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Abstract. Song (2001) described the asymptotic behaviour of sums in-
cluding certain nonnegative multiplicative functions, where the summa-
tion runs over the integers without large prime factors. We generalise the
method to restrict the summation to integers without small and large prime
factors.

1. Introduction

1.1. Problem statement

Let 1 ≤ a < b be positive integers. Introduce

Sa, (x) := {n ≤ x : a < P−(n)}

where P−(n) denotes the smallest prime factor of n, with the convention that
P−(1) = +∞; furthermore let

S ,b(x) := {n ≤ x : P+(n) ≤ b}

where P+(n) denotes the largest prime factor of n, with the convention that
P+(1) = 1. These sets form the base of the study in section III.5 and section
III.6 respectively of [17]. Denote the intersection of these sets as

Sa,b(x) := {n ≤ x : a < P−(n) ∧ P+(n) ≤ b}
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and for convenience, introduce Sa,b := {n ∈ N : a < P−(n) ∧ P+(n) ≤ b} fur-
thermore let Sa,b(x1, x2) := Sa,b(x2) \ Sa,b(x1).

We are going to work with nonnegative multiplicative functions satisfying
the two following conditions. Denote such a function as h.

Condition 1.1. There exists constants 0 < δ < 1 and κ > 0 such that∑
p≤y

h(p)

p
ln p = κ ln y +O((ln y)1−δ)

for y ≥ 1.

Condition 1.2. There exists a constant C > 0 such that∑
p,k≥2

h(pk)

pk
ln pk ≤ C.

These conditions pose only a mild average assumption upon the values of
h, as it was noted by Tenenbaum [16]. The main theme of this paper is the
study of the asymptotic behaviour of the sum

ma,b(x) :=
∑

n∈Sa,b(x)

h(n)

n

where h is a nonnegative multiplicative function satisfying Conditions 1.1 and
1.2. Analogously we can define ma, (x) and m ,b(x) as ma,b(x), but where the
summation runs through Sa, (x) and S ,b(x) respectively.

1.2. Past results

To prove our results, we are going to adapt the method of Song, see [14].

There has been a great interest in summations over S ,b(x), see [4, 5, 8, 9,
18, 19]. Tenenbaum shown a more precise result in a more concise way in his
article [16], where he relied on an already established result for the function
of Plitz τκ. Generalising his method for our case could be a next step in the
investigation. (See also [7, 13] concerning sums involving the function of Plitz.)

The extension of the results of Song from his article [15] to handle sums of
the form

Ma,b(x) :=
∑

n∈Sa,b(x)

h(n)

would be another possible way of investigation.

On the other hand, results concerning summations over Sa, (x) seem to be
scarce. It worth mentioning the results [3, 21] concerning the “complementer”
problem, that is where the integers in the sum shouldn’t have prime factors
from an interval (a, b].
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1.3. The differential difference equation

All the following statements are just reiterated from the article of Song [14]
for clarity. Define jκ for a real parameter κ to be the continuous solution of

vj′κ(v) = κjκ(v)− κjκ(v − 1)

for v > 1, jκ(v) = Bκv
κ for 0 < v ≤ 1, otherwise jκ(v) = 0 for v ≤ 0.

Here Bκ := e−γκ/Γ(κ+ 1), with γ being Euler’s constant, and Γ being Euler’s
Gamma function. Note that Dickman’s function satisfies ϱ(v) = eγj′1(v). For
κ ≥ 0 we have that jκ(v) is strictly increasing and positive for all v > 0,
converges to 1 as v → ∞, furthermore jκ(κ) ≥ 1/2. As

(vjκ(v))
′ = κ(jκ(v)− jκ(v − 1)) + jκ(v)

we have

jκ(v) =
κ

v

v∫
v−1

jκ(t) dt+
1

v

v∫
0

jκ(t) dt =(1.1)

=
κ

v

v∫
v−1

jκ(t) dt+
1

v

v∫
1

jκ(t) dt+
Bκ

(κ+ 1)v

for v ≥ 1. We also define

Jκ(v) :=

v∫
0

jκ(t) dt.

Based on the definition of jκ we have

Jκ(v) =
1

κ+ 1
Bκv

κ+1(1.2)

when 0 < v ≤ 1, and

vjκ(v) = vJ ′
κ(v) = (κ+ 1)Jκ(v)− κJκ(v − 1)(1.3)

when v > 1. In particular, we have

Jκ(v2)

vκ+1
2

=
Jκ(v1)

vκ+1
1

− κ

v2∫
v1

Jκ(t− 1)

tκ+2
dt.(1.4)
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1.4. New results

First we are going to prove the following proposition.

Proposition 1.3. Let h be a nonnegative multiplicative function satisfying
Conditions 1.1 and 1.2. Then for a ≥ 1 we have

ma, (x) = Cκ(a)(lnxa
κ)κ +O((lnx)κ−δ),(1.5)

where

Cκ(a) =
1

Γ(κ+ 1)
lim

s→1+0

∏
a<p

(
1 +

∞∑
k=1

h(pk)

pks

)∏
p

(
1− 1

ps

)κ

.(1.6)

Then by using Proposition 1.3, we are going to prove the following propo-
sition.

Proposition 1.4. Let h be a nonnegative multiplicative function satisfying
Conditions 1.1 and 1.2. Then for 1 ≤ a < b with b being sufficiently large we
have

ma,b(x) = Va,b

(
jκ(logb(xa

κ)) +O

(
logb(xa

κ)2κ ln(logb(xa
κ) + 1)

(ln b)δ

))
(1.7)

when logb(xa
κ) > 1, where

Va,b :=
∏

a<p≤b

(
1 +

∞∑
k=1

h(pk)

pk

)
.

