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Abstract. The Kantorovich’s methodology has been applied extensively
to solve generalized equations using Newton’s method. However, the
mostly sufficient conditions limit the applicability of this method. But the
method may converge even if these conditions are not satisfied. Therefore,
it is important to show convergence to a solution under weaker conditions,
and if possible without additional conditions. Motivated by optimization
considerations and using more precise majorizing sequences we obtain the
following advantages over either studies:
Semi-Local Case: Extended convergence domain under the same or
weaker convergence conditions, and tighter error bounds on the distances
involved.
Local Case: Enlarged radius of convergence and a finer error analysis.
Our approach provides the same advantages in the case of Smale’s theory
for generalized equations.

1. Introduction

In 1948, L.V. Kantorovich published a seminal article for approximating
solutions of nonlinear equations using Newton’s method defined on abstract
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spaces. These results on the one hand provide the existence of a solution as well
as sufficient convergence conditions for finding it using Newton’s method. The
assumptions usually involve the derivative of the operator which is controled
by Lipschitz–Hölder or ever more general conditions.

In 1980, S.M. Robinson [20] extended previous results on nonlinear equa-
tions for solving generalized equations involving parameters. Later Josephy [14]
and Bonnans [7], Dontchev et al. [9, 10, 11, 12] worked on more general gen-
eralized equations defined on the finite-dimensional Euclidean space or Hilbert
or Banach spaces.

Let the letters B1 and B2 stand for Banach spaces. We are concerned with
the problem of finding a solution x∗ ∈ B1 of the generalized equation

(1.1) 0 ∈ g(x) +G(x),

using Newton’s Method (NM) defined by

(1.2) 0 ∈ g(xm)+ g′(xm)(xm+1 −xm)+G(xm+1), for each m = 0, 1, 2, . . . ,

where g : B1 → B2 is a single-valued operator, and G : B1 ⇒ B2 is a set-valued
operator with a closed graph [1, 12, 16].

In this article, we are motivated by optimization considerations and the
elegant study by Adly et al. [2] on the local as well as the semi-local convergence
analysis of NM which is based on conditions involving g′′.

But there are even simple scalar cases when g′′ does not exist limiting the
applicability of NM. Consider, the case when G = 0. Define g : D0 → R
by g(x) = µ1x

2 lnx + µ2x
3 + µ3x

2 if x ̸= 0 and g(x), if x = 0 with µ1 ̸= 0,
µ2+µ3 = 0, and D0 be an interval containing 0 and 1. Notice that x∗ = 1 ∈ D0

solves the equation g(x) = 0. But g′′ is unbounded on D0, since g′′(x) does
not exist at x = 0 ∈ D0. Notice also that the operator g

′′
does not appear on

NM given by (1.2) .

But there are other limitations in general.

Local analysis of convergence:

(e1) : The radius of convergence is small and

(e2) : The error bounds on the distances ∥xm − x∗∥ are pessimistic.

Semi-local analysis of convergence:

(e3) : The convergence domain is small and the limitation (e2) may also be
valid. The following are accomplished by using only the operators on NM:

(e1)
′ : The radius of convergence is extended resulting to a wider choice of

initial points x0 which can be used to ensure convergence of the method.

(e2)
′ : The new error bounds are tighter. Hence the number of iterations to

be executed to arrive at a predetermined error tolerance is reduced.

(e3)
′ : The convergence domain is extended, since the conditions are weak-

ened.
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It is worth noting that these improvements do not require additional condi-
tions and computational effort, since the Lipschitz parameters used are special
cases of the ones used previously. The new methodology requires more precise
majorizing sequences and uses the concept of metric regularity. Moreover, it is
so general that it can be applied to extend the applicability of other methods
[6, 17, 18, 23] and under other conditions such as Smale’s [22].

The rest of the article contains the preliminaries in Section 2, and the local
analysis of convergence in Section 3. The semi-local analysis in Section 4, and
the concluding remarks in Section 5.

