
Annales Univ. Sci. Budapest., Sect. Comp. 57 (2024) 201–218

EVALUATION OF A RECURSION

AWARE COMPLEXITY METRIC

István Bozó (Budapest, Hungary)

Zoran Budimac, Smiljana Knežev and Gordana Rakić

(Novi Sad, Serbia)

Melinda Tóth (Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 10, 2024; accepted July 2, 2024)

Abstract. Software metrics are heavily used to measure the complex-
ity, readability, understandability, and maintainability of the source code.
However, the accuracy of these metrics could be improved by considering
different new aspects. In our previous research, we have introduced the
Overall Path Complexity metric that takes into account recursion during
the calculation of the metrics. The metric was integrated into the Refactor-
Erl tool and evaluated for the functional programming language, Erlang.
It was found that the OPC looked into new information that had not been
evaluated before.
In this paper, we look into how the Overall Path Complexity metric be-
haves in the context of an object-oriented language, Java. During the eval-
uation, we used the SSQSA platform. Observed results for Java examples
were compared with other complexity metrics, such as Halstead (Volume,
Effort, Difficulty) Metrics, Unique Complexity Metric, Maintainability In-
dex and Cognitive Metric. The low correlation between the OPC and other
complexity metrics showed that there is new information for Java projects
that have not been evaluated by the other complexity metrics so far. This
research shows that besides a functional programming language, the OPC
metrics bring new information for an object-oriented language too.

Key words and phrases: Software complexity, recursion, cyclomatic complexity, overall path
complexity.
2010 Mathematics Subject Classification: 68N99.
Project no. TKP2021-NVA-29 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme. This work is partially
supported by the CERCIRAS COST Action no. CA19135 funded by COST Association.
This work is a detailed version of a MaCS 2020 presentation.

https://doi.org/10.71352/ac.57.201

https://doi.org/10.71352/ac.57.201


202 Z. Bozó et al.

1. Introduction

Nowadays there is a high demand for easy maintenance, high-quality, and
cost-efficient software products. There is a known relation between maintain-
ability, complexity, and maintenance cost [3, 2]. By looking into different com-
plexity attributes we can find out more about different aspects of maintain-
ability such as easiness of coding, debugging, testing, and change proneness of
software products. These attributes can be measured with complexity metrics.
Complexity metrics can observe the complexity of certain parts of a software
product such as functions, methods, modules, etc. or can be used to measure
the overall complexity of a product. Different types of complexity metrics are
designed to meet different objectives. Some elementary complexity metrics are
created from the ground up and are used to derive newer types of metrics.
Others focus on specific requirements and are usually language or paradigm-
dependent. There are also types of metrics that aim to be general, not relying
on a specific language/paradigm. Also, complexity metrics can be used to
derive maintainability ones [12].

Complexity metrics evolve hand in hand with the change in how software
projects are built. It is common now to use several different technologies within
a single project. Also, it is not rare to mix different programming languages
and paradigms within a single software solution. While some of the newer
complexity metrics aim to be language/paradigm independent others focus on
certain programming languages and paradigms. Some of them are built from
scratch and others combine already existing metrics.

A novel approach in the field of complexity metrics is the consideration of
(recursive) invocation chains on a static level by the Overall Path Complex-
ity (OPC) [17] metric. The OPC metric belongs to the group of control-flow
metrics and is built as an extension of the Cyclomatic Complexity (CC) [13].
Furthermore, the OPC is built to be language and paradigm-independent. As
recursion is a universal mechanism for solving problems and is commonly used
in functional programming languages, the OPC metric acknowledges the im-
portance of evaluating it.

OPC metric has already been integrated into the RefactorErl tool [4, 21] and
was used to evaluate both small examples and industrial-size projects written
in Erlang programming language [17]. The results were compared with results
from Halstead (Volume, Effort, Difficulty) Metrics [10], Unique Complexity
Metric (UCM) [14], Maintainability Index (MI) [7] and Cognitive Metric [11]. It
was observed that the correlation between the OPC and remaining complexity
metrics is low. This implies that there is a new complexity aspect of software
that the OPC metric takes into account.

