
Annales Univ. Sci. Budapest., Sect. Comp. 57 (2024) 143–165

GRAPH-BASED DUPLICATED CODE DETECTION

WITH RefactorErl

Isvtán Bozó, Zsófia Erdei and Melinda Tóth

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 9, 2024; accepted June 16, 2024)

Abstract. Code duplicates are created for various reasons such as code
reuse by copying existing fragments of code (copy-and-paste programming).
Considering the huge amount of duplicated code and its maintenance cost
in large software systems, it is crucial to detect code clones.
In this paper we give a graph-based algorithm which uses the semantic
program graph generated by the tool RefactorErl, a source code compre-
hension and refactoring tool for the programming language Erlang, to find
different types of code clones in the source code. The presented algorithm
was able to efficiently detect not only textually identical code fragments
(Type I) but also copied and slightly modified code fragments, such as
changed, added or removed expressions, in addition to variations in iden-
tifiers, literals, types, whitespace characters, layout and comments (Type
II, Type III).

1. Introduction

The term code duplicate stands for snippets of codes that have identical or
similar code fragments to it in the source code. Two code fragments may be

Key words and phrases: Static analysis, Erlang, duplicated code detection.
2010 Mathematics Subject Classification: 68W99, 68N18.
Project no. TKP2021-NVA-29 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA funding scheme.
This work is a detailed version of a MaCS 2020 presentation.

https://doi.org/10.71352/ac.57.143

https://doi.org/10.71352/ac.57.143

144 I. Bozó, Zs. Erdei and M. Tóth

duplicates of each other without being identical character by character. Even
code sequences that are semantically identical, but not syntactically, could be
considered code duplicates. Previous studies show, that a significant fraction
(between 7% and 23%) of the code in a typical large software system consists
of code clones [12]. Code duplicates are created for various reasons such as
code reuse by copying existing fragments of code (copy-and-paste program-
ming). While such cloning is often intentional and can be useful in many ways,
generally in the long term the presence of duplicate code makes software main-
tenance more difficult and as a consequence more expensive [7]. For example
by reusing existing functions with slight changes in variables or data structures,
not only do we increase the chance of bug occurrences, but also if an instance
of duplicate code is changed, its clones have to be modified as well. Duplicated
fragments can also significantly increase the work to be done when adding new
features to our software, and make code quality analysis and code compre-
hension more tedious as well. In addition, many other software development
tasks such as understanding source code, analyzing code quality (fewer clones
can mean better quality code), checking for plagiarism, investigating copyright
infringement, analyzing software evolution, and debugging may require find-
ing syntactically or semantically similar code snippets. Thus, duplicate code
recognition is an important and valuable part of software analysis.

There exist several tools using several different approaches and methods
that can be used to identify code duplicates within our source code. Such tools
are called duplicated code detectors. The majority of these tools focuses on a
concrete language, but there are also some attempts of creating general tools
for finding code duplicates in any type of source code. These tools most often
use pattern matching on the raw source code, mostly using a sliding window
algorithm or analyzing a sequence of tokens generated from the source code.
These tools can identify completely identical snippets of codes, but they are not
able to reliably used for identification of code clones that are slightly different.
The more sophisticated tools exist mostly for mainstream languages, the more
successful methods analyze the syntax tree built up using the tokens combined
with different metrics of the code.

To find Type II and Type III duplicates, we not only need to abstract away
identifier names and literals but also have to account for inserted, deleted or
modified lines in the code clones. The graph representation that RefactorErl
provides contains even more information about the source beyond that of the
abstract syntax tree. Our algorithm exploits these advantages to find simi-
lar subgraphs in the semantic program graph, grouping possible code clone
candidates together and filtering the code fragments for better results.

