
Annales Univ. Sci. Budapest., Sect. Comp. 58 (2025) 47–55

A CONVEXITY-TYPE FUNCTIONAL INEQUALITY
WITH INFINITE CONVEX COMBINATIONS
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Abstract. Given a function f defined on a nonempty and convex subset
of the d-dimensional Euclidean space, we prove that if f is bounded from
below and it satisfies a convexity-type functional inequality with infinite
convex combinations, then f has to be convex. We also give alternative
proofs of a generalization of some known results on convexity with infinite
convex combinations due to Daróczy and Páles (1987) and Pavić (2019)
using a probabilistic version of Jensen inequality.

1. Introduction

Studying properties of convex functions, in particular inequalities for them,
has a long history, and it is still an active area of research, mainly because of
their importance in many fields of mathematics. For a recent monograph on
some developments in the theory of Jensen-type inequalities (such as Jensen–
Steffensen, Jensen–Mercer, Jessen, McShane and Popoviciu inequalities), and
for applications in information theory, see Khan et al. [4]. When convexity
of a function comes into play, one usually means convexity with finite convex
combinations. In this paper, we deal with a convexity-type functional inequality
with infinite convex combinations, which, in the language of probability theory,
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can be rephrased as Jensen inequality for discrete random variables. This sub-
field of the theory of convex functions seems to be less investigated than that
of convexity for finite convex combinations.

Throughout this paper, let N, Z+, R and R+ denote the sets of positive
integers, non-negative integers, real numbers and non-negative real numbers,
respectively. For a real number z ∈ R, its positive part max(z, 0) is denoted
by z+. For a vector x ∈ Rd, its Euclidean norm is denoted by ∥x∥. An interval
I ⊆ R will be called nondegenerate if it contains at least two distinct points.

Definition 1.1. Let d ∈ N and D ⊆ Rd be a nonempty convex set.
(i) Given t ∈ [0, 1], a function f : D → R is called t-convex if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y), x, y ∈ D.

If f is 1
2 -convex, then it is called Jensen convex or midpoint convex as

well. If f is t-convex for all t ∈ (0, 1), then it is said to be convex. Note
that every function f : D → R is automatically 0-convex and 1-convex as
well.

(ii) Given t, s ∈ [0, 1], a function f : D → R is called (t, s)-convex if

f(tx + (1 − t)y) ≤ sf(x) + (1 − s)f(y), x, y ∈ D.

The following result establishes implications among the convexity notions
introduced in part (i) of Definition 1.1.

Theorem 1.1. Let d ∈ N, D ⊆ Rd be a nonempty convex set and f : D → R.
Then the following two assertions hold.

(i) If f is t-convex for some t ∈ (0, 1), then it is Jensen convex.

(ii) If D is open as well, f is t-convex for some t ∈ (0, 1) and f is bounded
from above on some nonempty open subset of D, then f is convex and
continuous.

Proof. For the proof of part (i), see Daróczy and Páles [2, Lemma 1] or
Kuhn [6]. (For completeness, we note that the compactness assumption of the
domain of f in Lemma 1 in Daróczy and Páles [2] is not needed for the validity
of their result, so we can indeed apply it.)

Next, we prove part (ii). Using part (i), we have that f is a Jensen con-
vex function defined on the nonempty open and convex set D, and, by the
assumption, it is bounded from above on some nonempty open subset of D.
By Theorem 6.2.1 in Kuczma [5], it implies that f is locally bounded at every
point of D as well. As a consequence, the celebrated Bernstein–Doetsch theo-
rem (see Bernstein and Doetsch [1] or Kuczma [5, Theorems 6.4.2 and 7.1.1])
yields that f is convex and continuous on D, as desired. ■
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Now we recall a result due to Daróczy and Páles [2] about infinite convex
combinations. Let us introduce the set

Λ :=
{

(λn)n∈N : λn ≥ λn+1 > 0, n ∈ N, and
∞∑

n=1
λn = 1

}
.

Theorem 1.2. (Daróczy and Páles [2, Theorem 1].) Let (λn)n∈N ∈ Λ, d ∈ N,
D ⊆ Rd be a compact, convex set, and f : D → R+. Then the inequality

f

( ∞∑
i=1

λixi

)
≤

∞∑
i=1

λif(xi)

holds for all xi ∈ D, i ∈ N, if and only if f is convex.

Pavić [10] recently has proven the following similar result.