The goal of this paper is to evaluate the OPC metrics on projects written in
Java programming language and compare and contrast the results with other



Evaluation of a recursion aware complexity metric 203

complexity metrics. To achieve this similar methodology as in [17] was used.
The OPC metrics along with Hastead, UCM, MI and Cognitive metrics were
integrated into the SSQSA platform [15].

The rest of this paper is structured as follows. Section 2 introduces the
OPC metric and reviews existing tools in which this metric is implemented.
Section 3 focuses on evaluating the OPC metric on Java projects, presenting
the methodology used in implementation details and the results obtained on
smaller Quick Sort examples. Related work is given in Section 4, and Section
5 concludes the paper.

2. Background

Since we based our research on the OPC metric, at first, we would like to in-
troduce it based on our previous paper [17]. Then we will introduce RefactorErl
and SSQSA the static analyzers involved in our work.

2.1. OPC metric

Overall Path Complexity was introduced in [17] as an extension of Cyclo-
matic Complexity with added awareness of (recursive) invocations. Building
blocks of OPC metrics are Cyclomatic Complexity, Inlined Cyclomatic Com-
plexity (ICC), Length of Recursion (LOR) and Recursive Complexity (RC).

Cyclomatic Complexity is defined as the maximum number of linearly inde-
pendent circuits in a Control Flow Graph (CFG) [1, 13]. If we observe a block
of code with a single entry and single exit point, CC metrics [13] on a CFG
graph G = (V,E) can be defined as:

(2.1) CC = e− v + 2p,

where e is number of edges, v number of nodes and p number of connected
components.

More exit points can be allowed. We can attach exit points to entry points
by adding a branch and getting another definition of CC metrics:

(2.2) CC = e− v + p.

Finally, we can calculate CC metrics by counting basic predicates or nodes
representing conditions with two outgoing edges:

(2.3) CC = NoP + 1,

where NoP represents the number of predicates.



204 Z. Bozó et al.

CFG extended with information about dependencies and communication
between basic blocks and statements forms an Overall Control Flow Graph
(OCFG), also known as Interprocedural (Inlined) Control Graph [20].

The algorithm used to calculate CC metrics on a CFG was applied to an
OCFG to define a new metric called Interprocedural (Inlined) Complexity met-
rics (ICC) [17]. ICC shows the number of paths that are crossing borders by
following invocations on an observed block of code.

ICC is calculated from CC by adding a CC value of each function call within
the observed function. For recursive function calls, inlining is done only once
for each call. Formula for calculating ICC is [17]:

(2.4) ICC(f) = CC(f) +
∑

g∈recCallChain

CC(g) +
∑

g ̸∈recCallChain

ICC(g).

Iteration expressed by recursion affects the complexity more strongly than a
non-recursive iteration. Also, the length of (recursive) invocation chains affects
complexity growth. To measure this complexity, Length of Recursion (LOR)
and Recursive Complexity (RC) were introduced.

Length of Recursion [16] represents number of nodes in a recursive chain:

(2.5) LOR = number of nodes in a recursive chain.

Recursive chains are viewed as parts of a Static Call Graph (SCG) [5] that
consists only of recursive functions. Single closed chains that consist of recursive
functions are represented by cyclic subgraphs.

The entry point to a program and a recursive chain do not necessarily need
to be fixed. A recursive chain can be entered from any node, but still, it
is necessary to go through all nodes in a chain. If it is possible to enter a
recursive chain through LOR nodes and for each of those nodes it’s necessary
to go through all LOR nodes, a metric giving all possible executions, Recursive
Complexity [16] is defined as follows:

(2.6) RC = LOR2.

It is important to note that LOR and RC metrics are observed at the
statement level. Every statement that is a recursive function call has its own
LOR and RC value.

Overall Path Complexity is introduced in a similar way as the ICC metrics
with added LOR and RC values for each recursive call. The algorithm for
calculating the OPC metric is based on traversing the OCFG graph. The CC
value of every entry function is calculated and for each statement within the



Evaluation of a recursion aware complexity metric 205

observed function that is a function call CC value of that function call is added.
If the observed function call is not recursive, the OPC value will be the same
as the ICC value. If the function call is recursive, the LOR or RC value of that
specific call chain is added. Traversal ends when all branches of all chains are
passed exactly once.