The rest of the paper is structured as follows. Section 2 introduces code
clones and Section 3 presents a categorization of clone detection algorithms
and the corresponding related works. In Section 4 we briefly introduce our

Graph-based duplicated code detection 145

target language, Erlang, and the framework we used in the analysis, Refactor-
Erl. Section 5 describes our clone detection algorithm and Section 6 evaluates
the algorithm on multiple open source modules and demonstrates the resulted
clones we found. Finally, Section 7 concludes the paper and presents possible
future directions.

2. Background

According to the code clone survey written by Chanchal K. Roy, James
R. Cordy, and Rainer Koschke similarity of code fragments can be defined on
different levels [12]. Two code fragments can be clones of each other based on
the similarity of their program text or based on functionalities without being
textually identical. In this paper we use the following classification for code
clone types based on the kind of similarity they have:

Type I: Identical code fragments in terms of textual representation without
whitespace characters and comments. We can see, on the examples shown
below (1 and 2) the two code snippets are in terms of textual representation
identical not considering the whitespace characters and comments.

Listing 1. Types of code duplicates

foo (A) => A + 2 . % comment

Listing 2. Types of code duplicates

foo (A) =>
A + 2 .

These types of duplicates are the easiest to detect even when using text-
based methods.

Type II: Structurally or syntactically identical fragments, except identifiers,
literals, types, whitespace characters and comments. In these types of clones
statements, control structures, and the structure of expressions are the same.
In the following example we can see such code clones.

foo (A) => A + 2 . % comment

f oo (B) =>
B + 3 .

Type III: Code fragments are further modified: statements, expressions can
be changed, added or removed. These types of duplicates are usually created

146 I. Bozó, Zs. Erdei and M. Tóth

by modifying the copied code snippet. After the modification, the two snippets
of code do not necessarily match syntactically or semantically, but we can say
they are similar. Type III duplicates are harder to detect with token or metric-
based methods.

foo (A) =>
B = A + 2 , % comment
C = B = 1 .

foo (A) =>
B = A + 2 , % comment
C = bar (B) ,
D = C = 1 .

Type IV: Functionally equivalent code fragments that have the same pre- and
post-conditions are called semantic clones. These code fragments do the same
computations but might have different syntactic structures. The detection of
Type IV clones is the hardest even after having a great deal of background
knowledge about the program construction and software design.

sum(A) => sum impl (A, 0) .
sum impl ([] , V) => V;
sum impl ([H |T] , V) => sum implt (T, H + V) .

sum(A) =>
l i s t s : f o l d l (fun (E,A) => E + A end , 0 , A) .

3. Related works

Considering the huge amount of duplicated code and its maintenance cost
of large software systems, it is crucial to detect code clones. Fortunately, there
are multiple research studies to find clones. Once said clones are identified,
they can be removed through source code refactoring.

There are many different tools for aiding code clone detection in the source
code, but only a few of them were developed for commercial use. The more
sophisticated tools heavily depend on the features of the analyzed programming
language and able to detect different types of clones based on the used detection
techniques.

There are several ways to find duplicated code. In the next section, we will
introduce some possible approaches. Most tools used in practice do not rely on
one, but several of these methods.

Graph-based duplicated code detection 147

Text based methods. Several clone detection techniques are based on pure
text-based methods. In this approach, the target source program is considered
a sequence of strings. Two or more code fragments are similar if their textual
representation, not considering the whitespace characters and comments, are
alike. In these types of methods, generally little or no transformation is per-
formed on the source code before starting the actual comparison. Since the
raw source code is directly used in the clone detection process, one advantage
of this method is that it is language-independent. But it is very sensitive for
any change in the code clones like inserting or deleting code fragments. Mostly
Type I duplicates can be identified by such methods.

Token-based methods. In the token-based detection approach, the entire
source code is transformed into a sequence of tokens. This sequence is then
scanned for similar chains of tokens. The original code parts corresponding the
duplicated subsequences are returned as code clones. In these types of methods,
transformations can be used to achieve better results. For example, whitespace
characters and comments are usually removed during the tokenization and
identifiers and literals can be replaced by placeholder tokes. For this reason,
token-based methods can be more powerful compared to textual approaches.
With such methods, type I. and most Type II clones can be identified. Token-
based techniques are also used in the area of plagiarism detection. Some well-
known plagiarism detection tools such as Winnowing [13] and JPlag [11] are
based on token-based techniques.