Finally, we prove the main result by building upon Proposition 1.4.

Theorem 1.5. Let h be a nonnegative multiplicative function satisfying Con-
ditions 1.1 and 1.2. Then for 1 ≤ a < b with b being sufficiently large we
have

ma,b(x) = Va,b

(
jκ(logb(xa

κ)) +O

(
ln(logb(xa

κ) + 1)

(ln b)δ

))
uniformly for

1 ≤ logb(xa
κ) ≤ exp

(
1

c
(ln b)δ

)
(1.8)

for a suitable constant c.

Take note that when we set a as 1, we get back the theorems of [14].
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1.5. Application

� One example application can arise during the utilisation of the combina-
torial sieve, see section I.4 of [17]. There, one has to compute sums of
the form ∑

d≤yu

d|P (y)

|Rd|,

where u ≥ 1, Rd is an error term depending upon d, and

P (y) :=
∏
p∈P
p≤y

p

with P being a set of prime numbers. Now if P contains all the primes
between a < b, where b ≤ y, then we can replace this sum with∑

d∈Sa,b(yu)

µ2(d)|Rd|

where µ is the Möbius function. Assuming that we can express |Rd| in a
way that we get the sum ∑

d∈Sa,b(yu)

µ2(d)

d

we can apply our theorems. Indeed, h := µ2 is a nonnegative multiplica-
tive function; satisfies Condition 1.1 with κ = 1 and δ ∈ (0, 1) based on
Mertens’ first theorem, see [10]; and also satisfies Condition 1.2 with an
arbitrary C > 0. Then

Va,b =
∏

a<p≤b

(
1 +

1

p

)
∼ ln b

ln a

and

j1(x) =

x∫
0

j′1(v) dv = e−γ

x∫
0

ϱ(v) dv = 1 +O(e−x−γ)(1.9)

as x → ∞, see articles [6, 20].

� Having an h nonnegative multiplicative function satisfying Conditions 1.1
and 1.2, we can study the growth of the Dirichlet series∑

n≥1

h(n)1Sa,b
(n)

ns
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at s = 1, where 1X is the characteristic function of set X. For example
when h := 1, then Condition 1.1 is satisfied with κ = 1 and δ ∈ (0, 1) as
before, and there exists C > 0 which satisfies Condition 1.2. Then

Va,b =
∏

a<p≤b

p

p− 1
∼ ln b

ln a

based on Theorem 8 and its corollary in article [12], and by using (1.9)
and Theorem 1.5 we have∑

n≤x

h(n)1Sa,b
(n)

n
= Va,b

(
1 +O

(
ln(logb(xa) + 1)

(ln b)δ

))

for x satisfying (1.8).

2. Preliminary lemmas

Lemma 2.1. Let h be a nonnegative multiplicative function satisfying Condi-
tion 1.1. Then we have

h(p) ≪ p

(ln p)δ
(2.1)

and ∑
p≤y

h(p)

p
(ln p)1−δ ≪ (ln y)1−δ(2.2)

for y ≥ 1.

Proof. Using Condition 1.1 we have

h(p)

p
ln p =

∑
q≤p

h(q)

q
ln q −

∑
q≤p−1

h(q)

q
ln q = κ ln

p

p− 1
+O((ln p)1−δ)

from where we get (2.1) by rearrangement.

As f(t) := (ln t)−δ has a continuous derivative on [2, y], we can use Abel’s
identity to get that the sum on the left hand side of (2.2) is equal to

1

(ln y)δ

∑
p≤y

h(p)

p
ln p+ δ

y∫
2

1

t(ln t)1+δ

∑
p≤t

h(p)

p
ln p dt+O(1)
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see theorem 4.2 of [2]. By using Condition 1.1, we get that the first sum is in
O((ln y)1−δ), and the integral is

δκ

y∫
2

1

t(ln t)δ
dt+O

( y∫
2

1

t(ln t)2δ
dt

)
≪ (ln y)1−δ

from where we get the right hand side of (2.2). ■

Lemma 2.2. Let h be a nonnegative multiplicative function. Then we have

ma,b(x) lnx = Ta,b(x) +
∑

mpk∈Sa,b(x)
p∤m

h(m)

m

h(pk)

pk
ln pk(2.3)

for 1 ≤ a < b ≤ x, where

Ta,b(x) :=

x∫
1

ma,b(t)

t
dt.

Proof. As f(t) := ln(x/t) has a continuous derivative on [1, x], we can use
Abel’s identity to get

∑
1<n≤x

h(n)

n
1Sa,b(x)(n) ln

x

n
= −(lnx)h(1) +

x∫
1

1

t

∑
n≤t

h(n)

n
1Sa,b(x)(n) dt

see theorem 4.2 of [2], which can be rewritten as

∑
n∈Sa,b(x)

h(n)

n
ln

x

n
=

x∫
1

ma,b(t)

t
dt.

We can reorder this as

ma,b(x) lnx = Ta,b(x) +
∑

n∈Sa,b(x)

h(n)

n
lnn

due to the finiteness of the sum. The sum on the right hand side can be written
as ∑
n∈Sa,b(x)

h(n)

n

∑
pk|n

ln p =
∑
pk≤x

ln p
∑

n∈Sa,b(x)

pk|n

h(n)

n
=

∑
pk≤x

ln p
∑

mpk∈Sa,b(x)
p∤m

h(mpk)

mpk

from where we get our statement due to the multiplicative nature of h. ■
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Lemma 2.3. Let h be a nonnegative multiplicative function satisfying Condi-
tions 1.1 and 1.2. Then we have

ma,b(x) lnx = Ta,b(x) +
∑

m∈Sa,b(x)

h(m)

m

∑
a<p≤min(x/m,b)

h(p)

p
ln p +(2.4)

+O(ma,b(x)(ln b)
1−δ)

for 1 ≤ a < b ≤ x.

