) ∩ I 2(r)= ∅}.

The Minus operation: (R1, I 1) −(R2, I 2) = (R, I ) where for each r ∈
R1 ∩ R2 the relation instance is I(r) = I 1(r) − I 2(r) and for r ∈ R1 –
R2 I(r) = I 1(r).
The schema of the result is R = (R1 − R2) ∪ {r| I 1(r) − I 2(r) ̸=∅}.

Cross-product can be defined over instances from two schemas generated
by context-free grammars G1 and G2. Using the standard notation SCH(G1)
× SCH(G2)= SCH(G1G2), where G1G2 is the grammar of the concatenated
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languages. It is important to require that for the sets of non-terminals N 1 ∩
N 2 = ∅. At the instance level, for (R1, I 1) , and (R2, I 2). form SCH(G1)
and SCH(G2) respectively the cross product is taken for each pair r1 ∈ R1
and r2 ∈ R2.

Remark 1. The common grammar for the cross product is the union of the
two set of production rules and an additional rule R ⇒ R1,R2. The self-cross
product R × R needs a renaming of the non-terminals.

The definition of the projection and join operation needs the subsequence
selection method from Section 4.2.

We should delete nodes from the actual schema graph G(ER) by shortcut-
ting two nodes on the same path. Shortcutting is allowed only between nodes
with terminal or non-terminal labels. After a number of shortcutting, the re-
maining GS(ER) graph is a projection graph on G(ER). Each traversal w on
G(ER) defines a traversal on GS(ER), which gives a subsequence S(w) of the
original attribute sequence.

The projection operation: The projection of (R, I ) onto the subsequence
selection GS(ER) projects each tuple from a relation instance of sort w to S(w).
The schema graph of the projection is GS(ER).

The join operation: Let R1 and R2 be extended relations defined by
schema graphs G(ER1) and G(ER2). The two subsequence selection on the
schema graphs are GS1(ER1) and GS2(ER2) selection expressions on ER1 and
ER2 respectively with GS1(ER1) = GS2(ER2) Suppose that for two traversals
w1 ϵ G(ER1) and w2 ϵ G(ER2)the condition S1(w1) = S2(w2) holds. The
following construction specifies the join-schema defined by SE1 and SE2:

For two consecutive nodes α and β in S1(w1) = S2(w2), α x β is the path
in G(SE1), and α y β is the path in G(SE2), than the conjunctive joined path
between α and β will be α x y β. The result of conjunctive join of tuples t of
sort w1, s of sort w2 and with t[S1(w1)] = s[S2(w2)] is: t ▷◁ s[α x y β] = t[α
x] s[y β].

In the disjunctive version the join graph between α and β will be defined
by α (x + y) β.

The ECFG expression of the join is still an open problem.
The self-join operation: in the special case of R1 and R2 having the

same G(ER) schema graph and one subsequence selection S we further require
that the S(w1) = S(w2) is fulfilled when they are the same subgraph of G(ER).
In this case, the types of result of the disjunctive join remain in the types of
G(ER). Both sub-paths x and y from α to β is a legal sub-path of G(ER).
Depending on the length n of S1(w1) = S2(w2), the number of possible tuple
types of the join is 2n+1. So, the size of the result of the join of two matching
tuples might be as large as 2n+1. The sub-paths to the first node and from the
last node of S1(w1) and S2(w2), might be different in w1 and w2.
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Remark 2. The lossless-join property of decompositions can be defined by the
self-join operation. The lossless-join property of a decomposition according to
an extended functional dependency holds.

The Nest and Un-nest operation: The distinction of a nested and an un-
nested version of a given nonterminal in the schema graph give the possibility
to define these operations. These operations are defined syntactically on two
instances r1 ∈ R and r2 ∈ R. The traversals on the schema graph are the same
for r1 and r2 but the choice of nested version or simple version of traversing
the graph of the same node labeled non-terminal B is different; B in r1 and B
in r2.