Metrics based methods. Metrics based methods instead of comparing code
directly, the source code is divided into syntactic units. For each unit, a value
is generated based on its metrics, e.g., the number of tokens, the number of
lines, the layout of expressions, etc. Two syntactic units with the same metrics
are identified to be possible code clones. Several clone detection techniques
use various software metrics for detecting similar code. Mayrand et al. [10]
use a metric based approach to identify code clones. Metrics are calculated
from names, layout, expression and (simple) control-flow of functions. A clone
is defined only as a pair of whole function bodies that have similar metrics
values. With this method, partially similar units are not detected.

AST based methods. Syntax-based methods are using an abstract syntax
tree as a representation. An abstract syntax tree (AST) is a tree representation
of the abstract (simplified) syntactic structure of source code written in some
programming language. Code clone detection tools can use this representation
to find similar subtrees in the AST and return the corresponding source code as
clone pairs or clone classes. AST based detection techniques are dependent on
the programming language. Techniques like consistent renaming can be used
to abstract away the differences in identifier names and literals. This approach
enables Type II clones to be detected. Detecting clones by comparing AST-s
is desirable, but it is hard to scale.

148 I. Bozó, Zs. Erdei and M. Tóth

The first non-text-based code clone detection method for the Erlang was
developed for the Wrangler [1, 9] refactoring framework developed by H. Li
and S. Thompson. This method uses a hybrid mechanism, a token-based tech-
nique to identify possible code duplicates that are later examined for semantic
matching using the annotated AST.

A similar clone detection tool is built into the functionality of the HaRe [8]
framework used for refactoring Haskell programs. The algorithm [3] is imple-
mented in the framework by Christopher Brown and Simon Thompson, but in
contrast to the Wrangler method, works purely on AST analysis and monadic
analysis, and also allows for refactoring (elimination of clones) once duplicates
are found.

4. Erlang and RefactorErl

Erlang [4] is a general-purpose, dynamically typed, concurrent functional
programming language, which enables developers to write highly scalable soft
real-time systems. Erlang was originally designed for developing telecommuni-
cation software, since then it is also widely used in the world of banking, chat
services and database management systems. Due to its robustness and fault
tolerance, it is suitable for the development of large-scale distributed systems.
Erlang programs run within a virtual machine (Erlang VM or node), so pro-
grams written in Erlang are platform-independent. The standard library of
Erlang is called OTP (Open Telecom Platform), the Erlang runtime environ-
ment and OTP are collectively called Erlang/OTP.

The module system of Erlang allows us to divide the program into smaller
units: modules. Each Erlang program consists of modules, where each module
is contained in a file with a .erl extension. The module declaration is located
at the beginning of the modules. The module declaration is followed by the
export declaration part, which is a list of functions defined in the module but
intended to be used outside the module, and the function definitions.

A function declaration is a sequence of function clauses separated by semi-
colons, and terminated by a period. Each clause consists of a head, an optional
guard condition, and a body. The head of a clause contains the name of the
function, followed by the list of arguments, separated by commas. Each argu-
ment of the function is a valid pattern. The cases of a function definition are
called function clauses, and they are separated from each other by a semicolon
(;) token. The number of arguments is the arity of the function. A function is
uniquely identified by the module name, its name and arity. That is, two func-
tions defined with the same name and in the same module, but with different
arities are two different functions.

Graph-based duplicated code detection 149

A function clause is built up from either one expression, called the top-level
expression, or a sequence of top-level expressions. The value of a function is
the value of its last top-level expression.

Erlang is a dynamically typed language. This means that the type of ex-
pressions are not checked at compile time, only at runtime. For example, the
expression 2 + ”2” in the source code, does not raise a compile-time error. It
causes a runtime exception.