Proof. We are going to derive (2.4) by examining the sum in (2.3) for different
values of k.

� First we look at the case when k = 1. We can split the sum as∑
mp∈Sa,b(x)

h(m)

m

h(p)

p
ln p−

∑
mp∈Sa,b(x)

p|m

h(m)

m

h(p)

p
ln p

which can be rewritten as∑
m∈Sa,b(x)

h(m)

m

∑
a<p≤min(x/m,b)

h(p)

p
ln p−

∑
mpl+1∈Sa,b(x)

p∤m
l≥1

h(mpl)

mpl
h(p)

p
ln p.

The sum on the right hand side is less than or equal to∑
pl+1∈Sa,b(x)

l≥1

ma, (x/p
l+1)

h(pl)

pl
h(p)

p
ln p

which is less than or equal to

ma,b(x)
∑

pl+1∈Sa,b(x)
l≥1

h(pl)

pl
h(p)

p
ln p ≪ ma,b(x)

∑
pl+1∈Sa,b(x)

l≥1

h(pl)

pl
(ln p)1−δ

using (2.1).

– When l = 1 in the sum on the right hand side, then we have∑
p2∈Sa,b(x)

h(p)

p
(ln p)1−δ =

∑
a<p≤b

h(p)

p
(ln p)1−δ ≪ (ln b)1−δ

by (2.2).
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– When l > 1, then the sum can be bounded by∑
p,l≥2
a<p

h(pl)

pl
(ln p)1−δ ≤ C

using Condition 1.2.

� For the case when k > 1, the sum can be bounded by∑
p,k≥2

ma,b(x/p
k)

h(pk)

pk
ln pk ≤ ma,b(x)

∑
p,k≥2

h(pk)

pk
ln pk ≤ Cma,b(x)

using Condition 1.2. ■

Lemma 2.4. Let h be a nonnegative multiplicative function satisfying Condi-
tions 1.1 and 1.2. Then we have

ma,b(x) lnxa
κ = (κ+ 1)Ta,b(x)− κTa,b(x/b) +O(Va,b(ln b)

1−δ)(2.5)

for 1 ≤ a < b ≤ x.

Proof. The double sum in (2.4) can be split as∑
m∈Sa,b(x/b)

h(m)

m

∑
a<p≤b

h(p)

p
ln p+

∑
m∈Sa,b(x/b,x)

h(m)

m

∑
a<p≤x/m

h(p)

p
ln p.(2.6)

Based on Condition 1.1, we have∑
a<p≤b

h(p)

p
ln p = κ ln b− κ ln a+O((ln b)1−δ)

and ∑
a<p≤x/m

h(p)

p
ln p = κ ln

x

m
− κ ln a+O((ln b)1−δ)(2.7)

as m ≥ x/b. Also, we have

∑
m∈Sa,b(x/b,x)

h(m)

m
ln

x

m
= −(ln b)ma,b(x/b) +

x∫
x/b

ma,b(t)

t
dt

so (2.6) can be written as

κTa,b(x)− κTa,b(x/b)− κ(ln a)ma,b(x) +O(ma,b(x)(ln b)
1−δ)

and using this we get our result from (2.4). ■
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3. Proof of Proposition 1.3

Fix an a ≥ 1, and let a < x ≤ b. Using (2.7), expression (2.4) can be
written as

ma, (x) lnx = (κ+ 1)Ta, (x)− κma, (x) ln a+O(ma, (x)(lnx)
1−δ),

where

Ta, (x) :=

x∫
1

ma, (t)

t
dt.

Moving the items which contain ma, (x) on the left hand side we get

ma, (x)

(
1 + κ

ln a

lnx
+O((lnx)−δ)

)
=

κ+ 1

lnx
Ta, (x)

which can be written as

ma, (x) =
1

1− εa(x)

κ+ 1

lnx
Ta, (x),(3.1)

where

εa(x) := −κ
ln a

lnx
+O((lnx)−δ).

Note that there exists x0 such that |εa(x)| < 1 when x ≥ x0. Define

Ea(t) := ln

(
κ+ 1

(ln t)κ+1
Ta, (t)

)
.

Using (3.1) we get that

E′
a(t) =

κ+ 1

t ln t

εa(t)

1− εa(t)
(3.2)

holds. We are going to prove the proposition separately in the case when

exp((ln a)
1

1−δ ) < x(3.3)

and in the case when

max{x0, exp((ln a)
1

1−δ/(ν+1) )} < x ≤ exp((ln a)
1

1−δ/(ν+η) )(3.4)

where ν ≥ 1 is an integer and η ∈ (0, 1).
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� First we look at the case when (3.3) holds. When ln a < (ln t)1−δ, then
εa(t) ≪ (ln t)−δ and we have that

E′
a(t) ≪

1

t(ln t)1+δ
(3.5)

holds. By this, we have that

E0 :=

∞∫
1

E′
a(t) dt

converges absolutely, and therefore

Ea(x) = E0 −
∞∫
x

E′
a(t) dt.