The result of Nest(I(r1)) is of sort r2, and for tuples of I(r1) having the
same values on all the attributes except the attributes defined by B, the result
is only one tuple of the common part, and a new attribute B is inserted in
place of B.[attribute list]. (We use here the dotted prefix attribute notation.)
The value for B is a nested table consisting of the sub-tuples of B.[attribute
list]. (We use here the dotted prefix attribute notation.)

In the opposite direction, the result of Un-nest(I(r2)) is of sort r1. The
result consists for each tuple t ∈ I(r2)) as many new tuples of sort r1 as the
number of the tuples in the nested table for B.

See the exact definition of these operations in [2] Chapter 20.2.

Remark 3. A more general nested value of B is the extended relation of sort
G(EB). In this case we need de-grouping them to a set of ordinary tables.
Then for each table the Un-nest operation is to be performed. In the opposite
direction first comes the Nest operation for each relation type from the actual
G(EB) and then the grouping of the nested tables finishes the nesting. Let
the nested value of B is given by the pair (R, I ), where R is a finite subset
of SCH(GB), and I is the set of complex valued relation instances for each
element of R. For r ∈ R the corresponding instance is denoted by I (r). Let the
structure of a tuple with nested value I be x I y. The group-destroy will be
the set of nested tuples {x I (r) y | r ∈ R }. Finally, the full un-nested result
will be the union of Un-nest(x I (r) y) for all r ∈ R.

6.3. Implementation issues

In the following, we outline how ECFG extended relations can be imple-
mented based on standard SQL.

For each schema instance r ∈ R an SQL table has to be created. Operation
specified on the extended relation has to be performed on each created table.
The dotted prefix notation of the nodes uniquely identifies a traversal like the
traversal R(a, b, A.c, A.B{d}, A.B{d}) from Example 4.

The sketch of a possible solution:
Creation of extended relation:
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CREATE E-RELATION <e-relation-name> (
grammar <ECFG>,
level <n>,
TABLES <e-tablename>);
where ECFG is an extended context-free grammar, n is the level of the

schema graph construction. The TABLES refer to the name of auxiliary rela-
tion that stores the traversals defining the actual schema-instance:

CREATE TABLE <e-tablename> (
schema-id INT PRIMARY KEY,
schema-specification VARCAR (256));

The generation of the SQL table instances uses the E-schema table and gen-
erates for each schema-specification a TABLE named by the schema-id and uses
the dotted prefix notation to list the attributes in the corresponding CREATE
TABLE instruction. The value type of a nested attribute should be defined
by the User Defined Data option of SQL. Operations on e-relations are imple-
mented by a special procedure that creates the corresponding SQL statement
for each SQL table related to each row of the E-schemas table. For set opera-
tions, the following statement according to the standard SQL must be created
for each pair of tables with the same schema:

(SELECT * FROM r1)
[UNION| INTERSECT| MINUS]
(SELECT * FROM r2);
The values associated to the individual occurrences of an attribute name

compose a list of values. This makes an option to store tuples in standard
SQL tables with specific values. Let for an attribute b the positions of the
occurrences be n1, . . . ., nk, and the corresponding values be x1, . . . ., xk. The
specific value of attribute b is <x1 : n1, . . . , xk : nk>. Using this form of values
for each attribute name, the original serial form of the tuple can be obtained.
The schema of the tuple uniquely defines this value type for each attribute
name.

7. Documents and X-relations

7.1. X-relations in XML documents

Let us start with an observation on embedded X-relations in special large
XML documents.

From large XML document the occurrences of a special ELEMENT may
form an instance of an extended relation. As an example, the special DTD as
given in Example 6. can be translated to an ECFG grammar. It is possible to
create an E-RELATION schema and load the data to the tables from the XML
document. An ECFG extended relation is a collection of relations each having
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a different schema from the given schema graph. It is a generalization of the
multi-relational model [18]. Here we concentrate on the formal structure of
the tuple-types whilst the aim of the multi-relational model was to find some
common meaning and operations of similar schemas.

Next example is an XML DTD and a document fragment to show the
equivalent representation of the extended relation given by the ECFG G from
Example 2.