The paper [17] addresses two dilemmas :

1. Should OPC take into account LOR or RC?

2. Should the CC of the called function be increased or multiplied by the
chosen metric?

Based on dilemmas four formulas for calculating OPC value starting from
the observed function f are suggested:

(2.7) OPC IL(f) = CC(f) +
∑
g

(CC(g) + LOR(g),

(2.8) OPC IR(f) = CC(f) +
∑
g

(CC(g) + RC(g),

(2.9) OPC ML(f) = CC(f) +
∑
g

(CC(g) ∗ LOR(g),

(2.10) OPC MR(f) = CC(f) +
∑
g

(CC(g) ∗ RC(g).

Recursive chains that do not affect control flow, such as type-level recur-
sion are not considered by this metric. Also, concurrency or some dynamic
constructs (higher-order functions, polymorphic functions) are not the focus of
these metrics.

2.2. RefactorErl

RefactorErl [4] is a static source code analyser and transformer tool for the
Erlang programming language. It supports a wide variety of refactorings and
code comprehension tasks. During the initial source code analysis a Seman-
tic Program Graph (SPG) is built from the Erlang source code that contains
lexical, syntactic and static semantic information about the program (such as
dataflows, function call graph, variable bindings, etc.). RefactorErl provides
an incremental analyser framework: once the program is changed, only the
corresponding part of the SPG needs to be updated.

RefactorErl supports everyday program development tasks with different
useful features. For example, it can calculate and draw dependencies among



206 Z. Bozó et al.

program components, can find code duplicates, and supports gathering in-
formation about the source code with a user-level semantic query language.
Several software metrics can be evaluated and queried using these semantic
queries.

OPC metrics were implemented in the RefactorErl framework and all four
versions of the algorithm were analysed. After analysing both general and
trivial cases, OPC IR (Equation (2.8)) was found as the most appropriate for
Erlang programs. Correlation analysis showed that OPC metrics introduce a
new dimension of complexity which is not measured by available metrics.

2.3. SSQSA

Set of Software Quality Static Analyzers (SSQSA) is a framework with one
of the main goals being to provide consistent static analysis across multiple
programming languages [15]. To achieve this the framework uses unique inter-
mediate source code representation in the form of enriched Concrete Syntax
Trees (eCST). Another key feature of the SSQSA framework is language in-
dependence which is achieved by using eCST trees. This gives the framework
two-level extensibility:

� support for adding new languages (adaptability),

� support for adding new analysis (extensibility).

Enriched Concrete Syntax Tree (eCST) represents a union of concepts used
in abstract syntax tree (AST) and concrete syntax tree (CST). It consists of
both:

� abstraction of the program structure needed for most of the program
analyses,

� all concrete program elements, sometimes needed for more sophisticated
program analyses.

The tool for generating eCST code representation, eCST Generator (en-
riched Concrete Syntax Tree Generator), is on the first level in the SSQSA
framework. The resulting eCST representation is further used by other anal-
ysers in the framework. Being able to implement metrics and other analysis
algorithms on eCST trees allows for easy support for new languages. Having
one implementation for every analysis algorithm that is calculating metrics
independently of programming language or paradigm allows for consistency,
especially in heterogeneous projects.

eGDN Generator (enriched General Dependency Network Generator [19,
18]) provides a software network that represents multi-level horizontal and ver-
tical relationships between software entities.



Evaluation of a recursion aware complexity metric 207

3. Evaluation of the OPC metric

To evaluate the OPC metrics in an object-oriented language, Java pro-
gramming language has been chosen. Java is a general-purpose object-oriented
programming language that is widely used. Even though iteration in Java is
commonly expressed through loops, recursion can be used, too. The OPC
metrics were integrated into the SSQSA platform. At the moment SSQSA sup-
ports analysis for Java 5 projects but support for newer Java versions is being
developed, too.

The OPC metric was analysed on smaller Quick Sort examples implemented
in Java. Most of these examples do not have long recursive invocation chains,
so several quick-sort examples from [17] were rewritten in Java.

