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Abstract. In this paper, we study the screw line function on function
fields and we give special values of its norm. Furthermore, we derive some
interesting summation formulas.

1. Introduction

1.1. Background

The famous Riemann zeta function ζ(s) is a function of a complex variable
s = σ + it, defined by

ζ(s) =

∞∑
n=1

1

ns
,

which converges for ℜ(s) = σ > 1. This function can be extended meromor-
phically to the entire complex plane C. The zeta function ζ(s) is holomorphic
everywhere except for a simple pole at s = 1. The Riemann ξ-function is
defined as:

ξ(s) =
1

2
s(s− 1)πs/2Γ(s/2)ζ(s),

and satisfies two functional equations ξ(s) = ξ(1 − s) and ξ(s) = ξ(s), where
Γ(s) is the gamma-function and the bar denotes the complex conjugate. The
Riemann Hypothesis (RH, for short), a famous open problem, claims that all
non-real zeros of ζ(s) lie on the critical line ℜ(s) = 1/2 which is equivalent to
all the zeros of ξ(1/2− iz) being real.
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In [4], Krêın introduced the class Ga which is called the screw functions
consisting of all continuous functions, g(t) on the interval (−2a, 2a) for 0 <
< a ≤ ∞ such that g(−t) = g(t) and the kernel function

Gg(t, s) = g(t− s)− g(t)− g(−s) + g(0),

is nonnegative definite on (−a, a), i.e.,

(1.1)

n∑
i,j=1

Gg(ti, tj)ξiξj ≥ 0

for all n ∈ N, ξi ∈ C and |ti| < a (i = 1, 2, ..., n). In literature, a kernel
satisfying (1.1) is often referred to as a positive definite kernel or semi-positive
definite kernel. However, in this note, we refer to such a kernel as a non-
negative definite kernel. If g(t) is a screw function, then there exists a Hilbert
space H and a continuous mapping t → x(t) from R into H such that the inner
product

⟨x(t+ u)− x(u), x(s+ u)− x(u)⟩H
is independent of u ∈ R for all t, s ∈ R. Moreover, the equality

(1.2) ⟨x(t)− x(0), x(s)− x(0)⟩H = Gg(t, s)

holds. Consequently,
∥x(t)− x(0)∥2H = −2g(t)

under the condition g(0) = 0. A mapping x : R → H endowed with the
translation-invariance described above is called a screw line. In [7], Suzuki
investigated the screw line corresponding to the screw function associated to
the Riemann zeta-function.

In the present paper, we extend Suzuki’s work (see [7]) to function fields.
Additionally, we study special values of the norm for the screw line. Finally,
we derive some interesting summation formulas.

Consider a function field K with a finite field of constants Fq and let X
be its smooth projective algebraic curve of genus g defined over Fq. For more
details, refer to [5]. The zeta-function of K is defined as follows

ZK(T ) =
+∞∑
n=0

CnT
n =

∏
D prime

(
1− T deg(D)

)−1

,

where Cn = # {D ∈ Div(K); D ≥ 0, deg(D) = n}; ZK(T ) is actually a ratio-
nal function

(1.3) ZK(T ) =
L(T )

(1− T )(1− qT )
,
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where L(T ) factors in C[T ] as

(1.4) L(T ) =

2g∏
j=1

(1− αjT ) ∈ Z[T ].

The special value L(1) =
∏2g

i=1(1−αi) is the class number ofK, denoted by hK .
The complex numbers α1, . . . , α2g are algebraic integers and can be arranged
so that αjαg+j = q holds for j = 1, . . . , g. Since the Riemann hypothesis for
function fields (abbreviated to RH) proved by Weil [9] states that αi, i =
= 1, . . . , 2g have absolute value q1/2, we may order the indices j ∈ {1, . . . , g}
so that αg+j = αj , and we then can write αj = q1/2 exp(iθj) with θj ∈ [0, π].