Example 6. Let G be the ECFG from Example 2.
G={R => (a b (A+B)*), A => (c B*), B => (d A*)},
An associated XML DTD fragment:
<!ELEMENT TABLE(R*)>
<!ELEMENT R (a,b,(A|B)*)>
<!ELEMENT A (c,B*))>
<!ELEMENT B (d, A*)>
<!ELEMENT a (#PCDATA )>
<!ELEMENT b (#PCDATA )>
<!ELEMENT c (#PCDATA )>
<!ELEMENT d (#PCDATA )>

A fragment of XML document instance representing a long schema R(a b
A[c B[d] B[d A[c] A]c]]). It generates the ordinary schema R(a, b, c, d, d, c,
c), in dotted form R(a, b, A.c, A.B.d, A.B.d, A.B.A.c, A.B.A.c).

In case of no nested type, the corresponding XML fragment:
<R> <a>1</a> <b>2</b>

<A> <c>3</c>

<B> <d>4</d> </B>

<B> <d>5</d> <A> <c>6</c></A><A> <c>7</c></A> </B>

</A>

</R>

In case of a nested type; R(a b A[c B[d] B[d c c]), the bold B specifies
nested relation. The change in the DTD for ELEMENT B is :

<!ELEMENT B (d, A*)|(d, A*)*>

We use here the bold face only to visualize the difference between the se-
lection of a single tuple and the selection of a set of tuple of the type (d, A*).
The corresponding XML fragment:

<R> <a>1</a> <b>2</b>

<A> <c>3</c>

<B> <d>4</d> <d>8</d> <d>9</d> </B>

<B> <d>5</d> <A> <c>6</c> </A> <A> <c>7</c> </A> </B>
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</A>

</R>

7.2. X-relations and free documents

End-user document formats typically contain names and texts that can be
interpreted by end users, which ensures the understanding of individual occur-
rences. In traditional IS modeling the information service is supported by a
separate database by loading or extracting the data into or from end-user doc-
uments. The papers [22] and [23] introduce the free documents, which have an
included structure of specific fields for accepting the actual data. The specific
fields have associated variable names. So a set of free documents are joined
together via common field variables. This gives a hypergraph join-structure of
documents. Free documents are similar to templates in mail-merge systems.
Using an extended relation for merging data with a set of free documents is a
feasible future application of our model.

The term “free documents,” similar to the concept of “free tuples” in tableau
queries, can be seen as documents containing free variables. As these docu-
ments undergo completion, more and more variables get values assigned, ulti-
mately reaching a state where no variables remain that are not valuated. We
refer to them as “ground documents”. A ground document does not contain
free variables, all placeholders are bound to constants in the ground domain.

From one system role’s perspective, some parts of the documents may be
considered finalized, while other parts may still contain free variables requiring
further processing by other system roles. To attain a stable state for an in-
stance of a larger business process within an Information System, all documents
involved must become ground documents.

Figure 8. The development or evolution of documents during processing rep-
resented in hypergraph
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In addition to defining the logical processes for retrieving and modifying
data, the document model should also encompass descriptions of the sequences
of interactions between documents. Furthermore, it should handle collections
of documents.

Distinctions can be made between documents, categorizing them as either
static or dynamic. The structure of a dynamic document has the potential
to change based on the system’s response or indications from system roles.
This response can generate instances of a general dynamic document, leading
to a sequence of free documents. These free documents gradually transform
into ground documents, progressing from generic to intentional forms and ulti-
mately reaching finalization. See on Figure 8. Ground documents exclude free
variables, allowing the names of variables within them to be integrated into the
database’s namespace.

The proposed approach of using the extended relations on document mod-
eling of Information Systems makes it possible for the processed documents
and the activities that process them to use a more complex data structure for
exchanging data with the database.

7.3. Merge structures and X-relations

Mail merge systems are typical examples of the use of free documents.
Mail merge lets you create a batch of documents that are personalized for
each recipient. For example, a form letter might be personalized to address
each recipient by name. A data source, like a list, spreadsheet, or database, is
associated with the document.