Let the inequality (3.3) hold for x. Exponentiating Ea(x), we get

κ+ 1

(lnx)κ+1
Ta, (x) = exp(Ea(x)) = Cκ(a) exp

(
−

∞∫
x

E′
a(t) dt

)
,

where Cκ(a) := exp(E0). Here, by using (3.5) we have

−
∞∫
x

E′
a(t) dt ≪

∞∫
x

1

t(ln t)1+δ
dt = (lnx)−δ(3.6)

so
κ+ 1

lnx
Ta, (x) = Cκ(a)(lnx)

κ(1 +O((lnx)−δ))

by the power series representation of the exponential function. Using this
in (3.1) we get (1.5), as we can rewrite

(lnxaκ)κ = (lnx)κ
(
1 + κ

ln a

lnx

)κ

= (lnx)κ(1 +O((lnx)−δ))

in this case.

As f(t) := 1/ts−1 has a continuous derivative on [1,∞), we can use Abel’s
identity, and rely on P−(1) = +∞ to get

∏
a<p

(
1 +

∞∑
k=1

h(pk)

pks

)
=

∞∑
n=1

a<P−(n)

h(n)

ns
= (s− 1)

∞∫
1

ma, (t)

ts
dt,(3.7)
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where we split the integral as

(s− 1)

x∫
1

ma, (t)

ts
dt+ (s− 1)

∞∫
x

ma, (t)

ts
dt.(3.8)

Using (1.5) in the second integral, we get

Cκ(a)(s− 1)

∞∫
x

(ln t)κ +O((ln t)κ−δ)

ts
dt

which is equal to

Cκ(a)
Γ(κ+ 1, (s− 1) lnx)

(s− 1)κ
+O

(
Γ(κ+ 1, (s− 1) lnx)

(s− 1)κ−δ

)
(3.9)

because

∞∫
x

(ln t)α

ts
dt = −

[
Γ(α+ 1, (s− 1) ln t)

(s− 1)α+1

]∞
x

=
Γ(α+ 1, (s− 1) lnx)

(s− 1)α+1

by the definition of the upper incomplete gamma function. Substituting
(3.9) into (3.8), and the resulting expression into (3.7) we get

Cκ(a)
Γ(κ+ 1, (s− 1) lnx)

(s− 1)κ
=

∏
a<p

(
1 +

∞∑
k=1

h(pk)

pks

)
−

−(s− 1)

x∫
1

ma, (t)

ts
dt+O

(
Γ(κ+ 1, (s− 1) lnx)

(s− 1)κ−δ

)
.

By dividing with the quotient after Cκ(a) we obtain

Cκ(a) =
(s− 1)κ

Γ(κ+ 1, (s− 1) lnx)

∏
a<p

(
1 +

∞∑
k=1

h(pk)

pks

)
+

+O((s− 1)δ)− (s− 1)κ+1

Γ(κ+ 1, (s− 1) lnx)

x∫
1

ma, (t)

ts
dt ,

where by keeping with s to 1 from the right, we get

Cκ(a) =
1

Γ(κ+ 1)
lim

s→1+0

∏
a<p

(
1 +

∞∑
k=1

h(pk)

pks

)
(s− 1)κ
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as the integral keeps to Ta, (x). Also, we have

lim
s→1+0

(s− 1)ζ(s) = 1,

where

ζ(s) =
∏
p

(
1− 1

ps

)−1

when s > 1. From these we get (1.6).

� Now we look at the case when (3.4) holds. If t ≥ x0, then |εa(t)| < 1,
and by the geometric summation we have that (3.2) is equal to

κ+ 1

t ln t

(
εa(t) + εa(t)

2 + . . .+ εa(t)
ν +O(εa(t)

ν+1)

)
.(3.10)

Fix a ν ≥ 1, and assume that (ln t)1−δ/(ν+η) ≤ ln a < (ln t)1−δ/(ν+1)

holds with η ∈ (0, 1). Using the binomial theorem to compute εa(t)
m,

where 1 < m ≤ ν + 1, we get that for its main term we have(
− κ

ln a

ln t

)m

≪ 1

(ln t)mδ/(ν+1)

which can be bounded by (ln t)−δ when m = ν+1; and all the remaining
terms (l = 0, . . . ,m− 1) can be bounded by

(ln a)l

(ln t)l+(m−l)δ
≪ 1

(ln t)(m−l)δ+lδ/(ν+1)
≪ (ln t)−δ

using our assumption. So we have that the expression inside the paren-
theses of (3.10) is

−κ
ln a

ln t
+

(
− κ

ln a

ln t

)2

+ · · ·+
(
− κ

ln a

ln t

)ν

+O((ln t)−δ)

from where we get

E′
a(t) =

κ+ 1

t ln t

( ν∑
i=1

(
− κ

ln a

ln t

)i

+O((ln t)−δ)

)
≪(3.11)

≪ 1

t(ln t)1+δ/(ν+1)
.

Let the inequalities (3.4) hold for x. By using (3.11), from (3.6) we get

−
∞∫
x

E′
a(t) dt = −

∞∫
x

κ+ 1

t ln t

ν∑
i=1

(
− κ

ln a

ln t

)i

dt+O((lnx)−δ)
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which is equal to

−(κ+ 1)

ν∑
i=1

λi

i
+O((lnx)−δ)(3.12)

with λ := −κ(ln a)/(lnx). For x ≥ x0 we have |λ| < 1, so we can use
equation 8. from section 4.1.7. of [11] to get that the sum is equal to

− ln(1− λ)− λν+1

1∫
0

tν

(1− λ+ λt)ν+1
dt.(3.13)

Here, the integral is equal to[(
t

1− λ

)ν+1
2F1(ν + 1, ν + 1; ν + 2; tλ/(λ− 1))

ν + 1

]1
0

,(3.14)

where we can write

2F1(ν + 1, ν + 1; ν + 2;µ) = (1− µ)−ν
2F1(1, 1; ν + 2;µ)

using the formula 15.3.3 from [1], with µ := λ/(λ − 1). As 0 < µ < 1,
based on 15.1.1 of [1] we can write 2F1(1, 1; ν + 2;µ) as

Γ(ν + 2)

Γ(1)Γ(1)

∞∑
n=0

Γ(n+ 1)Γ(n+ 1)

Γ(n+ ν + 2)

µn

n!
≤ (ν + 1)!