2. Mathematical background

Some standard notation, concepts and results are restated in order to make
the article as self-contained as possible. More information about set-valued
operators and metric regularity can be found in [12]. We have adopted the
notations F (x, d) and F [x, d] to stand for the open and closed balls, respec-
tively with center x ∈ B1 and of radius d > 0. If x ∈ B1 and E ⊂ B1.
The distance function from x to E is defined as d(x,E) := inf x̄∈E ∥x − x̄∥. If
E1 ⊂ B1 and E2 ⊂ B2, the excess of E1 beyond E2 is defined as e(E1, E2) :=
:= inf{s > 0 : E1 ⊂ E2 + sB1}. The Hausdorff distance between E1 and
E2 is given as d(E1, E2) := max{e(E1, E2), e(E2, E1)}. A set-valued operator
H : B1 ⇒ B2 relates x ∈ B1 to a subset H(x) ⊂ B2. Moreover, the domain
and graph of operator H are defined by dom(H) := {x ∈ B1 : H(x) ̸= ∅} and
gph(H) := {(x, y) ∈ B1 × B2 : y ∈ H(x)}. Furthermore, the inverse of the
operator H is the set-valued operator H−1 : B2 ⇒ B1 so that x ∈ H−1(y) iff
y ∈ H(x).

An important role in the local as well as the semi-local analysis of conver-
gence is played by the metric regularity property of an operator [12].

Definition 2.1. An operator H : B1 ⇒ B2 is metrically regular at (x̃, ỹ) ∈
∈ gph(H) with modulus ξ > 0 if there exist neighbourhoods N1 of x̃ ∈ B1 and
N2 of ỹ in B2 so that d(x,H−1(y)) ≤ ξd(y,H(x)), for each ((x, y) ∈ N1 ×N2).
The infimum of all parameters ξ is the regularity modulus of H at x̃ for ỹ which
we denote as Reg(H; (x̃, ỹ)).

The metric regularity of an operator H is equivalent to the Aubin property
which is a Lipschitz-type property of the inverse H−1 at (ỹ, x̃) [2]. Note that an
operator H0 : B2 ⇒ B1 is Lipschitz-type at (ỹ, x̃) ∈ gph(H0) with parameter ξ
if there exists a neighbourhood N2 ×N1 of (ỹ, x̃) of B2 ×B1 so that e(H0(y)∩
N1, H0(ȳ)) ≤ ξ∥y − ȳ∥, for each y, ȳ ∈ N2.

Recall that a set-valued operator H1 : B1 ⇒ B2 is said to be Lipschitz
continuous on a subset Ω of B1 if there exists a Lipschitz parameter ℓ > 0 so
that

d(H1(x), H1(x̄)) ≤ ℓ∥x− x̄∥,
for each x, x̄ ∈ Ω.
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The rest of the results in this section are taken from [2] (see also the more
general versions in [1, Theorem 3.2 and Theorem 6.2]). From now we denote by
Ψ : B1 ⇒ B2 a set-valued operator with a closed graph. Let (x̃, ỹ) ∈ gph(Ψ).

Theorem 2.1. Suppose that Ψ is metrically regular at (x̃, ỹ) with modulus
ξ > 0 on a neighbourhood F (x̃, a)×U(ỹ, b) of (x̃, ỹ) for some a > 0 and b > 0.

Pick δ > 0, ℓ ∈ (0, ξ−1) and take θ =
ξ

1− ξℓ
. Let α > 0, β > 0 be parameters

validating

2α+ βθ < min
{
a,

δ

2

}
, β(θ + ξ) < δ, 2γα+ β(1 + γθ) < b

for γ := max{1, ξ−1}. If C : B1 → B2 is Lipschitz conditions on F (x̃, δ) with
parameter ℓ, and Ψ+ C has closed graph, then Ψ+ C is metrically regular on
F (x̃, α)× F (ỹ + C(x̃), β) with modulus θ.

Definition 2.2. Let ρ > 0, ρ̄ > 0. Define the set

(2.1) S = S(Ψ, x0, ρ, ρ̄) := {(x, y) ∈ B1 ×B2 : x ∈ F [x0, ρ], d(y,Ψ(x)) < ρ̄}.

We say that Ψ is metrically regular on the set S with modulus θ > 0 if

(2.2) d(x,Ψ−1(y)) ≤ θd(y,Ψ(x)) for each (x, y) ∈ S

In this case the infimum for all theta > 0 for which (2.2) is valid is denoted by
Reg(Ψ, x0, ρ, ρ̄). Otherwise, we take Reg(Ψ, x0, ρ, ρ̄) = ∞.