RefactorErl [14, 2] is a static analyzer and transformer tool for Erlang,
developed at Eötvös Loránd University. The tool uses static code analysis
techniques and provides a wide range of features, like data flow analysis, dy-
namic function call detection, side-effect analysis, a user level query language
to query semantic information or structural complexity metrics about Erlang
programs, dependency examination among functions or modules, function call
graph with information about dynamic calls, etc. The tool has multiple user
interfaces to choose from: a web-based interface, an interactive console, and
also supported by plugins for Emacs or Vim.

Static analysis is a method for examining the source code that is per-
formed without actually executing programs. Static analysis can also be a
useful method for debugging, code checking, software visualization, testing,
and code comprehension. For static analysis, a representation of the source
code is essential. The effectiveness of the analysis significantly depends on the
chosen representation.

RefactorErl builds an abstract syntax tree from the source code during the
initial analysis, and complements it with additional semantic information, thus
creating a Semantic Program Graph (SPG) [6]. During our clone detection
analysis we have used the SPG.

5. Algorithm for graph based clone detection

In this section, we present a new, graph-based clone detection method for
Erlang programs. Our algorithm uses the semantic program graph of Refac-
torErl to classify possible clone groups and filters the results to identify clones.

The algorithm uses values computed for each vertex to represent the simi-
larity of nodes. These values are derived from the attributes of the vertices of
the SPG themselves. Based on these vertex values, another value is computed
for each edge in the graph. A hash table is used to store these edge values,
where each bucket contains a set of edges that are considered similar based on
the attributes. This step serves as the initial phase of the partitioning process.

The similarity graphs is constructed based on the hash table in the fol-
lowing manner: any bucket containing more than two edges is combined into

150 I. Bozó, Zs. Erdei and M. Tóth

an isomorphism vertex. The attributes of this isomorphism vertex are derived
from the original vertices associated with the edges. These edges are created
when the endpoints of a pair of vertices match, meaning the starting attribute
of one vertex corresponds to the ending attribute of the second vertex, and vice
versa.

The components of the similarity graph determine the code clone groups.
Once the code clone groups have been generated the relevant clones need to be
filtered out. For this, we use metrics that are calculated from the clone candi-
dates using the number of subexpressions, tokens, variables, leaf expressions,
guards, function calls etc. Code snippets are considered clones if they have
have similar metrics values.

The attributes used to compute the edge values can greatly influence the
results. If we target to find not only Type I clones (identical code fragments),
then we need to abstract away identifier names and literals. Using the seman-
tic program graph as our representation, we have access to different attributes
describing the properties of the nodes. Our method is based on grouping sub-
graphs of the SPG together based on their similarity of structure and the
corresponding attributes of their nodes.

5.1. The semantic program graph

RefactorErl represents an Erlang program with a directed labelled graph,
called the Semantic Program Graph (SPG). The SPG has several type of nodes
with different attributes describing the properties of the nodes. After the source
code is analysed, this graph is stored in a database.

An SPG is a structurally weakly connected, directed graph whose vertices
maps to the lexical, syntactic and semantic elements of a program. This graph
includes all the information that can be statically extracted from the source
code with different analyses. The SPG can be divided into three layers in terms
of types of stored information. The first is the lexical layer, the second is the
syntactic layer and the third is the semantic layer. The lexical layer contains
both the original and the preprocessed tokens of the programs storing the
Erlang source code as it is, preserving its formatting, while the syntactic layer
stores the abstract syntax tree of the preprocessed source code. The semantic
layer contains the results of the different kinds of semantic analyses, such as
side-effect analysis, data-flow analysis, dynamic function reference analysis,
control-flow analysis.

To better illustrate the structure of the SPG, we present below a brief ex-
ample code snippet 3 and the corresponding SPG constructed by RefactorErl,
which is shown in Figure 1. Our example Erlang module has a module declara-
tion, an export list that defines its interface, and a simple function definition.
The function takes an argument and increments it by one. As we can see on

Graph-based duplicated code detection 151

Figure 1, the SPG built during source code analysis, unlike AST, is not a tree
but can contain circles and even loops, but it always has a root.