A mail merge system, like MS Word, MS Excel, and a mailer such as
Outlook supports the creation a special free document and later merge it with
a list or table. During the creation of the main document you can insert merge
fields as placeholders in the document Each merge field has associated match
field from the table. That way, the system matches the merge fields in the
current document to the fields in the data source.

In a similar way, we can create a free document template and connect it to
a relational table, and perform the merge process tuple by tuple. The names
of the merge fields can be chosen to be the same as the attribute names of the
relational table, for example in the form ≪attribute name≫. The positions
of the merge fields are irrelevant since the matching is performed by attribute
names.

Next, we extend the document merge structure for X-relations.
In a specific free document, the merge fields are inserted using the form

≪attributename≫. A merge field variable can be inserted several times. The
field names form a string in the serial form of the document. (If the document
is two- or multi-dimensional, the fields must be numbered, for example in the
form ≪n, attribute name≫..) This string has to be matched to an X-relational
tuple type according to the sequence of attribute names.
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The proposed free document is constructed using a formal language, sim-
ilar to the XML DTD. The basic lexical elements of the language should be
<text1≪attribute name≫text2>. The grammar only uses the attribute name.
The context is represented by the text field in the document. The placeholder is
≪attribute name≫. The surrounding text is associated to the attribute.name.
The grammar specifying the X-relation is the same as the grammar specifying
the accepted forms of the document for the attribute name values. Thus, the
X-tuple can be extracted from any filled-in (ground document) document, and
an x-tuple can be inserted into a free document.
Formal definition of the X–merge structure

Let the G = (N, T, S, P) context-free grammar given by regular expressions,
where T is the set of terminal symbols, N is the finite set of non-terminal
symbols, P is the set of production/derivation rules, and S is the sentence
symbol. The right side of production rules are given by regular expressions:
for all p in P, p = {A => w | w ∈ L(EA(N ∪ T)), A ∈ N, EA is a regular
expression over N ∪ T}. Further, let SCH(ES) be a finite schema graph for
the scope S.

The extended merge-schema is related to the finite schema graph SCH(ES).
A traversal of SCH(ES) gives (a tuple type as a sequence of terminal and non-
terminal labels w= x1. . . xn. Using the notations from Definitions 12 and 13,
the bold-face version of a nonterminal represent a nested relation with a given
tuple type. For each occurrences of a nonterminal a unique tuple type has been
given by the traversal. The dot notation and the brackets are only introduced
for highlight the structure.

Before starting the creation of a matching document to w, we have to select
a surrounding text for each terminal and nonterminal symbols using the form
<text1≪symbol≫text2>. Bold face nonterminal may have specific surround-
ing. Let d(x)=<x-text1≪x≫x-text2> denote the selected surrounding of label
x. The merge- document associated to w is defined by d(w) = d(x1) . . . d(xn).

The result of merging of the free document d(w) with a tuple t= < x1:v1,
. . . xn:vn> will be the sequence of texts of form

<x i-text1 vi x i-text2> for terminal x i

and < x i-text1 {sequence of the matching of the subtuple of type x i}
x i-text2> for non-bold nonterminal,

and finally for a bold nonterminal xi the resulting serial text will be <xi-
text1 {the serial form of the list of matching tuples of table vi } xi-text2>.

The use of free documents in the X-merge system enables human recipients
to perceive the loaded data in an understandable context and layout. This
makes it possible to associate this formation with the corresponding meaning
during the information event. During the flow and filling of free documents
within the computers, no information events occur, only pre-programmed mu-
tual transformation of formations take place. Here too, the X-merge option
can be used in cooperation with the X-relational database. Function calls and
expressions can be entered in the context of each merge variable.
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Remark 4. The text1 or text2 may contain active parts that compute re-
sults from the inserted values. For example, in xi-text2 we may use aggregate
functions on the inserted table instance vi .