Theorem 2.2. Assume Ψ is metrically regular on S with modulus ξ. Choose

ℓ ∈ (0, ξ−1) and take θ =
ξ

1− ξℓ
. If C : B1 → B2 is Lipschitz continuous on

F [x0, ρ] with parameter ℓ, and Ψ + C has a closed graph, then the set-valued

operator Ψ + C is metrically regular on S(Ψ + C, x0,
ρ

4
, ρ̃) with modulus θ for

ρ̃ = min
{
ρ̄,

ρ

5θ

}
.

3. Local analysis of convergence

Let R > 0 be a given parameter. Define ρ = sup{s ∈ [0, R) : F (x∗, s) ⊂
⊂ D0}. The following Lipschitz-type conditions play a role in the local analysis
of convergence for NM

Definition 3.1. Let g : F (x∗, ρ) → B2 be a continuously differentiable op-
erator. We say that the operator g′ is center-Lipschitz continuous at x∗ with
modulus θ > 0 if

(A1) ∥g′(x)− g′(x∗)∥ ≤ L0

θ
∥x− x∗∥

for each x ∈ F (x∗, ρ) and some L0 > 0.
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Definition 3.2. Define ρ0 =
1

2L0
, and ρ∗ = min{ρ0, ρ} and F0 = F (x∗, ρ∗).

Let g : F (x∗, ρ∗) → B2 be a continuously differentiable operator. We say that
the operator g′ is restricted Lipschitz continuous at x∗ with modulus θ > 0 if

(A2) ∥g′(x)− g′(y)∥ ≤ L

θ
∥x− y∥

for each x, y ∈ F0, and some L > 0.

Definition 3.3. Let g : F (x∗, ρ) → B2 be a continuously differentiable opera-
tor. We say that the operator g′ is Lipschitz continuous with modulus θ > 0
if

(A3) ∥g′(x)− g′(y)∥ ≤ L1

θ
∥x− y∥

for each x, y ∈ F (x∗, ρ), and some L1 > 0.

Remark 3.1. (i) It follows by these definitions that

(3.1) L0 ≤ L1

and

(3.2) L ≤ L1.

(ii) Notice that the parameters L0, L and L1 can be chosen as

L0 = θ sup
x∈F [x∗,ρ]

∥g′(x)− g′(x∗)∥
∥x− x∗∥

,

L = θ sup
x∈F0

∥g′(x)− g′(y)∥
∥x− y∥

,

and

L1 = θ sup
x∈F [x∗,ρ]

∥g′(x)− g′(y)∥
∥x− y∥

.

Moreover, if the operator g is twice continuously differentiable then

L1 = θ sup
x∈F [x∗,ρ]

∥g′′(x)∥.

The preceding choice for L̄ is used in the local analysis of convergence for NM
(see [2, Theorem 3.1 in page 399]). However, in view of (3.1) and (3.2), the
parameter L1 can be replaced by the tighter and actually needed parameters
(L0, L). This way we obtain the advantages as already stated in the introduc-
tion. Indeed, we can present the local analysis of convergence for NM.
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Theorem 3.1. Suppose:

(a) The conditions (A1) and (A2) hold; take ρ∗ = g∗(x∗)(x∗)− g(x∗) ∈ B2.

(b) The set-valued operator Ψ(.) = g′(x∗)(.) + G(.) is metrically regular
on the neighbourhood V = F [x∗, ρ] × F [y∗, h] of (y∗, h) with modulus θ. Take
ϵ = min{ρ, h, θh}.

(c) For L̄ = L0+L
2

(3.3) 2L̄ρ∗ < 1.

Define the sequence {sm} for some x0 ∈ F (x∗, ρ∗)− {x∗},

s0 = ∥x∗ − x0∥, s1 =
L0s

2
0

2(1− θL0ρ∗)
,

and each m = 1, 2, . . . as

(3.4) sm+1 =
Ls2m

2(1− θL0ρ∗)
.

Then, the following assertions hold:

(i) The scalar sequence {sm} is well defined in the interval (0, ∥x∗−x0∥], re-
mains in (0, ρ∗) for each n = 0, 1, 2, . . ., is decreasing and is convergent quadrat-
ically to zero.