Listing 3. Example Erlang code snippet

=module(example) .
=export ([i n c /1]) .

i nc (A) =>
A+1.

Figure 1. SPG example

152 I. Bozó, Zs. Erdei and M. Tóth

5.2. Similarity graph

The first important step of determining the possible sets of code clones
is building the similarity graph. When using the graph representation, code
clones show up as similar subgraphs in the SPG. Graph similarity is expressed
by graph isomorphism. Finding isomorphic subgraphs in an arbitrary graph is
an NP-complete problem in its generalized form. While it would be possible to
find the exact code clones in the SPG by comparing every possible subgraph
- it would not be feasible. Instead, we will use an inexact method to group
similar subgraphs together.

The similarity graph is a disconnected directed graph, where every compo-
nent determines a set of similar subgraphs. The corresponding source code of
these similar subgraphs is returned as possible sets of clone candidates.

5.2.1. Initial classification of vertices and edges

Algorithm 1 demonstrates how we build the table containing the classified
edges. First, the SPG is traversed while labels are generated for the nodes.
These labels will determine the baseline classification of the nodes. Each node
will be assigned a label based on a selected set of attributes of the node. If
two vertices have the same label, they will belong to the same group. The
vertices of the SPG may have many attributes, but we only need a well-chosen
subset of them to determine the labels. For example, using the ”Id” attribute
of the nodes for determining the label would be pointless, since that attribute
is unique for every vertex, every single vertex would get into a separate class
(resulting in no code clones). If we target to find not only Type I clones
(identical code fragments), then we also need to abstract away identifier names
and literals. In this representation using the SPG, we omit the attributes
containing these data for the label generation. Choosing the set of attributes
to generate the labels from enables one to do the parameterized matching. The
function that determines the labels can be thought of as a hash function where
the parameters are a list of attributes and the result is the computed label.

label(a1, a2, ..an) = v

For example, in the implemented prototype algorithm, we use the type of an
expression as a label of a node representing an expression. However, in a case
of a variable we do not use the name of the variable, because then the algorithm
would not be able to detect Type II clones where a variable is renamed.

After the labels of the vertices have been determined, we can start the
classification of the edges. An edge of a directed graph G = (V,E) can be
represented as an ordered pair of vertices (u, v) ∈ E. We can simply assign
labels to the edges by concatenating the already calculated labels of the vertices.

Graph-based duplicated code detection 153

Since the graph is directed, the order of the labels does matter, we will get a
different edge label for an edge (u, v) from an edge (v, u) (unless the labels
assigned to v and u are the same).

With the help of the edge labels, we can classify the edges into a hash table.
We can use the edges and the computed labels as key-value pairs. Thus, the
edges with the same labels will be placed in the same bucket.

Algorithm 1 Classification of edges

Funct BuildHashTab(G)

1: (V,E, α, β) := G
2: Tab := ∅
3: for (v1, v2) ∈ E : do
4: Key := hash((v1, v2))
5: put(Tab, {Key, (v1, v2)})
6: end for
7: Return Tab

Since the SPG representation of even very simple modules is too big for
visualization, to demonstrate the general algorithm we will show a simple ex-
ample of a general directed graph (not an actual SPG) with node labels shown
in Figure 2. In this example, we can assume that the classification of the ver-
tices is already done and they are labelled according to their corresponding
attributes. Table 2 shows the table containing the classified edges.