Now, we define the (classical) zeta function ζK of K as follows: for s ∈ C,
we substitute T with q−s in ZK(T ) to get the function

ζK(s) = ZK(q−s) =

+∞∑
n=0

Cnq
−ns,

which converges for ℜ(s) > 1. We define the following completed zeta function

(1.5) ξK(s) := qs(1− q−s)(1− q1−s)q(g−1)sζK(s) = qgsL(q−s),

which is an entire function of order one, whose zeros coincide with the zeros of
ζK(s). Moreover, ξK(s) satisfies the functional equation

ξK(s) = ξK(1− s).

By taking the logarithm and subsequently differentiating both sides of (1.5),
we obtain

(1.6) (log ξK(s))′ = g log q +
∑
q̃

αK(q̃) log q̃

q̃s
, ℜ(s) > 1,

where αK(q̃) =
∑2g

j=1

αn
j

n , and q̃ = qn.

Let us recall that all zeros of the zeta function ζK lie in the critical strip
0 ≤ ℜ(s) ≤ 1, and they are symmetric with respect to the real axis and the
line ℜ(s) = 1/2. Note that the RH in this context is equivalent to saying that
the zeros of ζK lie on the line ℜ(s) = 1/2. Let Z(K) be the set of the zeros ρ
of ζK . Using (1.3) and (1.4), we obtain

Z(K) =

{
1

2
± i

θj
log q

+ i
2kπ

log q
, j ∈ {1, . . . , g}, k ∈ Z

}
.
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1.2. Main results

In this subsection, we present the main results of this paper.

Let us define the screw function on function fields gK(t) to be the even
real-valued function on the real line by 1

gK(t) = tg log q +
∑
q̃≤et

αK(q̃) log q̃

q̃1/2
(t− log q̃)

for nonnegative t, where αK(q̃) is defined in (1.6). Let Gt,K(z) defined for
z ∈ C by

(1.7) Gt,K(z) =
i(1 +DK(z))

2
√
π

Bt,K(z),

where for a real positive t

(1.8) Bt,K(z) =

=
∑
q̃≤et

αK(q̃) log q̃

q̃1/2
eiz(t−log q̃) − 1

iz
−
(
eitz − 1

iz

)(
ξ
′

K

ξK
(1/2− iz)− g log q

)
and

(1.9) DK(z) = EK(z)/EK(z),

with

(1.10) EK(z) = ξK(1/2− iz) + ξ
′

K(1/2− iz).

We note that for a real negative t, one has Gt,K(z) = G−t,K(z).

In Section 2, we define and study the screw line associated to the screw
function on function fields gK(t) (see Proposition 2.4 and Corollary 2.1) similar
to that given in [7] (for the classical Riemann zeta function).

In Section 3, another expression of ∥Gt,K∥2L2(R) is given in the following
theorem.

Theorem 1.1. Assume that ξK(1/2) ̸= 0 and let t ≥ 0. We have

∥Gt,K∥2L2(R) = 2 log q

tg + [t/ log q]∑
n=1

2g∑
j=1

cos(nθj)(t− n log q)

 ,

where [x] denoted by the integer part of x.

1Our gK(t) differ from that considered by Suzuki [6, Equation 1.1] by a sign −.
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As an application of Theorem 1.1 we study special values of ∥Gt,K∥2L2(R)
at some points (see Corollary 3.1). Furthermore, we derive some interesting
formulas (see Theorem 3.1 and Proposition 3.3). As a consequence of Proposi-
tion 3.3, we get the following interesting summation formulas.

Corollary 1.1. Assume that ξK(1/2) ̸= 0 and 4minj(θj/ log q)
2 > 1. We have

g∑
j=1

∑
k∈Z

cos(θj)

(θj + 2kπ)2
=

−g

2
.

Finally, in Corollary 3.2 we determine an upper bound of ∥Gt,K∥2L2(R) for
any t ≥ 0 .

2. Preliminary

The purpose of this section is to give some results for the screw function
and screw line associated to the zeta function on function fields similar to that
given in [6, Pages 1449, 1452] and [7] for the classical Riemann zeta function.