Theorem 1.3. (Pavić [10, Theorem 2.1].) Let f : [a, b] → R be a convex
function, where a, b ∈ R with a < b. Let xi ∈ [a, b], i ∈ N, and λi ∈ R+, i ∈ N,
be such that

∑∞
i=1 λi = 1. Then

f(ta + (1 − t)b) = f

( ∞∑
i=1

λixi

)
≤

∞∑
i=1

λif(xi) ≤ tf(a) + (1 − t)f(b),

where t ∈ [0, 1] is such that
∑∞

i=1 λixi = ta + (1 − t)b.

As the main result of the paper, given a function f defined on a nonempty
and convex subset of Rd, we prove that if f is bounded from below and it sat-
isfies a convexity-type functional inequality with infinite convex combinations,
then f has to be convex, see Theorem 3.2. We also give alternative proofs
for generalizations of some parts of Theorems 1.2 and 1.3 due to Daróczy and
Páles [2] and Pavić [10], respectively, see Proposition 3.1. In the proof of The-
orem 3.2, results on (s, t)-convexity, while in the proof of Proposition 3.1, a
probabilistic version Jensen inequality (see Section 2) play a crucial role. In
Remark 3.1, we give an example which shows that a converse of Theorem 3.2
does not hold in general.

2. A probabilistic version of the Jensen inequality

In this section, we recall a probabilistic version of the Jensen inequality
(see, e.g., Dudley [3, 10.2.6, page 348]), which will be used for giving alternative
proofs for generalizations of some parts of Theorems 1.2 and 1.3.

Proposition 2.1. (Jensen inequality.) Let ξ : Ω → Rd be a random vector
such that E(∥ξ∥) < ∞, and let D ⊆ Rd be a Borel measurable, convex set such
that P(ξ ∈ D) = 1. Then the following statements hold.
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(i) We have E(ξ) ∈ D.

(ii) For all continuous and convex functions f : D → R, we have that
E(f(ξ)) ∈ (−∞, ∞] and f(E(ξ)) ≤ E(f(ξ)).

(iii) Supposing, in addition, that ξ is discrete as well, for all convex functions
f : D → R, we have that E(f(ξ)) ∈ (−∞, ∞] and f(E(ξ)) ≤ E(f(ξ)).

Proof. We plan to apply Dudley [3, 10.2.6, page 348] to derive the assertions.
First note that, for all continuous functions f : D → R, we have that f(ξ)
is a random variable. Further, if ξ is discrete as well, then, for all functions
f : D → R, we have that f(ξ) is a random variable. Indeed, if {xi : i ∈ N}
denotes the range of ξ, then the range of f(ξ) is {f(xi) : i ∈ N} is also countable,
and, for each j ∈ N, we get that

{f(ξ) = f(xj)} =
⋃

{i∈N:f(xi)=f(xj)}

{ξ = xi},

which is an event, since {ξ = xi} is an event for each i ∈ N and a σ-algebra is
closed under countable union. Consequently, if ξ(ω) ∈ D for all ω ∈ Ω, then
(i)–(iii) directly follow from Dudley [3, 10.2.6, page 348].

In the more general case when P(ξ ∈ D) = 1 holds, let us introduce the
mapping ξ̃ : Ω → Rd,

ξ̃(ω) :=
(
ξ1{ξ∈D} + d01{ξ ̸∈D}

)
(ω) =

{
ξ(ω) if ω ∈ Ω is such that ξ(ω) ∈ D,
d0 otherwise,

where d0 is arbitrarily fixed element of D. Then ξ̃(ω) ∈ D for all ω ∈ Ω, and,
since P(ξ ̸∈ D) = 0, we have

E(∥ξ̃∥) = E
(
∥ξ̃∥1{ξ∈D}

)
+ E

(
∥ξ̃∥1{ξ ̸∈D}

)
=

= E
(
∥ξ∥1{ξ∈D}

)
+ E

(
∥d0∥1{ξ ̸∈D}

)
=

= E(∥ξ∥) − E
(
∥ξ∥1{ξ ̸∈D}

)
+ ∥d0∥P(ξ ̸∈ D) = E(∥ξ∥) < ∞.

Using again Dudley [3, 10.2.6, page 348], we obtain that E(ξ̃) ∈ D, E
(
f(ξ̃)

)
∈

∈ (−∞, ∞] and f
(
E(ξ̃)

)
≤ E

(
f(ξ̃)

)
. Since P(ξ ̸∈ D) = 0, we get that

E(ξ̃) = E
(
ξ̃1{ξ∈D}

)
+ E

(
ξ̃1{ξ ̸∈D}

)
= E

(
ξ1{ξ∈D}

)
+ E

(
d01{ξ ̸∈D}

)
=

= E(ξ) − E
(
ξ1{ξ ̸∈D}

)
+ d0P(ξ ̸∈ D) = E(ξ),

and therefore E(ξ) ∈ D holds as well. Similarly, one can check that E
(
f(ξ̃)