(ii) For some x0 ∈ F (x∗, ϵ) and ϵ = min{ρ∗, 1, θλ} there exists a sequence
{xm} generated by NM which is quadratically convergent to x∗ so that for each
n = 0, 1, 2, . . .

(3.5) ∥xm+1 − x∗∥ ≤ sn+1

and

(3.6) ∥xm+1 − x∗∥ < c̄ ∥xm − x∗∥2,

where

c0 =
L0

2(1− θL0ρ∗)
, c =

L

2(1− θL0ρ∗)
and c̄ =

{
c0, m = 1

c , m ̸= 1.

Proof. (i) By the condition (3.3), it follows

(3.7) 0 ≤ L0ρ∗ < 1.

In view of (3.7) the sequence {sm} simplifies to s0 = ∥x∗ − x0∥, s1 = c0 s
2
0 and

(3.8) sm+1 = c s2m, m = 0, 1, 2, . . . .
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Then, s1 < s0, s2 < s1, c0 s0 < 1 and c s1 < 1 by (3.3). By induction assume
sm < sm−1 and c̄ sm−1 < 1, then sm+1 − sm = (c̄ sm − 1)sm < 0 for sm > 0.
Thus, the sequence {sm} is decreasing, bounded from below by zero and as such
it is convergent to some limit greater or equal to zero. By letting m → +∞
in (3.4) we see that this limit is zero. Moreover, by (3.8) the convergence is
quadratic, since c̄ ̸= 0. But this is absurd, since x0 ∈ F (x∗, ρ∗)− {x∗}.

(ii) Take ℓ =
L0ρ∗
θ

≤ 1

2θ
, by (3.3). Set θ̄ =

θ

1− θℓ
and v =

ϵ

4θ
. Then, it

follows vθ̄ = v
θ

1− θℓ
≤ 2vθ = ϵ/2 <

ρ∗
2
. So, since θℓ ≤ 1

2
,

v(θ̄ + θ) = vθ
( 1

1− θℓ
+ 1

)
≤ 3θv =

3ϵ

4
≤ ρ∗.

Take γ = max
{
1,

1

θ

}
. If θ ≥ 1, then γ = 1. Consequently,

v(1 + γθ̄) ≤ v(θ + θ) ≤ 3θv < λ.

If θ < 1, then γ =
1

θ
, so

v(1 + γθ̄) = v
(
1 +

1

θ
θ̄
)
= v

(
1 +

1

1− θℓ

)
≤ 3v < λ.

Pick µ > 0 so that

2µ+ vθ̄ <
ρ∗
2
, v(θ̄ + θ) < ρ∗, 2γµ+ v(1 + γθ̄) < λ.

For any operator T : B1 → B2 which is linear and continuous with ∥T∥ ≤ ℓ,
Theorem 2.1 with a = ρ∗, b = λ, δ = ρ∗ asserts ΨT = T + Ψ is metri-
cally regular on F [x∗, µ] × F [y∗ + T (x∗), v] with a modulus θ̄. By hypothesis
x0 ∈ F (x∗, ϵ)− {x∗} and the condition (A1)

∥g′(x0)− g′(x∗)∥ ≤ L0

θ
∥x0 − x∗∥ ≤ L0

θ
ϵ ≤ L0ρ∗

θ
= ℓ.

Thus, Ψ0 = g′(x0) + G = (g′(x0) − g′(x∗)) + Ψ is metrically regular in the

neighbourhood F [x∗, µ]×F [y0, v] of (x∗, y0) with modulus θ0 =
θ

1− θℓ
provided

y0 = g′(x0)(x∗) − g(x∗). Take u0 = g′(x0)(x0) − g(x0). Then, we get in turn
by (A2) that

∥u0 − y0∥ = ∥g′(x0)(x0)− g(x0)− (g′(x0)(x∗)− g(x∗))∥ =

= ∥g(x∗)− g(x0)− g′(x0)(x∗ − x0)∥ =

=

∥∥∥∥∥
1∫

0

[g′(x0 + τ(x∗ − x0))− g′(x0)] dτ(x∗ − x0)

∥∥∥∥∥ ≤

≤ L

2θ
∥x∗ − x0∥2 ≤ L

2θ
ρ∗ϵ ≤

ϵ

4θ
= v,
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so u0 ∈ F [y0, v]. But the operator Ψ0 is metrically regular on F [x∗, µ]×F [y0, v].
Thus, we get in turn

d(x∗,Ψ
−1
0 (u0)) ≤ θ0d(u0,Ψ0(x∗)) ≤ θ0d(u0, y0) ≤ θ0

L

2θ
∥x∗ − x0∥2 =

=
L

2(1− θℓ)
∥x∗ − x0∥2 ≤ L

2(1− θℓ)
s20 = s1.