∞∑
n=0

µn.

So expression (3.14) can be bounded by(
1

1− λ

)ν+1
ν!

(1− µ)ν+1
= ν!

and by using this in expression (3.13), we get that (3.12) can be written
as

(κ+ 1) ln

(
1 + κ

ln a

lnx

)
+O((lnx)−δ).

With this

κ+ 1

lnx
Ta, (x) = Cκ(a)(lnx)

κ

(
1 + κ

ln a

lnx

)κ+1

(1 +O((lnx)−δ))

again by the power series representation of the exponential function. We
have that in (3.1)

1

1− εa(x)
= 1− κ

ln a

lnx
+ · · ·+

(
− κ

ln a

lnx

)ν

+O((lnx)−δ)
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similarly as in the case of expression (3.10). By using the sum formula of
geometric progressions, we get (1.5).

The second integral in (3.8) can be written as

Cκ(a)(s− 1)

∞∫
x

(ln taκ)κ

ts
dt+O

(
Γ(κ+ 1, (s− 1) lnx)

(s− 1)κ−δ

)
,

where the integral is

a(s−1)κ

∞∫
xaκ

(ln v)κ

vs
dv = −a(s−1)κ

[
Γ(κ+ 1, (s− 1) ln v)

(s− 1)κ+1

]∞
xaκ

with the substitution v = taκ. By gathering the terms, and keeping with
s to 1 from the right we get (1.6). ■

4. Proof of Proposition 1.4

For h being a nonnegative multiplicative function satisfying conditions 1.1
and 1.2 we have

∏
b<p≤c

(
1 +

∞∑
k=1

h(pk)

pks

)(
1− 1

ps

)κ

= 1 +O((ln b)−δ)

uniformly in s ≥ 1 and c ≥ b, according [14], see the proofs of Theorems A and
B. Using this in (1.6) we get

Cκ(a) =
Va,b

Γ(κ+ 1)

∏
p≤b

(
1− 1

p

)κ

(1 +O((ln b)−δ)).

Based on Mertens’ theorem, we get

Va,b
e−γκ

Γ(κ+ 1)

1

(ln b)κ
(1 +O((ln b)−1))(1 +O((ln b)−δ))

on the right hand side. Using the definition of Bκ from section 1.3, and moving
everything except Va,b to the left hand side we get

Va,b =
Cκ(a)

Bκ
(ln b)κ(1 +O((ln b)−δ)).(4.1)
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When x ≤ b, both being sufficiently large, we can apply Proposition 1.3 to get

ma,b(x) = ma, (x) = Cκ(a)(lnx+ ln aκ)κ +O((lnx)κ−δ) =

= Cκ(a)(logb(x) ln b+ ln aκ)κ +O((logb(x) ln b)
κ−δ) =

= Cκ(a)(ln b)
κ

(
logb(xa

κ)κ +O

(
logb(x)

κ−δ

(ln b)δ

))
=

= Va,bBκ

(
logb(xa

κ)κ +O

(
logb(x)

κ−δ

(ln b)δ

))
.

Thus when x ≤ b/aκ, that is when logb(xa
κ) ≤ 1, we have

ma,b(x) = Va,b

(
jκ(logb(xa

κ)) +O

(
logb(x)

κ−δ

(ln b)δ

))
.(4.2)

Assume that b/aκ < x, that is logb(xa
κ) > 1. Based on (2.5) we have

d

dx

Ta,b(x)

(lnxaκ)κ+1
=

ma,b(x) lnxa
κ − (κ+ 1)Ta,b(x)

x(lnxaκ)κ+2
=

= − κTa,b(x/b)

x(lnxaκ)κ+2
+O

(
Va,b(ln b)

1−δ

x(lnxaκ)κ+2

)
.

Integrating this in variable x from ξ1 to ξ2, where b ≤ ξ1 ≤ ξ2 we get

Ta,b(ξ2)

(ln ξ2aκ)κ+1
=

Ta,b(ξ1)

(ln ξ1aκ)κ+1
− κ

ξ2∫
ξ1

Ta,b(x/b)

x(lnxaκ)κ+2
dx +(4.3)

+O

(
Va,b(ln b)

1−δ

(ln ξ1aκ)κ+1

)
.

Assume also that Ta,b(ξ) can be written as

Ta,b(ξ) = (Jκ(logb(ξa
κ))− Jκ(logb(a

κ)))Va,b ln b+Ra,b(ξ).(4.4)

After substituting this in (4.3), and canceling the terms containing Jκ or meld-
ing them into the ordo term, we get

Ra,b(ξ2)

(ln ξ2aκ)κ+1
=

Ra,b(ξ1)

(ln ξ1aκ)κ+1
− κ

ξ2∫
ξ1

Ra,b(x/b)

x(lnxaκ)κ+2
dx +(4.5)

+O

(
Va,b(ln b)

1−δ

(ln ξ1aκ)κ+1

)
using (1.4).
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We are going to bound the error term Ra,b(ξ) by induction. Let ξ ≤ b/aκ.
We can use (4.2) to write Ta,b(ξ) as

ξ∫
1

ma,b(t)

t
dt = Va,b(ln b)

(
Jκ(logb(ξa

κ))− Jκ(logb(a
κ)) +O

(
logb(ξ)

κ+1−δ

(ln b)δ

))

which agrees with (4.4). So in this case we have

|Ra,b(ξ)| ≤ D1
Va,b

(ln b)δ−1
(4.6)

with the constant D1 at least as large as the one in (4.2).