)
=

= E
(
f(ξ)

)
, and consequently (i)–(iii) also follow in the case P(ξ ∈ D) = 1. ■

Note that if d > 1 and D ⊆ Rd is a convex set, then D may be not Borel
measurable. Therefore, the assumption about the Borel measurability of D in
the above proposition is indispensable. Namely, the union of an open ball in
Rd with any non Borel measurable subset of its boundary provides an example
of a non Borel measurable convex set of Rd, cf. Lang [8].
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3. Main results

First, we give alternative proofs for a generalized form of the ‘only if’ part
of Theorem 1.2 and the first inequality of Theorem 1.3 using a probabilistic
version of Jensen inequality (see part (iii) of Proposition 2.1).

Proposition 3.1. Let λi ∈ R+, i ∈ N, be such that
∑∞

i=1 λi = 1. Let d ∈ N,
D ⊆ Rd be a convex set, and let xi ∈ D, i ∈ N, be such that

∑∞
i=1 λi∥xi∥ < ∞.

Then, for any convex function f : D → R, we have that

f

( ∞∑
i=1

λixi

)
≤

∞∑
i=1

λif(xi).

Proof. Let ξ be a discrete random variable with range {xi : i ∈ N} and
distribution P(ξ = xi) = λi, i ∈ N. Since λi ∈ R+, i ∈ N, and

∑∞
i=1 λi = 1,

the distribution of ξ is indeed well-defined. Then, by the assumption, we have
that

E(∥ξ∥) =
∞∑

i=1
λi∥xi∥ < ∞.

Consequently, by part (i) of Proposition 2.1, we get E(ξ) ∈ D, i.e.,

∞∑
i=1

λixi =
∞∑

i=1
xiP(ξ = xi) = E(ξ) ∈ D.

Furthermore, by part (iii) of Proposition 2.1, for any convex function f : D →
→ R, we have that f(E(ξ)) ≤ E(f(ξ)), i.e.,

f

( ∞∑
i=1

λixi

)
= f(E(ξ)) ≤ E(f(ξ)) =

∞∑
i=1

f(xi)P(ξ = xi) =
∞∑

i=1
λif(xi).

This completes the proof of the statement. ■

Next, we present a generalization of the ‘if part‘ of Theorem 1.2.

Theorem 3.2. Let (λn)n∈N, (µn)n∈N ∈ Λ, let d ∈ N, D ⊆ Rd be nonempty
and convex, and let f : D → R be bounded from below. If the inequality

f

( ∞∑
i=1

λixi

)
≤

∞∑
i=1

µif(xi)(3.1)

holds for all bounded sequences xi ∈ D, i ∈ N, then f is convex. Here the right
hand side of (3.1) is either convergent, or else, it diverges to the extended real
number +∞.
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The inequality (3.1) can be reformulated as

f(E(ξ)) ≤ E(f(η)),

where (Ω, A,P) is a probability space, ξ : Ω → Rd and η : Ω → Rd are
random vectors with common ranges {xi : i ∈ N} and with possibly different
distributions P(ξ = xi) = λi, i ∈ N, and P(η = xi) = µi, i ∈ N, respectively.

Proof of Theorem 3.2. First, we check that the left hand side of (3.1)
is well-defined for all bounded sequences xi ∈ D, i ∈ N, that is,

∑∞
i=1 λixi

belongs to D. Indeed, one can interpret the sum
∑∞

i=1 λixi as the expectation
of a discrete random vector ξ with range {xi : i ∈ N} and with distribution
P(ξ = xi) = λi, i ∈ N. Since (xi)i∈N is bounded, there exists K > 0 such that
∥xi∥ ≤ K, i ∈ N, yielding that

∞∑
i=1

∥λixi∥ =
∞∑

i=1
λi∥xi∥ ≤ K

∞∑
i=1

λi = K < ∞.

As a consequence, we have that ξ is integrable, and, by part (i) of Proposi-
tion 2.1, we get that

∑∞
i=1 λixi = E(ξ) ∈ D.

Next, we show that the right hand side of (3.1) is either convergent, or
else, it diverges to the extended real number +∞. Assume that B is a lower
bound for f . Then f −B ≥ 0, and hence the series

∑∞
i=1 µi(f(xi)−B) is either

convergent, or else, it diverges to the extended real number +∞. Therefore,
observing that

∞∑
i=1

µif(xi) =
∞∑

i=1
µi(f(xi) − B) +

∞∑
i=1

(µiB) =
∞∑

i=1
µi(f(xi) − B) + B,

we can conclude that the series
∑∞

i=1 µif(xi) is also either convergent, or else,
it diverges to the extended real number +∞.