1 (a)

2 (b)

3 (a) 4 (c) 8 (c)

5 (a) 6 (a) 7 (d)

Figure 2. General example graph

Algorithm 2 demonstrates how we build the hash table from the given ex-
ample graph and Table 2 shows the built similarity graph. First we iterate
through the buckets of the hash table and for every bucket which contains two

154 I. Bozó, Zs. Erdei and M. Tóth

[aa] (1,3) (3,5) (3,6)
[ab] (1,2) (3,2)
[ba] (2,3)
[bc] (2,4) (2,8)
[cd] (4,7)

Table 1. Classification of the edges

aa ({1,3},{3,5,6})
ab ({1,3},{2})
cd ({2},{4,8})

Table 2. Edges of the similarity graph

or more elements, a new vertex is created in the similarity graph. All buckets
containing two or more elements are grouped based on the number of contained
elements. We iterate through the buckets of the hash table and combine the
containing edges head and tail vertices as follows: if the bucket originally con-
tained the [(v1, u1), (v2, u2)...(vn, un)] edges, we shrink the V = (v1; v2; ...vn)
vertices and the U = (u1;u2; ...un) vertices into two vertices, and they will
determine a new (U, V) edge of the similarity graph.

Algorithm 2 Building of the similarity graph

Funct build sim graph(Tab)

1: SimGraph := ∅
2: for Bucket ∈ Tab : do
3: EdgeList := value(Bucket)
4: FromSet, ToSet := ∅
5: for (u, v) ∈ EdgeList : do
6: add(FromSet, u)
7: add(ToSet, v)
8: end for
9: add super vertex(SimGraph, FromSet)

10: add super vertex(SimGraph, ToSet)
11: add edge(SimGraph, {FromSet, ToSet})
12: end for
13: return SimGraph

5.3. Detecting initial clones

Once the similarity graph has been built, we can determine the initial sets
of possible code clones. Every connected component of the similarity graph
determines a set of subgraphs in the SPG. These subgraphs are not necessarily

Graph-based duplicated code detection 155

isomorphic, some may only match to a part of the whole component. Since
the non-leaf nodes of the SPG represent non-terminals, not every subgraph of
the SPG will represent a code fragment in the source code. For example if two
code snippets contain a case expression the syntax tree of the snippets can be
somewhat similar, but that does not necessarily mean that they are duplicates.
Consider the following examples: 4

Listing 4. Snippet A

not beach (X) =>
case X of

0 => zero ;
1 => one ;
=> other

end .

%%%%

beach (Temperature) =>
case Temperature of

{ c e l s i u s , N} when N >= 20 , N =< 45 =>
’ f a v o r a b l e ’ ;

{ f ah r enhe i t , N} when N >= 68 , N =< 113 =>
’ f a v o r a b l e in the US ’ ;

=> ’ avoid beach ’
end .

Both of these code snippets have a case expression in their syntax tree,
but they have different patterns, guards, and clauses. The similarity graph
generated from the code will contain the edges that overlap, but will not contain
any leaves.

These can be filtered out in the component level by checking whether or
not the subgraph contains a leaf node. We can also filter out components
containing too few nodes. These components represent code fragments too
small to be relevant as code duplicates.

5.4. Filtering relevant clones

Once the code clone groups have been generated we need to filter out the
relevant clones. Code clone groups often contain pieces of code whose SPG-s do
not overlap sufficiently with each other to be considered true clones. To measure
the similarity between code snippets we use various metrics and properties.
Metrics are calculated from the number of subexpressions, tokens, variables,
leaf expressions, guards, function calls etc. Code snippets are considered clones

156 I. Bozó, Zs. Erdei and M. Tóth

if they have have similar metrics values. The algorithm can be parameterized
to how strictly to filter out potential code clones based on these metrics. If you
want to detect type III. duplicates, you should not set very low thresholds for
the similarity metrics, because inserting and deleting code snippets will cause
many of these metrics to vary, but this can also result in a significant increase
in false positives. In Section 6 we showed an example of the found Type III
clones (Figure 5).

If the duplicate group is a case, if or try expression, the number and type of
conditions or guard expressions is also considered. For example, if we assume
that the code snippets previously presented 4 were placed in a clone group at
the initial categorization, it is determined during the refinement process that
they are not actually duplicates.