Let ξ1 = b/aκ, and ξ2 = ξ with b/aκ < ξ ≤ b2/aκ. With these choices we
can bound every Ra,b(·) using (4.6) on the right hand side of (4.5), and we get

|Ra,b(ξ)|
(ln ξaκ)κ+1

≤ D1
Va,b

(ln b)δ−1

(
κ

b2/aκ∫
b/aκ

dx

x(lnxaκ)κ+2
+

1 +D0/D1

(ln b)κ+1

)

with D0 being the constant in the O term of (4.5). This is less than or equal
to

D1
Va,b

(ln b)κ+δ

(
κ

κ+ 1
+ 1 +

D0

D1

)
≤ 2D1

Va,b

(ln b)κ+δ

given that D1 ≥ (κ+ 1)D0.

Suppose that for ν = 1, 2, . . . there exists a constant D∗ independent of ν
such that

|Ra,b(ξ)|
(ln ξaκ)κ+1

≤ η(ν)D∗ Va,b

(ln b)κ+δ
(4.7)

for bν/aκ < ξ ≤ bν+1/aκ, where η(ν) := νκ ln(ν + 1). We have that (4.7) is
true for ν = 1 given that D∗ ≥ 2D1/ ln 2. So we assume that ν > 1.

Let ξ1 = bν/aκ, and ξ2 = ξ with bν/aκ < ξ ≤ bν+1/aκ. We can bound every
Ra,b(·) using (4.7) on the right hand side of (4.5), and the bound this time is

D∗ Va,b

(ln b)κ+δ

(
η(ν − 1) + κη(ν − 1)

bν+1/aκ∫
bν/aκ

(lnxaκ/b)κ+1

x(lnxaκ)κ+2
dx+

D0

D∗νκ+1

)
,

where the integral term can be handled the same way as in [14], and we get

D∗ Va,b

(ln b)κ+δ

(
ν + κ

ν
η(ν − 1) +

D0

D∗ν

)
≤ η(ν)D∗ Va,b

(ln b)κ+δ
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which is true if D∗ ≥ 4D0/3. This proves (4.7), and we have

|Ra,b(ξ)| ≤ logb(ξa
κ)2κ+1 ln(logb(ξa

κ) + 1)D∗ Va,b

(ln b)δ−1

when b/aκ < ξ.

Using this in (4.4) we can write Ta,b(ξ) as(
Jκ(logb(ξa

κ))−Jκ(logb(a
κ))+O

(
logb(ξa

κ)2κ+1 ln(logb(ξa
κ) + 1)

(ln b)δ

))
Va,b ln b.

Substituting this in (2.5), dividing with logb(xa
κ) ln b, and using (1.3) we get

Va,b

(
jκ(logb(xa

κ))− Jκ(logb(a
κ))

logb(xa
κ)

+O

(
logb(xa

κ)2κ ln(logb(xa
κ) + 1)

(ln b)δ

))
for ma,b(x) when b/aκ < x. If b is large enough, so that

aκ ≤ exp((ln b)1−δ/(κ+1))

holds, then logb(a
κ) ≤ 1, and we can use (1.2) to get that

Jκ(logb(a
κ)) =

Bκ

κ+ 1
logb(a

κ)κ+1 ≪ (ln b)−δ.

Thus we can meld Jκ(logb(a
κ))/ logb(xa

κ) into the ordo, and we get (1.7). ■

5. Auxiliary lemmas for the proof of Theorem 1.5

Lemma 5.1. Let h be a nonnegative multiplicative function satisfying Condi-
tions 1.1 and 1.2. Then there exists positive x0 such that

b/aκ∫
1

ma, (t)

t
dt =

Bκ

κ+ 1
Va,b(ln b)(1 +O((ln b)−δ))(5.1)

with 1 ≤ a < b and b0 ≤ b, where b0 is the least value of b satisfying

(ln b)κ+1−δ ≥ (lnx0)
κ+1.(5.2)

Proof. As h satisfies the requirements of Proposition 1.3, we have that there
exist constants C ′ and x0 such that

|ma, (x)− Cκ(a)(lnxa
κ)κ| ≤ C ′(lnx)κ−δ(5.3)
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for all x ≥ x0. We can split the integral on the left hand side of (5.1) as

b/aκ∫
1

ma, (t)

t
dt =

x0/a
κ∫

1

ma, (t)

t
dt+

b/aκ∫
x0/aκ

ma, (t)

t
dt

due to our requirements for b. As ma, (t) ≤ Va,x0/aκ when 1 ≤ t ≤ x0/a
κ ≤ b,

we can bound the first integral on the right hand side with Va,x0/aκ lnx0/a
κ.