This research focused on whether the OPC metric compared to other com-
plexity metrics will show that there is a new information, recursive invocation
chains, that has not been evaluated so far that influences the complexity of the
observed code. Primary data was collected by implementing CC, ICC, OPC,
Halstead, Maintainability Index, UCM and Cognitive metrics on the SSQSA
platform with the help of eCST and eGDN files. Data was analysed by calcu-
lating correlations between four versions of the OPC metrics with remaining
complexity metrics.

SSQSA platform was chosen for its reliability in providing consistent static
analysis that is language-independent. The eCST trees and eGDN network that
were used contain all the necessary information at the static level for calculating
all the above-mentioned complexity metrics. Furthermore, the implemented
algorithms for calculating these metrics that were used on Java projects can be
reused later in other languages that the platform supports.

3.1. Implementing the metrics

SSQSA platform uses an eCST generator to create specific eCST represen-
tations of input source code. The eCST representation is stored in an XML
file and is further used by the eGDN generator for creating files that hold in-
formation about relationships between software entities. The output file of the
eGDN generator is also stored in an XML format.

Calculating different complexity metrics was done by parsing eCST and
eGDN XML files, selecting and counting specific eCST nodes and applying
defined formulas for each metric.

In Figure 1 the algorithm for the calculation of OPC IL is represented. We
start by calculating the CC value of the observed function. For all function calls
apps we use referredFun function to look into the ones called by an application.
We further calculate their ICC values with the icc function and LOR values
with the contextLOR function. Later we apply the formula (2.7) for calculating



208 Z. Bozó et al.

the OPC IL metric and return the value. By changing the formula on line 7 in
this figure with formulas (2.8), (2.9), (2.10) we get algorithms for calculating
OPC IR, OPC ML and OPC MR.

1: initV al← cc(f)
2: apps← functionCalls(f)
3: for a ∈ apps do
4: g ← referredFun(a)
5: iccV al← icc(g)
6: lorV al← contextLOR(g, f)
7: initV al← initV al + (iccV al + lorV al)
8: end for
9: opc← initV al

return opc

Figure 1. OPC IL(f) [17]

The function contextLOR used for calculating LOR value in the OPC IL
algorithm is described in Figure 2. This function calculates the length of the
longest recursive call chain that starts with the function f and goes through
the function g. We start by looking into all call chains starting from function
f. We filter them to further work with recursive call chains only. Further, we
need to find such chains that start with the function f and go through function
g and find the longest among them. If we have found such a chain we return
its length, if not we return 0.

1: chains← getCallChains(f)
2: resChains← filterRec(chains)
3: contextRec← contextF ilterLongestRec(recChains, g, f)
4: if is empty(contextRec) then
5: lorV al← 0
6: else
7: lorV al← length(contextRec)
8: end if

return lorV al

Figure 2. contextLOR(g, f) [17]

The algorithm for calculating the ICC metric is described in Figure 3. We
start by calculating the CC value for the observed function f. We look into
all functions called by f. If there is a function called by f that is a part of a
recursive call chain we add its CC value. If the called function is not part of
a recursive call chain we inline it and start calculating the ICC value for it
adding it to the previous result.



Evaluation of a recursion aware complexity metric 209

1: initV al← cc(f)
2: apps← functionCalls(f)
3: for a ∈ apps do
4: g ← referredFun(a)
5: if a ∈ recursiveChain(g, f) then
6: initV al← initV al + cc(g)
7: else
8: initV al← initV al + icc(g)
9: end if

10: end for
11: icc← initV al

return icc

Figure 3. ICC(f) [17]

When measuring Halstead Volume, Effort and Difficulty we calculate the
number of operators and operands, filter them to get the number of distinct
operators and operands and apply formulas from [10] to get values for Halstead
Volume, Effort and Difficulty.

The Maintainability Index is calculated with the formula:

(3.1) MI = 171− 5.2 ∗ ln(V )− 0.23 ∗ (CC)− 16.2 ∗ ln(LOC)

Here V represents Halstead Volume, CC Cyclomatic Complexity and LOC
Lines of Code.

3.2. Notes on the evaluation

Although some notions that are used in complexity metrics definitions, such
as branching, loops and function calls are clearly defined, concepts like opera-
tors and operands can be viewed as ambiguous. Since there is no clear consensus
on what operators and operands are, different authors and different tools use
different definitions. This results in the inconsistency of results among tools
[15]. The decision on what to view as operators and operands is unanimous
within the SSQSA platform and all implemented complexity metrics to en-
sure consistent results. The choice of operators and operand definitions was
influenced by choices made in the RefactorErl tool. This was done for easier
comparison of gathered results from both tools, SSQSA and RefactorErl.