By the choice of ℓ and (3.3), we get

d(x∗,Ψ
−1
0 (u0)) <

1

2ρ∗
∥x∗ − x0∥2.

Hence, we can pick x1 ∈ Ψ−1
0 (u0) which satisfies

∥x∗ − x1∥ ≤ s1

and

∥x∗ − x1∥ <
1

2ρ∗
∥x∗ − x0∥2.

Notice also that

g′(x0)(x0)− g(x0) = u0 ∈ Ψ(x1) = g′(x0)(x1) +G(x1).

So, x1 is a Newton iteration produces by (1.1) if m = 0. Moreover, the choice
of x0 gives

∥x∗ − x1∥ <
1

2ρ∗
∥x∗ − x0∥2 ≤ 1

2
∥x∗ − x0∥ < ϵ.

Concluding to x1 ∈ F (x∗, ϵ). The preceding calculations can be repeated with
xm−1 replacing x0 to obtain xm. Then, we get

∥x∗ − xm∥ ≤ sm

and

∥x∗ − xm∥ <
( 1

2ρ∗
∥x∗ − x0∥

)2m−1

∥x∗ − x0∥ ≤

≤
(1
2

)2m−1

∥x∗ − x0∥,

showing the quadratic convergence of the sequence {xm}. ■

Remark 3.2. (i) The corresponding convergence condition and sequence {s̄n}
given in Theorem 3.1 in [2] are

(3.9) 2L1r < 1

and

(3.10) s̄0 = ∥x0 − x∗∥, s̄n+1 =
L1

2(1− θL1)
s̄2n.
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provided that the operator g is twice differentiable. Then, it follows from (3.1),
(3.2), (3.3) and (3.9) that

(3.11) 2L1r < 1 =⇒ 2L̄ρ∗ < 1

but not necessarily vice versa unless if L0 = L = L1. Moreover, by (3.1), (3.2),
(3.4) and (3.5) we deduce

(3.12) 0 ≤ sn ≤ s̄n for each n = 1, 2, . . . .

Items (3.11) and (3.12) justify the advantages as already stated in the intro-
duction. It is also worth noticing that

L0 = L0(θ, x∗, ρ),

L = L(θ, x∗, ρ0)

and
L1 = L1(θ, x∗, ρ).

Moreover, in practice the computation of the parameter L1 requires that of L0

and L as special cases. Consequently, the advantages of the new approach are
obtained under less computational cost, since only g′ is computed instead of
g′′ which may not even exist.

(ii) Theorem 3.1 in [2] improved a related result by A. Dontchev [10, see
Theorem 1] in the sense that the domain of initial points x0 to assure con-
vergence is explicitly determined. Therefore our Theorem 3.1 improves also
Theorem 1 in [10].

4. Semi-local analysis of convergence

The role of x∗ is exchanged by x0 in this section. Define

λ = sup
{
s ∈ [0, R) : F (x0, s) ⊂ D

}
.

As in the local case certain Lipschitz-type conditions are developed that play
a role in the semi-local analysis of convergence for NM.

Definition 4.1. Let g : F (x0, λ) → B2 be a continuously differentiable op-
erator. We say that the operator g′ is center-Lipschitz continuous at x0 with
modulus θ > 0 if

(C1) |g′(x)− g′(x0)∥ ≤ M0

θ
∥x− x0∥

for each x ∈ F (x0, λ), and some M0 > 0.
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Define λ0 =
1

M0
and F1 = F (x0, λ∗), where λ∗ = min{λ, λ0}.

Definition 4.2. Let g : F (x0, λ∗) → B2 be a continuously differentiable op-
erator. We say that the operator g′ is restricted Lipschitz at x0 with modulus
θ > 0 if

(C2) ∥g′(x)− g′(y)∥ ≤ M

θ
∥x− y∥

for each x, y ∈ F1, and some M > 0.