Now, suppose that (3.1) holds for all bounded sequences xi ∈ D, i ∈ N.
Let x, y ∈ D be fixed. By choosing x1 := x and xi := y, i ∈ N \ {1}, in (3.1),
we have that

f(λ1x + (1 − λ1)y) = f

(
λ1x +

( ∞∑
i=2

λi

)
y

)
≤

≤ µ1f(x) +
( ∞∑

i=2
µi

)
f(y) =

= µ1f(x) + (1 − µ1)f(y).

Since λi > 0 and µi > 0 for each i ∈ N and
∑∞

i=1 λi =
∑∞

i=1 µi = 1, we
have that λ1, µ1 ∈ (0, 1). Consequently, we get that f is (λ1, µ1)-convex on
D. By Fact on page 135 in Matkowski and Pycia [9], we get that f is Jensen
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convex on D. Here, for historical fidelity, we mention that this result is due to
Kuhn [7] and, then, using the idea in the proof of Lemma 1 in Daróczy and
Páles [2], later Matkowski and Pycia [9] gave an elementary proof of the result
of Kuhn [7]. This together with Theorem 5.3.5 in Kuczma [5] imply that f is
q-convex for all q ∈ Q∩ [0, 1]. (For completeness, we note that the openness of
D in Theorem 5.3.5 in Kuczma [5] is assumed, but, in fact, it is not needed for
the validity of the result.)

By Lemma 2 in Daróczy and Páles [2], for any t ∈ [0, 1], there exist qi ∈
Q ∩ [0, 1], i ∈ N, such that t =

∑∞
i=1 λiqi, and hence

1 − t =
∞∑

i=1
λi −

∞∑
i=1

λiqi =
∞∑

i=1
λi(1 − qi).

Therefore, for any x, y ∈ D and t ∈ [0, 1], we get that

f(tx + (1 − t)y) = f

(( ∞∑
i=1

λiqi

)
x +

( ∞∑
i=1

λi(1 − qi)
)

y

)
=

= f

( ∞∑
i=1

λi(qix + (1 − qi)y)
)

.

Using (3.1) for the bounded sequence qix + (1 − qi)y ∈ D, i ∈ N, and that f is
qi-convex for each i ∈ N, we have that

f(tx + (1 − t)y) ≤
∞∑

i=1
µif(qix + (1 − qi)y) ≤

≤
∞∑

i=1
µi(qif(x) + (1 − qi)f(y)) =

=
( ∞∑

i=1
µiqi

)
f(x) +

( ∞∑
i=1

µi(1 − qi)
)

f(y) ≤

≤

( ∞∑
i=1

µiqi

)
(f(x))+ +

( ∞∑
i=1

µi(1 − qi)
)

(f(y))+ ≤

≤

( ∞∑
i=1

µi

)
(f(x))+ +

( ∞∑
i=1

µi

)
(f(y))+ =

= (f(x))+ + (f(y))+.

This proves that f is bounded from above on the segment [x, y] := {rx +
+(1 − r)y : r ∈ [0, 1]} connecting x and y. All in all, f : D → R is a Jensen
convex function defined on a non-empty and convex set D ⊆ Rd such that, for
all x, y ∈ D, it is bounded from above on the segment [x, y]. To finish the proof,
for any x, y ∈ D with x ̸= y, let us apply the Bernstein–Doetsch theorem (see
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Bernstein and Doetsch [1] or Kuczma [5, Theorem 6.4.2]) to the convex and
open set (x, y) := {rx + (1 − r)y : r ∈ (0, 1)} and the Jensen convex function
fx,y : (x, y) → R, fx,y(v) := f(v), v ∈ (x, y), which is bounded from above.
Then, for all x, y ∈ D with x ̸= y, we have that fx,y is continuous and convex
on (x, y). Since fx,y is a restriction of f onto (x, y), it readily yields that f is
convex on D, as desired. ■

In the next remark, we provide an example, which shows that a converse
of Theorem 3.2 does not hold in general.
Remark 3.1. Let (λn)n∈N ∈ Λ and (µn)n∈N ∈ Λ be such that (eλ1 − 1)/
/(e − 1) > µ1. Let d := 1, D := R and f : R → R, f(x) := ex, x ∈ R. Then f
is convex, and, with x1 := 1 and xi := 0, i ∈ N \ {1}, we get that

f

( ∞∑
i=1

λixi

)
= f(λ1) = eλ1 ,

and
∞∑

i=1
µif(xi) = µ1f(1) + (1 − µ1)f(0) = µ1e + 1 − µ1 = 1 + µ1(e − 1).

Since (eλ1 − 1)/(e − 1) > µ1, we have that the inequality (3.1) does not hold.
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