The decision has been made that for complexity metrics that observe func-
tion calls within the observed function, the function calls would be inlined and
their metric values would be taken into consideration, too. A similar approach
was used in the RefactorErl tool as well.



210 Z. Bozó et al.

3.3. The used examples

Figures 4-5 presents a graphic representation of evaluated quick sort ex-
amples. From Figures 4-5 we can see that implementations of the Quick-Sort
algorithm consist of two to three separate methods that call each other. In
each implementation, there is at least one self-recursive call consisting of a re-
cursive chain of length one. To illustrate that the Quick-Sort algorithm can be
implemented with recursive call chains of length greater than one, two more
examples with longer call chains were included.

Figure 4. Graphic representation of the QuickSort implementations 1.



Evaluation of a recursion aware complexity metric 211

Figure 5. Graphic representation of the QuickSort implementations 2.

3.4. Evaluation

Further down we can see tables with collected CC, ICC and OPC data for
each method of each class representing quick sort implementations.

In Table 1, CC, ICC and OPC values for each method in these QuickSort
implementations are shown.



212 Z. Bozó et al.

Class Method CC ICC
OPC

IL IR ML MR

QuickSort
recursiveQuickSort 3 14 38 38 36 36

partition 5 5 5 5 5 5
quickSort 1 15 15 15 15 15

QuickSort2
recursiveQuickSort 7 23 57 57 55 55

Swap 1 1 1 1 1 1

QuickSort3
quickSort 7 22 54 54 22 22
exchange 1 1 1 1 1 1

QuickSort4
partition 3 3 3 3 3 3
sort 2 9 25 25 23 23

QuickSort5
insertionSort 3 3 3 3 3 3
Partition 3 3 3 3 3 3

optimizedQuickSort 5 21 55 55 53 53

QuickSort6
qsort 4 25 69 69 67 67
qsort1 1 13 13 13 13 13
qsort2 4 12 30 30 28 28

QuickSort7
quickSort 3 32 32 32 32 32

qs acc 3 29 41 43 75 147
split acc 5 36 178 182 229 345

QuickSort8
qs 3 24 24 24 24 24
qs2 3 21 31 33 55 107
sort 4 26 104 108 140 224

Table 1. Table description

Methods that represent an entry point to the QuickSort solution are repre-
sented in bold caption. In some cases like with methods partition from Quick-
Sort class, Swap from QuickSort2 class, etc. we can see that the CC, ICC and
OPC values are all the same. This indicates that these methods do not call
any other methods within their bodies, they only consist of statements such as
branches and loops. In cases like in quickSort method from QuickSort class,
qsort1 from QuickSort6 class, etc where we can see the difference between CC
values and ICC and OPC values, but ICC and OPC values are the same, we
have a single method with a recursive length of one within the body of the ob-
served method. Some methods have larger OPC IL and OPC IR values than
OPC ML and OPC MR values which is because all LOR values in these meth-
ods are of length one. This is explained by the fact that OPC IL and OPC IR
add LOR values for recursive calls, whereas OPC ML and OPC MR multiply
values, in this case, one for the recursive calls according to formulas (2.7), (2.8),
(2.9), (2.10). In QuickSort7 and QuickSort8 classes we can observe how the
different versions of the OPC values can grow rapidly. Split acc method from
QuickSort7 class has the greatest OPC values. This is because this method has



Evaluation of a recursion aware complexity metric 213

3 self-recursive calls and other recursive method calls within its body. Table 2
summarises the analysed methods and assigns an index to the algorithms. We
use those indexes in Tables 3 and 4 to identify the measurements.