Definition 4.3. Let g : F (x0, λ) → B2 be a continuously differentiable oper-
ator. We say that the operator g′ is Lipschitz continuous at x0 with modulus
θ > 0 if

(C3) ∥g′(x)− g′(y)∥ ≤ M1

θ
∥x− y∥

for each x, y ∈ F (x0, λ) and some M1 > 0.

Remark 4.1. The comparisons between the parameters M0,M,M1 and M̄1 as
identical to L0, L, L1 and L̄1, respectively are omitted (see Remark 3.1), where

M̄1 = θ sup
x∈F [x0,λ]

∥g′′(x)∥,

provided that g′′ exists and is bounded.

Next, we define the scalar sequence {sm} for s0 = 0, s1 = ß, for some ß ∈

∈ [0, λ] to be determined later, s2 = s1 +
M0(s1 − s0)

2

2(1−M0s1)
and for each m =

1, 2, . . .

(4.1) sm+2 = sm+1 +
M(sn+1 − sm)2

2(1−M0sm+1)
.

The sequence {sm} is shown to be majorizing for {xm} in Theorem 4.1. How-
ever, we first develop a general auxiliary convergence result for it.

Lemma 4.1. Suppose that
1

M0
≤ λ and for each m = 0, 1, 2, . . .

(4.2) M0sm < 1.

Then, the sequence {sm} generated by the formula (4.1) is nondecreasing as

well convergent to some s∗ ∈
[
0,

1

M0

]
.

Proof. The sequence {sm} is convergent to some ß∗ ∈
[
ß,

1

M0

]
, as nonde-

creasing, and bounded from above by
1

M0
. ■
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The limit ß∗ is the unique least upper bound of the sequence {sm}.
For θ > 0, ϵ > 0 and y ∈ N1 with F [y, ϵ] ⊂ N1, define the parameter

ß = ß(θ, y) := θd(0, g(y) +G(y)).

The semi-local analysis of NM is developed in the next result.

Theorem 4.1. Let x ∈ N1, λ > 0, λ̄ > 0 such that the following conditions
hold:

(i) The conditions (C1) and (C2) are valid.

(ii) Ψ = g′(x) +G is metrically regular on S = S(Ψ, x, 4λ, s) with modulus
θ > Reg(Ψ, x, 4λ, s).

(iii) d(0, Q(x)) < s, where Q = g +G.
and the conditions of the Lemma 4.1 hold.

Then, the sequence {xm} is well defined, in N1, remains in N1 for each m =

= 0, 1, 2, . . . and is convergent to a solution x∗ ∈ F
[
x0,

1

M0

]
of the generalized

equation (1.1) so that

(4.3) ∥xm+1 − xm∥ ≤ sm+1 − sm

and

(4.4) ∥x∗ − xm∥ ≤ s∗ − sm.

Proof. Simply exchange the sequence {sm} by the sequence {tm} used in [2,
Theorem 3.4, page 401] which is defined for t0 = 0, t1 = ß and eachm = 1, 2, · · ·
by

(4.5) tm+1 = tm +
M1(tm − tm−1)

2

2(1−M1tm)
. ■

Remark 4.2. As in Remark 3.2 a comparison is given between the present re-
sults and the corresponding ones in [2, see Theorem 3.4]. We have the following
improvements:

(I1) The conditions (C1) and (C2) are weaker than (C3) (including the case
when M1 is replaced by M̄1).

(I2) The convergence condition in [2, Theorem 3.4 ] can be written as

(4.6) p = ßM1 ≤ 1

2
.

This is a Kantorovich-type condition for the convergence of NM. Clearly, the
conditions of the Lemma 4.1 are weaker than (4.6). However, there is a more di-
rect comparison. In a series of papers [3, 4, 5], we weakened the Kantorovich suf-
ficient semi-local convergence condition [15] for solving the equation g(x) = 0.
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But the same majorant sequence {sm} is used (see e.g. [4]) and the correspond-
ing convergence condition is

(4.7) p0 = ßK ≤ 1

2
,

where K =
1

8

(
4M0 +

√
K0M0 + 8M2

0 +
√
M0K0

)
, where K0 = M or M1.