Let us recall that the screw function on function fields gK(t) to be the even
real-valued function on the real line by

(2.1) gK(t) = tg log q +
∑
q̃≤et

αK(q̃) log q̃

q̃1/2
(t− log q̃)

for nonnegative t, where αK(q̃) is defined in (1.6).

In the following proposition, we study some proprieties of gK(t).

Proposition 2.1.

(i) If ℑ(z) > 1/2, we have

+∞∫
0

gK(t)eiztdt = − 1

z2
ξ
′

K

ξK

(
1

2
− iz

)
.

(ii) Let t ≥ 0, we have

(2.2) gK(t) =
∑
γ∈Γ

1− cos(γt)

γ2
=
∑
γ∈Γ

1− eiγt

γ2
,

where Γ is the set of all zeros of ξK(1/2− iz) counting with multiplicity.
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Proof. The proof closely follows the same approach as done in [6, Theo-
rem 1.1]. We will adapt that proof to our situation and keep some notations
of it.

(i) We use the change of variables s = 1/2 − iz with z ∈ C. By (1.6) we
obtain

(log ξK(s))′ = g log q +
∑
q̃

αK(q̃) log q̃

q̃s
, ℜ(s) > 1,

which is equivalent to ℑ(z) > 1/2 in terms of z.

By [6, Equations 2.2 and 2.3 ], if ℑ(z) > 1/2 we get

∞∫
0

∑
q̃≤et

αK(q̃) log q̃

q̃1/2
(t− log q̃)

 eiztdt =

=

∞∫
0

∑
q̃

αK(q̃) log q̃

q̃1/2
(t− log q̃)1[log q̃,∞)(t)e

iztdt =

= − 1

z2

∑
q̃

αK(q̃) log q̃

q̃s

 .

Using (1.6), we obtain

∞∫
0

∑
q̃≤et

αK(q̃) log q̃

q̃1/2
(t− log q̃)

 eiztdt = − 1

z2

(
ξ
′

K

ξK
(1/2− iz)− g log q

)
.

Therefore, we have (i).

(ii) We replace in the proof of [6, Theorem 1.1 (2)] ξ(z) by ξK(z) which is an
entire function of order one. By Hadamard’s factorization theorem, we
get

ξK

(
1

2
− iz

)
= ea+bz

∏
γ

[(
1− z

γ

)
e

z
γ

]
.

Taking the logarithmic derivative of both sides, we obtain

(2.3)
ξ
′

K

ξK

(
1

2
− iz

)
= ib+ i

∑
γ

(
1

z − γ
+

1

γ

)
,

where the sum on the right-hand side converges absolutely and uniformly
on every compact subset of C outside the zeros γ. Equation (2.3) with
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z = 0 yields ib =
ξ
′
K

ξK
(1/2). On the other hand, taking the logarithmic

derivative of ξK(s) = ξK(1 − s) and replacing s by 1/2, we get ib =

=
ξ
′
K

ξK
(1/2) = 0. So, for each term on the right-hand side of (2.3), we

obtain

− i

z2

(
1

z − γ
+

1

γ

)
=

+∞∫
0

1− e−itγ

γ2
eiztdt, ℑ(z) > ℑ(γ),

where |ℑ(γ)| ≤ 1/2 (see [8, Theorem 2.12]). Therefore, (2.2) is derived
by interchanging summation and integration, and applying the symmetry
γ → −γ. ■

Let us recall that the RH holds on function fields. Then, we prove the
positivity of gK(t) in the following theorem.

Proposition 2.2. The function gK(t) is pointwise nonnegative, that is gK(t) ≥
≥ 0 for every t ∈ R. Further, gK(t) > 0 for every t ̸= 0.