8. Discussion

Summarizing, in our paper, we dealt with the extension of the relational
model in a direction where the goal was to formally specify the family of re-
lational schemas. In the relational model, the relation/table as a collection
consists of data occurrences of the same type. We deviated from this in that,
according to some rule, a collection can consist of several types of data. We
broke with the uniqueness of the attribute names within the schema, but due
to the repeated attribute names, the attribute sequence defining the schema
became ordered. The family of relational schemas was specified using formal
languages over a set of predefined attribute names. The resulting families are
called extended relations. The definition of the schemas and the operations that
can be specified over the families were given using the graph representation of
the formal languages.

We reviewed our models based on the use of regular languages and then
gave a more detailed description on context-free languages. The new contribu-
tion, which we started to develop in the paper [8] at the IDEAS conference, is
based on the specific use of context-free grammars. While in the case of regu-
lar languages we could symmetrically use terminal and non-terminal symbols
to specify a schema, in the case of context-free languages we use both at the
same time, and embedded relational schemas can be assigned to non-terminal
symbols. The detailed specification of the context-free schema graphs, for-
mal specification of extended schemas and instances and detailed definitions of
algebraic operators are the main novel parts of the paper.

It is an important requirement for the use of representational forms of
information that support the presentation suitable for human perception and
understanding, and at the same time enable the specification of processing
algorithms using the structural elements of the representational form. For
example, the table names and attribute names of the relational model only
play identification and reference role for the machine, the operation of the entire
database system is invariant to the one-to-one replacement of these names. For
the users, however, these names provide the possibility of interpretation for the
displayed structures. This property can also be used for extended relations,
with the addition that the grammars can be interpreted by the machine and
have meaning for the users as well.

As another typical example, end-user document formats also contain names
and texts that can be interpreted by end users, which ensures the understanding
of individual occurrences. In traditional IS modeling the information service
is supported by a separate database by loading or extracting the data into or
from end user documents. The papers [22, 23] introduce the free documents,
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which has an included structure of specific fields for accepting the actual data.
The specific fields have associated variable names. So a set of free documents
are joined together via common field variables. This gives a hypergraph join-
structure of documents. Free documents are similar to templates in mail-
merge systems. As an example of data exchange between free documents of
information systems and an X-relational database, we presented in detail the
X-merge solution as a generalization of mail-merge systems using tables or
relational databases. We emphasize that specifying the attribute names of X-
relations can in itself promote human understanding in the display of rows
with attribute names, thus the possibility of a meaningful information event.
This is further confirmed by the textual contexts providing the interpretation
in the X-merge document. The novelty of the solution is that the common
generative grammar makes it possible to match the free merge-document and
the X-relation tuple to any tuple type belonging to the given grammar.

Closing the discussion, we try to put our model to a wider context – we
turn back to the info-sphere. Our ability to rearrange matter and the cognitive
capabilities of handling information developed in cooperation and led to the
development of humanity’s info-sphere. See in Benczúr [6]. The set of informa-
tion carriers that physically exists at any given time and the set of systems and
instruments that ensure its use make up the info-sphere of humanity. In the
possibilities of rearranging the material, we have now reached the point where
– although we cannot make the material do thinking, but - we can make it
perform computation. Rearranging matter and thinking come together: some
activities of thinking (computing) can be done by the matter itself. The special
feature of computer (computing machinery) is that the material it transforms
is “only” the carriers of information. This also means that it becomes useful
and becomes information only in the case of the appropriate meaning assigned
to the carrier. The solution of the assignment is the challenge and task of
informatics.

In the socio-cultural evolution, the emergence of language made a major
transition as a tool that stabilized the transfer of culture between generations
Given the rapid development in technologies to store, process, and distribute
information, and recently the explosion of the data-sphere and the new AI-
based technologies, all these might involvesimilar major cultural evolutionary
effect on humanity as the language did. See in Carmel [13] and Floridi [16].