Index Class Method
1 QuckSort quickSort
2 QuickSort2 RecursiveQuickSort
3 QuickSort3 quickSort
4 QuickSort4 quickSort
5 QuickSort5 quickSort
6 QuickSort6 qsort
7 QuickSort7 qucikSort
8 QuickSort8 qs

Table 2. Quick Sort metric values

Methods that represent an entry point to the algorithm implementations are
separated in Tables 3 and 4 are further analysed with LOC, Halstead Volume,
Halstead Effort, Halstead Difficulty, Unique Complexity Metric, two versions
of Maintainability Index (with use of CC and with use of ICC in the formula)
and Cognitive Metric. These two tables were used to calculate correlations
between four versions of the OPC metrics and the other mentioned complexity
metrics.

Index CC ICC
OPC

LOC UCM Cognitive
IL IR ML MR

1 1 15 15 15 15 15 32 195 43
2 7 23 57 57 55 55 34 202 205
3 7 22 54 54 22 22 26 181 49
4 2 9 25 25 23 23 28 185 31
5 5 21 55 55 53 53 55 345 199
6 4 25 69 69 67 67 34 241 145
7 3 32 32 32 32 32 39 284 307
8 3 24 24 24 24 24 33 233 163

Table 3. Quick Sort metric values

In Table 5 correlations between four versions of the OPC metric and UCM,
Halstead (Volume, Effort, Difficulty), MI and Cognitive metrics are repre-
sented. We can observe the negative correlation between the OPC metric and
the Maintainability Index, which was also observed in [17] both on smaller ex-



214 Z. Bozó et al.

Index Halstead V Halstead E Halstead D MI(CC) MI(ICC)

1 518.28 15159.77 29.25 82.12 78.9
2 575.34 21685.94 37.69 79.22 75.54
3 452.36 16759.8 37.05 84.81 81.36
4 487.55 13739.97 28.18 84.37 82.76
5 973.57 49022.02 50.35 69.15 65.47
6 703.5 10567.09 15.02 78.86 74.03
7 783.6 15149.58 19.33 76.31 69.64
8 622.28 9530.66 15.32 80.9 75.38

Table 4. Quick Sort metric values

amples and bigger projects. Correlations between the OPC and other metrics
vary from 0.2 to 0.4 which is similar to results in [17]. Since this is a small
sample variations in results from [17] are expected.

Metric OPC IL OPC IR OPC ML OPC MR
Unique Complexity Metric 0.24 0.24 0.46 0.46

Halstead Effort 0.41 0.41 0.4 0.4
Halstead Volume 0.47 0.47 0.49 0.49
Halstead Difficulty 0.27 0.27 0.25 0.25

Maintainability Index (CC) -0.34 -0.34 -0.59 -0.59
Maintainability Index (ICC) -0.34 -0.32 -0.56 -0.56
Cognitive (local inlined) 0.37 0.37 0.4 0.4

Table 5. Correlation values

3.5. OPC in object-oriented projects

Some complexities can be observed at the design level in object-oriented
projects, that the OPC metric does not take into account.

It is recommended to replace (large) conditionals with polymorphic methods
in object-oriented projects [9]. In this way, we reduce coupling between classes
and improve flexibility in the face of future changes. Even though conditionals
are moved to polymorphic methods, they still exist and their complexity should
be taken into account. It is left to analyse in future work how this affects
the OPC metric. One possibility is to first look into the complexity of the
observed method at a design level, then go down to the statement level to
further calculate the complexity of a method. Polymorphic methods could be
observed at a static level by looking into inheritance trees with type inference.



Evaluation of a recursion aware complexity metric 215

Another aspect to consider in future work would be object-oriented recur-
sion. In functional languages when a function calls itself or another function
recursively it happens within the same module. In object-oriented languages,
we can have different instances of the same class recursively call each other.
An example of that could be observed in a linked list or a tree data structure.
There a structure consists of multiple instances of the same (Node) class which
are connected. If we were to traverse the structure recursively we would call the
same method recursively but for a different object every time. If we introduce
a Null node design pattern to represent an end to a list or a tree, we would have
a combination of object-oriented recursion and polymorphism, a polymorphic
recursion. It should be further investigated how to enhance the OPC metric to
cover these cases as well.

4. Related work

This work heavily relies on [17]. The OPC metric belongs to a group of
control-flow metrics. The OPC metric aims to express the complexity of the
overall problem as well as the logic that is built into it. This metric is trying
to achieve this goal on a statement level while being paradigm-independent
and taking the length of (recursive) invocation chains. There have been other
complexity metrics that had similar objectives.