Proof. The proof forward that of [6, Theorem 1.7]. ■

Let us define the function ∆K(z) for z ∈ C by

∆K(z) = (EK(z) + EK(z))/2 = ξK(1/2− iz),

where EK(z) is defined in (1.10). Hence, Γ coincides with the set of all zeros of
both ∆K(z) and 1 +DK(z) where DK(z) is defined in (1.9). Let t a positive
integer, we define

(2.4) Pt,K(z) =
∑
γ∈Γ

ord(γ)
eiγt − 1

γ

1

z − γ
.

Then, Pt,K(z) is a meromorphic function on C such that all poles are simple
and Γ is the set of all poles (see [7, Equation 2.2 ] with Pt,K(z) instead Pt(z).
Moreover, for negative t we have Pt,K(z) = P−t,K(z).

Let H2 be the Hardy space 2 on the upper half plane. As usual, we identify
H2 with a closed subspace of L2(R) via boundary values. Consequently, the
inner product of H2 coincides with the standard inner product of L2(R). Under
the RH, the function EK(z) defined in equation (1.10) is an entire function

2Denote by H(D) the space of analytic function F : D −→ C. We define The Hardy spaces
by

Hp(D) = {F ∈ H(D) : ∥F∥Hp(D) < ∞},
where ∥F∥Hp(D) = sup0<r<1 ∥Fr∥.
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satisfying |EK(z)| < |EK(z)| if ℑ(z) > 0. Hence, it generates the de Branges
space H(EK), which is Hilbert space of entire functions isomorphic to the model
subspace K(DK(z)) := H2⊖DKH2, by the mapping F (z) → F (z)/EK(z) from
H(EK) into H2, where DK(z) is defined in (1.9). The model subspace K(DK)
is a subspace of L2(R). In particular, the inner product of K(DK) matches
that of L2(R) (see [7, Section 3.1]).

Let us define

(2.5) Fγ(z) =

√
ord(γ)

π

i(1 +DK(z))

2(z − γ)
, γ ∈ Γ,

where DK(z) is defined in (1.9) and Γ denoted by the set of all ordinates of
distinct zeros ρ = 1/2− iγ of ξK(s) for γ ∈ Γ(⊂ R).

In the following proposition, we state some results on Pt,K(z), Bt,K(z),
Gt,K(z) and {Fγ(z)}γ∈Γ.

Proposition 2.3. [7]

(i) Let Pt,K(z) and Bt,K(z) be functions defined in (2.4) and (1.8), respec-
tively. Then, both coincide.

(ii) For any fixed t ∈ R, the function Gt,K(z) belongs to L2(R) as a function
of z.

(iii) The family of functions {Fγ(z)}γ∈Γ defined in (2.5) forms an orthonormal
basis of the Hilbert space K(DK).

Proof. The proof follows the lines of that [7, Proposition 2.1] we just re-
place Pt(z) by Pt,K(z). The only difference is the use of an explicit formula
demonstrated by Bllaca and Mazhouda in [3, Theorem 1]. ■

Since RH holds on function fields, we obtain the following results.

Proposition 2.4. The mapping t −→ Gt,K(z) from R to L2(R) is a screw line
corresponding to gK(t).

Proof. The proof closely follows the same approach as [7, Theorem 1.1]. We
will adapt that proof to our situation and keep some notations of it.

By the proof of [7, Theorem 1.1] we replace Gt(z) by Gt,K(z) and using
Proposition 2.3 (i), we obtain

Gt,K(z) =
∑
γ∈Γ

√
ord(γ)

eiγt − 1

γ
.

√
ord(γ)

π

i(1 +DK(z))

2(z − γ)
=(2.6)

=
∑
γ∈Γ

√
ord(γ)

eiγt − 1

γ
Fγ(z)
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unconditionally. Then, by Proposition 2.3 (ii) the coefficients in the right-hand
side converge in L2−sence

∑
γ∈Γ

∣∣∣∣√ord(γ)
eiγt − 1

γ

∣∣∣∣2 ≤
∑
γ∈Γ

ord(γ)

|γ|2
< ∞.