The eras of the info-sphere’s history are characterized by the spread of
new forms of information representation and the use of new technologies for
information collection. Within this, structures play an important role, which
relate both to the forms of representation and to the information that can be
obtained about real phenomena. In the series of efforts to define the concept
of information and provide a unified theory of information, the approach of
Burgin’s General Theory of Information [11, 12] is based on the central role
of structures. According to his theory, the information of reality is carried
by structures, and the information obtained by perceiving the structures is
represented by artificially created structures.
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Digital technologies have also brought rapid advancement in the use of
structures. It was made possible by handling complex, large-scale structures
managed with formal specifications and algorithms. Our models provide a new
structural level above the traditional and basic relational model, and with this
we have introduced new forms of information representation, and by this giving
a small contribution to this progress.
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9. Appendix

The next short digression is about the graphs that characterize formal lan-
guages and their dual languages. The initial idea of the authors of the article for
the use of schema graphs started from the observation that when applying the
derivation rules of a regular grammar, a step is always characterized by a pair
(B, b), where B is non-terminal and b is terminal symbol. Thus, an accepted
sentence is a series of such pairs, which, given in the form < B1:b1, . . . , Bn:bn >,
gives a relational tuple. Non-terminal symbols as attributes give the tuple-type.
At the same time, the sequence B1, . . . , Bn can be considered as a sentence of
a language above non-terminals. This is the dual language. The dual language
is obtained from the vertex-labeled FSA graph of the grammar as a sequence
of vertex labels of accepting traversals. By exchanging the edges and vertices
of the FSA graph, we can get the FSA graph accepting the dual language.

In the case of context-free languages, we cannot directly adopt this method
to define the dual language and the graph representation of the language. A
left-first traversal of the derivation tree could be used as a dual language, but
this did not lead to a sufficiently usable schema-graph. The RSM representation
option was suitable for representing the language with a graph. It would be
possible to consider the order of the box calls as a dual language with the
help of RSM boxes. We did not choose this, rather we have chosen graph
constructions that use both terminal and non-terminal symbols, which provide
greater expression power. For this purpose, the specification of the context-free
grammar was given in a special form, with one regular language for each non-
terminal over the combined set of non-terminals and terminals. We called this
form of specification an extended context-free grammar, ECFG. In Sections 5
and 6 we built the schema-graphs upon this.
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The ECFG specification does not expand the class of context-free languages
For each regular grammar GA, we can build the extensions of the RSM

graph to produce the corresponding language over terminals N. The notation
of these languages is L(M A).

We can generate regular expressions equivalent to GA grammar and we de-
note them by EA(N ∪ T). By writing the language L(M A) in the place of A in
a regular expression, we get regular expression above the languages. Formally,
by using the notation f(A): A is replaced by L(M A), and extended it to N as
f(N ) denotes the replacement of A for each A ∈ N by L(M A) in a regular
expression. The expression E(f(N) ∪ T) is a regular expression over the lan-
guages {L(M A) | A ∈ N} obtained from the expression E(N ∪ T). The notation
f(A) is interpreted as meaning that any element of the language L(M A) can be
substituted in place of the occurrence of A in the regular expression.

Theorem 1. The languages L(G)= L(M S) and {L(M A)| A ∈ N} satisfy the
following system of equations:

L(M A) = EA(f(N) ∪ T), for all A ∈ N.
Proof. Let we take a specific rule A => w ∈ L(GA), where w = v B z, and
suppose that exists x ∈ L(M B) such that v x z ∈ L(M A). There is a traversal
of the graph M A according to w, including the B edge with non-terminal label.
Any graph can be written in place of the edge B, which can be obtained during
the extension of the graph M B. This means that any sentence of the language
L(M B) can be inserted here as a path, i.e. the whole language L(M B) can be
inserted in place of B. ■

Turing-machines

In the case of both regular and context-free languages, we used the graphs
of the machines that generate the languages. The question arises whether for
Turing-machines could be given a dual language or some graph-based machine.
The transition between the states of T-machines can be viewed as an edge-
labeled directed graph based on the transition table, where the label of the
outgoing edge for the next vertex is given by the input signal. The execution of
the T-machine is shown by a series of vertex labels, which could be considered
as the dual language of the given machine. The operation of the machine is
not specified by the graph given in this way, the walk back and forth on the
tape and the preservation of the cell contents are missing. This is solved by
an architecture that can also be physically implemented with the following
specification of communicating agents.