Notice that

(4.8) K ≤ M1,

so

(4.9) p ≤ 1

2
=⇒ p0 ≤ 1

2

but not necessarily vice versa unless if K = M1. Implication (4.9) shows
that the convergence conditions of the present paper are weaker than those in

[2, 13, 15, 17]. Moreover, notice that as
M0

M1
→ 0, then

p0
p

→ ∞. Therefore,

the new conditions can be infinitely many times weaker than (4.6). Examples

where
M0

M1
→ 0, M < M1, M0 < M1 can be found in [3, 4, 5, 6].

(I3) Suppose that conditions (4.6) and (4.7) hold. Then, by (4.1), (4.5),
and the definition of M0,M and M1 a simple inductive argument implies

0 ≤ sm ≤ tm,

0 ≤ sm+1 − sm ≤ tm+1 − tm

and

s∗ = lim
m→+∞

sm ≤ t∗ = lim
m→+∞

tm,

where t∗ =
1

M1
(1 −

√
1− 2p). Thus, the new error estimates (4.3) and (4.4)

are tighter than the ones in [2, 13, 15, 17] using the sequence {tm}. Notice also
that since s∗ ≤ t∗, the new information about the location of the solution is
more precise. Moreover, the Tapia-type error bounds given [13, pages 402 and
403] can certainly be written in the new and more precise by simply exchanging
(4.9), {tn}, {t∗}, p by (4.7), {sn}, {s∗} and p0, respectively. Furthermore, the
analysis of NM under Smale conditions [8, 22] can also be immediately extended
under the new methodology in a similar way. We leave the details to the
motivated reader.

5. Conclusions

The local as well as the semi-local analysis of convergence for NM using
the Kantorovich theory for solving the generalized equation (1.1) exhibits the
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limitations (e1)− (e3) as listed in the Introduction. In the present article moti-
vated by optimization considerations; using more precise majorizing sequences
and only conditions on the operators on NM we extended the applicability of
NM as stated in (e1)

′ − (e3)
′ (see also Remark 3.2 and Remark 4.2). This way,

we can solve a larger class of problems than before [2, 13, 15, 17]. In our future
research the Lipschitz-type conditions on g′ will be replaced by generalized con-
tinuity conditions [6]. This way the applicability of NM shall be extended even
further. It is worth noting that the methodology of this article can be used to
extend the applicability of methods other than Newton’s [6, 15, 16, 17, 21, 23]
along the same lines.
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Competing interests: The authors declare that they have no conflicts of
interest.

References

[1] Adly, S., R. Cibulka and H.V. Ngai, Newton’s method for solving in-
clusions using set-valued approximations, SIAM J. Optim., 25(1) (2015),
159–184. https://doi.org/10.1137/130926730

[2] Adly, S., H. Van Ngai, and V.V. Nguyen, Newton’s method for
solving generalized equations: Kantorovich’s and Smale’s approaches, J.
Math. Ana. Appl., 439(1) (2016), 396–418.
https://doi.org/10.1016/j.jmaa.2016.02.047

[3] Argyros, I.K., On the Newton–Kantorovich hypothesis for solving equa-
tions, J. Comput. Math., 169 (2004), 315–332.
https://doi.org/10.1016/j.cam.2004.01.029

[4] Argyros, I.K. and S. Hilout, Weaker conditions for the convergence of
Newton’s method, J. Complexity, 28 (2012), 364–387.
https://doi.org/10.1016/j.jco.2011.12.003

[5] Argyros, I.K. and S. Hilout, On an improved convergence analysis of
Newton’s method, Appl. Math. Comp., 225 (2013), 372–386.
https://doi.org/10.1016/j.amc.2013.09.049

[6] Argyros, I.K., The Theory and Applications of Iteration Methods, second
edition, Engineering series, Boca Raton, Florida, USA, 2022.
https://doi.org/10.1201/9781003128915

[7] Bonnans, J.F., Local analysis of Newton-type methods for variational
inequalities and nonlinear programming, Appl. Math. Optim., 29 (1994),
161–186. https://doi.org/10.1007/BF01204181

[8] Dedieu, J.P., Points Fixes, Zéros et la Méthode de Newton, Math-
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