Therefore, under RH and from Proposition 2.3 (iii) with Gt,K(z), equation
(2.6) yields that Gt,K(z) belongs to the subspace K(DK) of L2(R) and

(2.7) ⟨Gt+u,K −Gu,K ,Gs+u,K −Gu,K⟩L2(R =
∑
γ∈Γ

ord(γ)
eiγt − 1

γ

e−iγs − 1

γ
.

From (1.2) and (2.2) we get GgK (t, s) =
∑

γ∈Γ ord(γ)
(eiγt−1)(e−iγs−1)

γ2 and

Gt,K : R −→ L2(R), is a screw line of gK(t). Hence, G0,K is identically zero by
(1.7) and (1.8). Moreover, by (2.7) with u = 0, we get

∥Gt,K∥2L2(R) =
∑
γ∈Γ

ord(γ)

∣∣∣∣eiγt − 1

γ

∣∣∣∣2 = 2
∑
γ∈Γ

ord(γ)
1− cos(γt)

γ2
.

On the other hand, by equation (2.2) we have

gK(t) =
∑
γ∈Γ

ord(γ)
1− cos(γt)

γ2
.

This complete the proof of Proposition 2.4. ■

As a consequence of Proposition 2.4, we get the following corollary.

Corollary 2.1. For all t ≥ 0, we have

(2.8) ∥Gt,K∥2L2(R) = 2gK(t).

Proof. We only sketch the proof since it follows the lines of that [7, Corol-
lary 1.1].

Proposition 2.4 states that (2.8) is a necessary condition for the RH. There-
fore, to prove the RH, it is sufficient to show that (2.8) is also a sufficient
condition.

Conversely, if we assume that equality (2.8) holds for all t = t0, then gK(t)
is nonnegative on [t0,∞). This implies the truth of the RH by Proposition 2.2.

■
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3. Further results on ∥Gt,K∥2
L2(R)

In this section, we study special values of ∥Gt,K∥2L2(R) at some points. Fur-
thermore, we derive some interesting summation formulas. Finally, we deter-
mine an upper bound of this norm.

Let us recall that the zeros ρ of the function ζK are denoted by

ρ =
1

2
+ iτ±k,j where τ±k,j = (±θj + 2kπ)/log q, j = 1, . . . , 2g and k ∈ Z,

and Γ the set of all zeros of ξK(1/2 − iz) with counting multiplicity and the
multiplicity of γ ∈ Γ by ord(γ). Throughout this section, we replace γ by τ±k,j
where j = 1, ..., 2g and k ∈ Z.

Remark 3.1. We have ξK(1/2) = 0 if and only if for some j = 1, 2, ..., g, θj = 0;
in this case, instead of ξK , we may take the function FK(s) = ξK(s)/(s−1/2)m,
where m is the multiplicity of the eventual zero of ξK at s = 1/2. Functions
FK and ξK have the same zeros with ℑ(ρ) > 0. For this reason, we assume in
this section ξK(1/2) ̸= 0.

The norm of screw line is defined for t ≥ 0 by

(3.1) ∥Gt,K∥2L2(R) = 2

g∑
j=1

∑
k∈Z

1− cos(τ±k,jt)

(τ±k,j)
2

.

Note that we have ∥Gt,K∥2L2(R) = ∥G−t,K∥2L2(R) and a simple computation
yields

(3.2) ∥Gt,K∥2L2(R) = 4

g∑
j=1

(
+∞∑
k=1

1− cos((τ±k,j)t)

(τ±k,j)
2

+
1− cos((τ+0,j)t)

(τ+0,j)
2

)
.

Proof of Theorem 1.1. By (2.1) and q̃ = qn, we have

gK(t) = tg log q +
∑
q̃≤et

αK(q̃) log q̃

q̃1/2
(t− log q̃) =

= tg log q +
∑

qn≤et

αK(qn) log qn

qn/2
(t− log qn) =

= tg log q +

[t/ log q]∑
n=1

αK(qn) log qn

qn/2
(t− log qn).
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Let us recall that αj = q1/2 exp(iθj) with θj ∈ [0, π] and αK(qn) =
∑2g

j=1

αn
j

n .
Since the function gK(t) is real, we obtain

gK(t) = tg log q + log q

[t/ log q]∑
n=1

2g∑
j=1

cos(nθj)(t− n log q).