Consider a deterministic Turing machine T = {Q, [0, 1, ϵ], δ = Q×[0, 1, ϵ] →
→ [0, 1]× [1, −1]×Q, q0, F}, using a binary tape, where Q is the set of states,
δ is the set of transitions, q0 is the initial state, and F is the accepting or final
state. Assign an agent to each state from Q. The agent receives the transition
that apply to it. We can assume that the states are given by serial numbers,
which are also the communication call number of the agent associated to the
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state. A step on the graph is a call between the two agents, which may include
data transfer. Instead of the work tape of the original machine, the cells are
represented by tokens with the corresponding current value. Agents store the
tokens they have and their associated values. The steps of the Turing machine
are implemented by the agents according to the following protocol:

The protocol for an agent’s action:

Agent p receives a token ID t from its caller when it receives the control.
It starts to broadcast a request on the network to obtain the t token and
its associated value. Whoever has the t token sends its value via a direct
connection and deletes it from his token list. It is an exceptional case if no one
has the token. This means reading of the empty value and the creation of a
new token by p is requested. Based on its motion table, p assigns a new value
to token t and stores it in its token list. Let the value of the received token
be x, and the corresponding transition of p: (x, y ,k, q). So p stores the token
(t, y) with the new value it wrote, passes control to q, and sends the token ID
= t+k. Obviously, the agent system performs the same computation on the
tokens as the original T-machine. The result can be obtained by retrieving the
tokens in sequence at the end.

To perform a calculation, the agents must first be loaded with the appropri-
ate transition-table element. After that, n tokens must be created representing
the n-long input. In the end, the tokens should be distributed arbitrarily among
the agents. Agent q0 receives the first token and starts the process.

The efficiency of the implementation depends on the memory management
of the agents. It is advisable to store tokens in an ordered chained list. From
the request broadcast message, everyone can see the ID number of the current
token, and can move a pointer or counter up or down between the two token
numbers in its chain. Communication can also be solved so that only the up-
down value has to be communicated in the broadcast message. If the pointer
reaches the serial number of the stored token, the token is sent. A limitation -
as is usually the case with Turing-machines - is the size of the available memory
per agent. This can be partially resolved by adding more physical component
that implements an agents and by organizing the distribution of the token list.
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[13] Carmel, Yohay et al., Human socio-cultural evolution in light of evo-
lutionary transitions: introduction to the theme issue. In: Philosophi-
cal Transactions of the Royal Society B: Biological Sciences, 378(1872)
(2023).
https://doi.org/10.1098/rstb.2021.0397

[14] Codd, E. F., A relational model of data for large shared data banks.
In: Software Pioneers, Vol. 13. 6., Springer Berlin Heidelberg, 2002, pp.
377–387.
https://doi.org/10.1007/978-3-642-59412-0_16

[15] Denning, P. J. and T. Bell, The information paradox, American Sci-
entist, 100(6) (2012), 470-–477.
https://doi.org/10.1511/2012.99.470

[16] Floridi, L., A look into the future impact of ICT on our lives, The In-
formation Society, 23(1) (2007), 59–64.
https://doi.org/10.1080/01972240601059094

[17] Floridi, L., The Fourth Revolution: How the infosphere is reshaping hu-
man reality. How the infosphere is reshaping human reality. First published
in paperback. Oxford: Oxford University Press, 2016. 248 pp.

[18] Grant, J. et al., Query languages for relational multidatabases, VLDB
Journal, 2 (1993), 153–171.
https://doi.org/10.1007/bf01232185

[19] Hector, G.-M., J. D. Ullman and J. Widom, Database Systems: The
complete book. The complete book. Ed. by J. D. Ullman and J. Widom. Sec-
ond edition, Pearson new international Second edition, Pearson new inter-
national edition. Always learning. Harlow: Prentice-Hall, 2014. 11133 pp.
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