Halstead [10] looked into the complexity of the program by measuring the
number of operators and operands. The difference between Halstead and the
OPC metric is that Halstead calculates complexities without looking into the
internal complexity of observed solutions. Effective Size Metric [6] compares
executed modules to the actual number of distinct modules. Unlike the OPC
metric where all possible passes are taken into account, this approach only
looks into the actual number of executed passes (modules).

The most similar metrics to the OPC metric are the cognitive ones. Cogni-
tive Functional Size [11] takes basic control structures and assigns a constant
value to them. Another significant metric from the cognitive metrics group is
the UCM metric [14]. The UCM metric takes into account statement-level fac-
tors that influence control flow. These factors include function calls as well as
recursions. The complexity of a statement measured by several operators and
operands and multiplied by a constant value is added to the overall complexity
of the observed function. Improved Cognitive Based Complexity Metric [8] is
defined so that the weight of a recursive call is multiplied by the weights of
all factors in a recursive function. While observing recursive functions, none
of these cognitive metrics look into the length of their invocation chains at the
call statement.



216 Z. Bozó et al.

5. Conclusion

The OPC metric is a newly developed control-flow metric whose main con-
tribution is taking into account the length of (recursive) invocation chains at
the statement/expression level. In [17] the OPC metric was defined and evalu-
ated for the functional programming language Erlang. The OPC metric along-
side Halstead (Volume, Effort, Difficulty) Metrics, Unique Complexity Metric,
Maintainability Index and Cognitive Metric were integrated into the Refactor-
Erl tool [4] and used to evaluate both small examples and bigger open source
projects. The results showed that compared to other metrics, the OPC revealed
new information that had not been evaluated before.

The OPC metric was designed to be paradigm-independent. In [17] the met-
ric was examined in the context of a functional programming language. Here
we evaluate the metric in the context of an object-oriented language, Java. To
compare results, a similar methodology as in [17] was used. The OPC met-
ric was integrated into the SSQSA platform. Currently, the SSQSA platform
supports Java 5 projects. Java 5 examples that were evaluated were eight
Quick Sort algorithm implementations. All of the examples were evaluated
with the OPC metric and the results were compared with values from Halstead
(Volume, Effort, Difficulty) Metric, Unique Complexity Metric, Maintainability
Index and Cognitive Metric. By calculating correlations between the OPC and
other mentioned metrics it was tested whether or not the OPC metric brings
some new information that has not been evaluated before for Java programs.

The correlation between the OPC metric and the Maintainability Index
was found to be negative. This is since in Maintainability Index the higher the
value the easier it is to maintain the observed code. With other complexity
metrics the situation is opposite, higher values mean the code is more difficult
to maintain. Correlations with other complexity metrics varied from 0.2 to
0.4. Similar results were observed in [17]. Since this is a small sample, some
deviations from results in [17] were expected. The results showed that there
is new information observed on Java 5 projects that have not been evaluated
by other complexity metrics. Besides functional programming languages, the
OPC metric can be used for object-oriented languages too, which concludes
that it is paradigm-independent.

In object-oriented languages, we can express branching through polymor-
phic methods. We can also observe object-oriented recursion where different
instances of the same class recursively call each other. Further research needs
to be done to see how the OPC metric behaves in the context of object-oriented
languages. Also, evaluation of bigger Java projects needs to be done. There is
work being done on supporting newer Java versions on the SSQSA platform.
The SSQSA platform is language/paradigm independent future work will focus
on evaluating the OPC metric for other languages supported by the platform.



Evaluation of a recursion aware complexity metric 217

References

[1] Allen, F. E., Control flow analysis, in: Proceedings of a Symposium on
Compiler Optimization, pages 1–19, Association for Computing Machin-
ery, 1970.

[2] Antinyan, V., M. Staron and A. Sandberg, Evaluating code com-
plexity triggers, use of complexity measures and the influence of code
complexity on maintenance time, Empirical Software Engineering, 22(6)
(2017), 3057–3087.

[3] Banker, R. D., S. M. Datar, C. F. Kemerer and D. Zweig, Software
complexity and maintenance costs, Commun. ACM, 36(11) (1993), 81–
94.