From Corollary 2.1, we obtain

∥Gt,K∥2L2(R) = 2gK(t) =

= 2 log q

tg + [t/ log q]∑
n=1

2g∑
j=1

cos(nθj)(t− n log q)

 . ■

In the following corollary, we give some special values of ∥Gt,K∥2L2(R).

Corollary 3.1. Assume that ξK(1/2) ̸= 0. We have

(i)
∥Glog q,K∥2L2(R) = 2g log2 q.

(ii)

∥G2 log q,K∥2L2(R) = 2 log2 q

2g + 2g∑
j=1

cos(θj)

 .

(iii)

∥G3 log q,K∥2L2(R) = 2 log2 q

g + 2

2g∑
j=1

(
cos(θj) + cos2(θj)

) .

Proof. The proof yields from Theorem 1.1 for t = log q, t = 2 log q and
t = 3 log q. ■

In the following theorem, we derive interesting summation formula.

Theorem 3.1. Assume that ξK(1/2) ̸= 0. We have

+∞∑
k=1

 g∑
j=1

1− cos(±θj)

(±θj + 2kπ)2

 =
g

2
+

g∑
j=1

cos(θj)− 1

(θj)2
.

Proof. By Corollary 3.1 (i) we have

∥Glog q,K∥2L2(R) = 2g log2 q.
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On the other hand, (3.2) with t = log q yields

∥Glog q,K∥2L2(R) = 4 log2 q

g∑
j=1

(
+∞∑
k=1

1− cos(±θj)

(±θj + 2kπ)2
+

1− cos(θj)

(θj)2

)
.

Therefore
g∑

j=1

(
+∞∑
k=1

1− cos(±θj)

(±θj + 2kπ)2
+

1− cos(θj)

(θj)2

)
=

g

2
. ■

Let us recall that the superzeta functions on function fields of the second
kind (see [1, section 5]) is defined by

(3.3) ZK(s, t) =

g∑
j=1

∑
k∈Z

1

((τ±k,j)
2 + t2)s

, ℜ(s) > 1/2,

where t ∈ C such that t2 + (τ±k,j)
2 /∈ R− for all k.

In the following proposition, we express ∥Gt,K∥2L2(R) in terms of special

values of ZK(s, t).

Proposition 3.2. Assume that ξK(1/2) ̸= 0 and let t ≥ 0. We have

(3.4) ∥Gt,K∥2L2(R) = 2

ZK(1, 0)−
g∑

j=1

∑
k∈Z

cos((τ±k,j)t)

(τ±k,j)
2

 .

Proof. By (3.1), we obtain

∥Gt,K∥2L2(R) = 2

g∑
j=1

∑
k∈Z

1− cos((τ±k,j)t)

(τ±k,j)
2

=

= 2

g∑
j=1

∑
k∈Z

1

(τ±k,j)
2
− 2

g∑
j=1

∑
k∈Z

cos((τ±k,j)t)

(τ±k,j)
2

.

From (3.3) for s = 1 and t = 0, we have

ZK(1, 0) =

g∑
j=1

∑
k∈Z

1

(τ±k,j)
2
.

Hence, the proof of Proposition 3.2 is complete. ■

Remark 3.2. From [2, Section 5], assume that

ξK(1/2) ̸= 0 and 4min
j

(θj/ log q)
2 > 1,
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one has

λV
K,1(1) =

g∑
j=1

∑
k∈Z

1

(τ±k,j)
2
=

= ZK(1, 0),

where λV
K,1(1) denoted the first Voros–Li coefficients on function fields3. There-

fore, formula (3.4) can be written as follows

(3.5) ∥Gt,K∥2L2(R) = 2

λV
K,1(1)−

g∑
j=1

∑
k∈Z

cos((τ±k,j)t)

(τ±k,j)
2

 .