Concerning the second integral, we can subtract and add Cκ(a)(ln ta
κ)κ/t to

get

C ′

b/aκ∫
x0/aκ

(ln t)κ−δ

t
dt+ Cκ(a)

b/aκ∫
x0/aκ

(ln taκ)κ

t
dt

based on (5.3). By summing everything we get, computing the integrals, and
extracting BκVa,b(ln b)/(κ+ 1), we get our result based on (4.1) and (5.2). ■

Lemma 5.2. Let h be a nonnegative multiplicative function satisfying Condi-
tions 1.1 and 1.2. With 1/2 ≤ θ ≤ 1 we have

∑
a<p≤bθ

jκ(logb(xa
κ)− logb(p))

h(p)

p
ln p =(5.4)

= κ(ln b)

θ∫
logb(a)

jκ(logb(xa
κ)− v) dv +O((ln b)1−δ)

for 1 ≤ a < b, and logb(xa
κ) ≥ 2.

Proof. Let

sa(y) :=
∑

a<p≤y

h(p)

p
ln p.

Using Condition 1.1 we have sa(y)− κ ln y/a = r(y), where |r(y)| ≪ (ln y)1−δ.
We can write the sum on the left hand side of (5.4) as

bθ∫
a

jκ(logb(xa
κ)− logb(t)) d{sa(t)− κ ln t/a} +(5.5)

+κ

bθ∫
a

jκ(logb(xa
κ)− logb(t))

t
dt.
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The first integral can be written as

jκ(logb(xa
κ)− θ)|r(bθ)| − jκ(logb(xa

κ)− logb(a))|r(a)| −(5.6)

−
bθ∫
a

r(t)
d

dt
jκ(logb(xa

κ)− logb(t)) dt,

where the integral is in

O

(
(ln b)1−δ

bθ∫
a

j′κ(logb(xa
κ)− logb(t)) dt

)

which means that the first integral of (5.5) is in O((ln b)1−δ). We get the
integral on the right hand side of (5.4) by the change of variable v = logb(t) in
the second integral. ■

6. Proof of Theorem 1.5

The proposition is already proved for logb(xa
κ) in some bounded range

because of Proposition 1.4. Say we have

ma,b(x) = Va,b(jκ(logb(xa
κ)) +Ra,b(logb(xa

κ)))(6.1)

for b ≥ b0, where
|Ra,b(logb(xa

κ))| ≪ (ln b)−δ

if 1 < logb(xa
κ) ≤ κ+ 5/2. If logb(xa

κ) > κ, then

ma,b(x) = Va,bjκ(logb(xa
κ))(1 + ∆a,b(logb(xa

κ)))(6.2)

where ∆a,b(logb(xa
κ)) ≤ 2Ra,b(logb(xa

κ)) as jκ(κ) ≥ 1/2. Let

∆∗
a,b(logb(xa

κ)) := sup
κ≤v≤logb(xa

κ)

|∆a,b(v)|.

Then we have

∆∗
a,b(logb(xa

κ)) ≪ (ln b)−δ(6.3)

for κ < logb(xa
κ) ≤ κ+ 5/2. What remains is to show that

∆∗
a,b(logb(xa

κ)) ≪ ln logb(xa
κ)

(ln b)δ
(6.4)
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uniformly for logb(xa
κ) ≥ κ + 5/2 and for all sufficiently large b. So let

logb(xa
κ) ≥ κ+ 5/2 from here onward.

By changing the order of summation in (2.4) we get

ma,b(x) lnx = Ta,b(x) +
∑

a<p≤b

ma,b(x/p)
h(p)

p
ln p+O(ma,b(x)(ln b)

1−δ)(6.5)

for a < b ≤ x.

First, we split the integral Ta,b(x) on the right hand side of (6.5) as

b/aκ∫
1

ma, (t)

t
dt+

bκ+5/2/aκ∫
b/aκ

ma,b(t)

t
dt+

x∫
bκ+5/2/aκ

ma,b(t)

t
dt.

Here, the first integral can be computed by Lemma 5.1. Using (6.1) in the
second integral we get

Va,b(ln b)

κ+5/2∫
1

jκ(v) dv +O(Va,b(ln b)
1−δ)

and using (6.2) in the third integral we get

Va,b(ln b)

logb(xa
κ)∫

κ+5/2

jκ(v)(1 + ∆a,b(v)) dv

by a change of variable v = logb(xa
κ). So we get that the integral Ta,b(x) is

equal to

Va,b(ln b)

(
Bκ

κ+ 1
+

logb(xa
κ)∫

1

jκ(v) dv +

logb(xa
κ)∫

κ+5/2

jκ(v)∆a,b(v) dv

)
+(6.6)

+O(Va,b(ln b)
1−δ).

We look at the sum on the right hand side of (6.5). When logb(xa
κ) > κ,

then we can write this sum as

Va,b

∑
a<p≤b

jκ(logb(xa
κ/p))

h(p)

p
(ln p)(1 + ∆a,b(logb(xa

κ/p))).
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Splitting the sum and using Lemma 5.2, we can write this as

κVa,b(ln b)

logb(xa
κ)−logb(a)∫

logb(xa
κ)−1

jκ(v) dv +O(Va,b(ln b)
1−δ) +(6.7)

+ Va,b

∑
a<p≤b

jκ(logb(xa
κ/p))

h(p)

p
(ln p)∆a,b(logb(xa

κ/p)).

We note that logb(a) → 0 as b increases, so for sufficiently large b we have
that

logb(xa
κ)∫

logb(xa
κ)−logb(a)

jκ(v) dv ≪ (ln b)−δ(6.8)

thus we can extend the integral in (6.7) up until logb(xa
κ). Then by combining

the terms from (6.6) and this extended integral we get

Bκ

κ+ 1
+

logb(xa
κ)∫

1

jκ(v) dv + κ

logb(xa
κ)∫

logb(xa
κ)−1

jκ(v) dv =(6.9)

= logb(xa
κ)jκ(logb(xa

κ))

based on (1.1).