[4] Bozó, I., D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, M. Tejfel
and M. Tóth, RefactorErl - Source Code Analysis and Refactoring in
Erlang, in: Proceedings of the 12th Symposium on Programming Languages
and Software Tools, pages 138–148, 2011.

[5] Callahan, D., A. Carle, M. W. Hall and K. Kennedy, Constructing
the procedure call multigraph, IEEE Transactions on Software Engineer-
ing, 16(4) (1990), 483–487.

[6] Chapin, N. and T. S. Lau, Effective size: An example of use from
legacy systems, Journal of Software Maintenance, 8(2) (1996), 101–116.

[7] Coleman, D., D. Ash, B. Lowther and P. Oman, Using metrics to
evaluate software system maintainability, Computer, 27(8) (1994), 44–49.

[8] De Silva, D. I., N. Kodagoda, S. R. Kodituwakku and A. J.
Pinidiyaarachchi, Analysis and enhancements of a cognitive based com-
plexity measure, in: Proceedings of IEEE International Symposium on
Information Theory (ISIT), pages 241–245, 2017.

[9] Ducasse, S., O. Nierstrasz and S. Demeyer, Transform conditionals
to polymorphism, in: Proceedings of EuroPLoP’2000, pages 219–252, 2000.

[10] Halstead, M. H., Elements of Software Science (Operating and Pro-
gramming Systems Series), Elsevier Science Inc., 1977.

[11] Jingqiu, S. and W. Yingxu, A new measure of software complexity
based on cognitive weights, Canadian Journal of Electrical and Computer
Engineering, 28(2) (2023), 69–74.

[12] Malhotra, R. and A. Chug, Software maintainability: Systematic
literature review and current trends, International Journal of Software
Engineering and Knowledge Engineering, 26(08) (2016), 1221–1253.

[13] McCabe, T. J., A complexity measure, IEEE Transactions on Software
Engineering, 2(4) (1976), 308–320.



218 Z. Bozó et al.

[14] Misra, S. and I. Akman, A unique complexity metric, in: O. Gervasi,
B. Murgante, A. Laganà, D. Taniar, Y. Mun and M. L. Gavrilova (Eds)
Computational Science and Its Applications – ICCSA 2008, 2008, 641–651.

[15] Rakić, G., SSQSA: Set of software quality static analysers, PhD thesis,
Serbia, 2016.

[16] Rakić, G., Z. Budimac, K. Bothe, Introducing recursive complexity,
AIP Conference Proceedings, 1558(1) (2013), 357–361.

[17] Rakić, G., M. Tóth, and Z. Budimac, Toward recursion aware
complexity metrics, Information and Software Technology, 118:106203
(2020).

[18] Savić, M., G. Rakić, Z. Budimac, and M. Ivanovic, A language-
independent approach to the extraction of dependencies between source
code entities, Information and Software Technology, 56(10) (2014), 1268-
1288.

[19] Savic, M., G. Rakić, Z. Budimac and M. Ivanovic, Extractor of
software networks from enriched concrete syntax trees, AIP Conference
Proceedings, 1479 (2012), 486–489.

[20] Stafford, J. A. and A. L. Wolf, A Formal, Language-Independent, and
Compositional Approach to Interprocedural Control Dependence Analysis,
PhD thesis, USA, 2000.

[21] Tóth, M. and I. Bozó, Static Analysis of Complex Software Systems Im-
plemented in Erlang, Central European Functional Programming Summer
School – Fourth Summer School, CEFP 2011, Revisited Selected Lectures,
Lecture Notes in Computer Science (LNCS), 7241 (2012), 451–514.

I. Bozó and M. Tóth
ELTE, Eötvös Loránd University
Budapest
Hungary
bozo i@inf.elte.hu

toth mi@inf.elte.hu

Z. Budimac, S. Knežev and G. Rakić
University of Novi Sad
Novi Sad
Serbia
zjb@dmi.uns.ac.rs

t16wzn@inf.elte.hu

goca@dmi.uns.ac.rs


	Introduction
	Background
	OPC metric
	RefactorErl
	SSQSA

	Evaluation of the OPC metric
	Implementing the metrics
	Notes on the evaluation
	The used examples
	Evaluation
	OPC in object-oriented projects

	Related work
	Conclusion