Now, an interesting summation formula given by the following theorem.

Proposition 3.3. Assume that ξK(1/2) ̸= 0 and 4minj(θj/ log q)
2 > 1. We

have
g∑

j=1

∑
k∈Z

cos(θj)

(θj + 2kπ)2
=

1

2 log2 q
λV
K,1(1)−

g

2

or, equivalently

g∑
j=1

∑
k∈Z

cos(θj)

(θj + 2kπ)2
=

1

2q

L′′

L
(q−1/2)−

(
L

′

L
(q−1/2)

)2

+ q1/2
L

′

L
(q−1/2)

− g

2
.

Proof. By Corollary 3.1 (i), we obtain

∥Glog q,K∥2L2(R) = 2g log2 q.

3We recall that the Voros–Li coefficients λV
K,w(n) are the coefficients in the Taylor series

expansion (see [2, Equations (7) and (11)]

log ξK

(
1

2
+

√
ws

1− s

)
− log ξK(1/2) =

+∞∑
n=1

λV
K,w(n)

n
sn

or

λV
K,w(n) =

∑
ρ∈Z(K),ℑ(ρ)>0

[
2−

(
1 +

√
4w(ρ− 1/2)2 + w2

2(ρ− 1/2)

)2n

−

−

(
1−

√
4w(ρ− 1/2)2 + w2

2(ρ− 1/2)

)2n]
.
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On the other hand, from (3.5) with t = log q we get

∥Glog q,K∥2L2(R) = 2λV
K,1(1)− 2 log2 q

g∑
j=1

∑
k∈Z

cos (±θj)

(±θj + 2kπ)2
.

Therefore

2

g∑
j=1

∑
k∈Z

cos(θj)

(θj + 2kπ)2
=

1

log2 q
λV
K,1(1)− g.

In addition, from [2, Section 5], assume that ξK(1/2) ̸= 0
and 4minj(θj/ log q)

2 > 1, one has

(3.6) λV
K,1(1) =

log2 q

q

L′′

L
(q−1/2)−

(
L

′

L
(q−1/2)

)2

+ q1/2
L

′

L
(q−1/2)

 .

Hence, the proof of Theorem 3.3 is complete. ■

Proof of Corollary 1.1. Using the lower and the upper bounds of λV
K,1(1)

stated in [2, Proposition 10], assume that

ξK(1/2) ̸= 0 and 4min
j

(θj/ log q)
2 > 1,

we obtain

(3.7)

max

{
0,

1

2 log2 q

(
2g

γ0

[
2 log q

π
− 1

γ0

])}
− g

2
≤

g∑
j=1

∑
k∈Z

cos(θj)

(θj + 2kπ)2
≤

≤ 1

2 log2 q

(
2g

γ0

[
2 log q

π
+

1

γ0

])
− g

2
,

where γ0 = min{θj/ log q}. The Corollary follows from (3.7) and by setting
q → ∞. ■

In the following corollary, we determine an upper bound of ∥Gt,K∥2L2(R) for
any t ≥ 0.

Corollary 3.2. Assume that ξK(1/2) ̸= 0 and 4minj(θj/ log q)
2 > 1. For

t ≥ 0, we have

0 ≤ ∥Gt,K∥2L2(R) ≤
4 log2 q

q

L′′

L
(q−1/2)−

(
L

′

L
(q−1/2)

)2

+ q1/2
L

′

L
(q−1/2)

 .

Proof. By (3.5), (3.6) and using that for x ∈ R we have −1 ≤ cos(x) ≤ 1.
Therefore, we obtain the result. ■
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[4] Krêın, M.G., Integral representation of a continuous Hermitian-indefinite
function with a finite number of negative squares (Russian), Dokl. Akad.
Nauk SSSR, 125 (1959) 31–34.

[5] Salvador, G.D.V., Topics in the Theory of Algebraic Function Fields, in:
Nolan Wallach (Ed.), Mathematics: Theory and Applications, Birkhäuser
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