Dividing both sides of (6.5) with Va,bjκ(logb(xa
κ)) lnxaκ, relying on (6.6)

and (6.7) while using (6.9) we get that ∆a,b(logb(xa
κ)) is equal to

1

logb(xa
κ)jκ(logb(xa

κ)) ln b

∑
a<p≤b

jκ(logb(xa
κ/p))

h(p)

p
(ln p)∆a,b(logb(xa

κ/p))+

+
1

logb(xa
κ)jκ(logb(xa

κ))

logb(xa
κ)∫

κ+5/2

jκ(v)∆a,b(v) dv+

+Oκ

(
1

logb(xa
κ)jκ(logb(xa

κ))(ln b)δ

)
.

By Lemma 5.2, the a < p ≤ b1/2 part of the sum can be written as

∆∗
a,b(logb(xa

κ)− logb(a))

(
κ(ln b)

1/2∫
0

jκ(logb(xa
κ)− v) dv +O((ln b)1−δ)

)
,
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where we used (6.8), and the b1/2 < p ≤ b part of the sum as

∆∗
a,b(logb(xa

κ)− 1/2)

(
κ(ln b)

1∫
1/2

jκ(logb(xa
κ)− v) dv +O((ln b)1−δ)

)

and the integral is at most

∆∗
a,b(logb(xa

κ)− 1)

logb(xa
κ)−1∫

1

jκ(v) dv +∆∗
a,b(logb(xa

κ))

logb(xa
κ)∫

logb(xa
κ)−1

jκ(v) dv.

So |∆a,b(logb(xa
κ))| is smaller than or equal to

∆∗
a,b(logb(xa

κ))α(logb(xa
κ)) + ∆∗

a,b(logb(xa
κ)− 1/2)β(logb(xa

κ))+(6.10)

+O

(
1 + ∆∗

a,b(logb(xa
κ))

logb(xa
κ)(ln b)δ

)
,

where

α(v) =
κ

vjκ(v)

1/2∫
0

jκ(v − t) dt+
1

vjκ(v)

v∫
v−1

jκ(t) dt ≤
κ+ 2

2v
(6.11)

see the proof of the main theorem in [14], and

β(v) =
κ

vjκ(v)

1∫
1/2

jκ(v − t) dt+
1

vjκ(v)

v−1∫
1

jκ(t) dt.

Noting that

β(v) = 1− α(v)− Bκ

(κ+ 1)vjκ(v)
≤ 1− α(v)

we have that |∆a,b(logb(xa
κ))| is smaller than or equal to

∆∗
a,b(logb(xa

κ))α(logb(xa
κ))+(6.12)

+ ∆∗
a,b(logb(xa

κ)− 1/2)(1− α(logb(xa
κ)))+

+O

(
1 + ∆∗

a,b(logb(xa
κ))

logb(xa
κ)(ln b)δ

)
.
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We also have that |∆a,b(logb(xa
κ))| is smaller than or equal to

1

2
(∆∗

a,b(logb(xa
κ)) + ∆∗

a,b(logb(xa
κ)− 1/2))+(6.13)

+O

(
1 + ∆∗

a,b(logb(xa
κ))

logb(xa
κ)(ln b)δ

)
when logb(xa

κ) ≥ κ + 2, because if we subtract the non-asymptotic part of
(6.12) from the non-asymptotic part of (6.13) we get(

1

2
− α(logb(xa

κ))

)
(∆∗

a,b(logb(xa
κ))−∆∗

a,b(logb(xa
κ)− 1/2)) ≥ 0

based on α(logb(xa
κ)) ≤ 1/2 due to (6.11), and the monotonicity of ∆∗.

When κ ≤ λ ≤ logb(xa
κ)− 1/2, we have

|∆a,b(λ)| ≤ ∆∗
a,b(logb(xa

κ)−1/2) ≤ 1

2
(∆∗

a,b(logb(xa
κ))+∆∗

a,b(logb(xa
κ)−1/2))

and when logb(xa
κ)− 1/2 ≤ λ ≤ logb(xa

κ), we have

|∆a,b(λ)| ≤
1

2
(∆∗

a,b(λ) + ∆∗
a,b(λ− 1/2)) + C ′′ 1 + ∆∗

a,b(λ)

λ(ln b)δ

which is less than or equal to

1

2
(∆∗

a,b(logb(xa
κ)) + ∆∗

a,b(logb(xa
κ)− 1/2)) +

2C ′′

3

1 + ∆∗
a,b(logb(xa

κ))

logb(xa
κ)(ln b)δ

by the monotonicity of ∆∗, for some positive C ′′ constant. Based on these, by
taking the supremum we get

∆∗
a,b(logb(xa

κ)) ≤ 1

2
(∆∗

a,b(logb(xa
κ)) + ∆∗

a,b(logb(xa
κ)− 1/2)) +(6.14)

+
2C ′′

3

1 + ∆∗
a,b(logb(xa

κ))

logb(xa
κ)(ln b)δ

which we can rearrange as

∆∗
a,b(logb(xa

κ)) ≤ ∆∗
a,b(logb(xa

κ)− 1/2) +
4C ′′

3

1 + ∆∗
a,b(logb(xa

κ))

logb(xa
κ)(ln b)δ

which we can iterate, to descend with the argument of ∆∗
a,b until ξ to get

∆∗
a,b(logb(xa

κ)) ≤ ∆∗
a,b(ξ) +

4C ′′

3

1 + ∆∗
a,b(logb(xa

κ))

(ln b)δ
ln logb(xa

κ)

where κ < ξ ≤ κ+ 5/2. Then by (6.3) we get (6.4). ■
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