6. Recognized types of code duplicates

In this chapter, we will present some types of similarities that can be effec-
tively recognized by the algorithm. Let us consider the Type I or text-identical
duplicates first. Since the similarity graph is obtained by processing the se-
mantic program graph and the same graph structure belongs to two identical
code snippets in the SPG, the attributes of the vertices (except for the unique
”Id” value) will also be the same. In this way, the algorithm always recognizes
such code snippets as duplicates. In the code snippet below, we provide such
an example.

Listing 5. Type I clones

double ([]) => [] ;
double ([X | XS]) => [2*X | double (XS)] .

Let us consider that the previous identical code fragment (Listing 5) is
defined in two different loaded modules. The subgraphs corresponding to the
code snippets were grouped in one component of the similarity graph. After
processing the similarity graph, the two fragments were flagged as code clones.
The following Figure 3 shows the subgraphs corresponding to the code snippets
in Listing 5. To differentiate between the two isomorphic subgraphs, we have
also shown in the figure the original unique identifiers of the nodes in the SPG.

In the case of Type II duplicates, as previously mentioned, it is necessary
to abstract away identifier names and literals. Since the variables, literals
and constants are not distinguished by name or value when constructing the
similarity graph, Type II code clones will correspond to subgraphs with the
same structure so they will be grouped in the same component. In Figure 4 we
can see such an example with the corresponding code fragments presented in
Listing 6.

Graph-based duplicated code detection 157

9 (clause_fundef)

124 (double)

126 (cons)

125 (cons)

10 (clause_fundef)

140 (cons)

131 (cons)

127 (double)

2 (file)

4 (form_module)

8 (form_func)

5 (form_export)

2 (form_export) 1 (funlist)

1 (file)

1 (form_module)

7 (form_func) 7 (clause_fundef)

8 (clause_fundef)

107 (cons)

105 (double)

106 (cons)

55 (funlist)

121 (cons)

112 (cons)

108 (double)

Figure 3. Type I code clones

Listing 6. Type II clones

foo (A) =>
Fun1 = fun (Par1) =>

{A,B} = Par1 ,
A+B

end ,
Fun1(A) .

. . .

bar () =>
Fun2 = fun (Par2) =>

{C,D} = Par2 ,
C+D

end ,
Fun2({1 ,2}) .

158 I. Bozó, Zs. Erdei and M. Tóth

41 (match_expr)

40 (fun_expr)

4 (clause_funexpr)

15 (tuple)

13 ("A") 14 ("B")

47 (application)

42 ("Fun2") 46 (arglist)

22 (match_expr)

21 (fun_expr)

2 (clause_funexpr)

34 (match_expr) 39 ('+') 29 ("Par2")

32 (tuple)

5 (clause_fundef)

31 ("D") 30 ("C")

17 (match_expr)

3 (clause_fundef)

26 (application)

23 ("Fun1") 25 (arglist)

20 ('+') 12 ("Par1")

Figure 4. Type II code clones

In Type III code clones the code fragments might be slightly different:
statements, expressions are changed, added or removed. These types of du-
plicates are usually created by modifying the copied code snippet. After the
modification, the two snippets of code do not necessarily match syntactically
or semantically, but we can say they are similar. In these cases the subgraphs
corresponding to the code clones only partially overlap. The code snippets
in Listing 7 [4] below show such an example. As we can see, both fragments
contain a case expression, but in the first example includes one extra case
that is missing from the second example. As we can see in the corresponding
subgraphs shown in Figure 5, the subgraphs mostly overlap. To highlight the
difference in the subgraphs, the edges missing from the subgraph corresponding
to the second code snippet is coloured red.

Listing 7. Type III code clones

beach1 (Temperature) =>
case Temperature of

{ c e l s i u s , N} when N >= 20 , N =< 45 =>
’ f a v o r a b l e ’ ;

{ke lv in , N} when N >= 293 , N =< 318 =>
’ s c i e n t i f i c a l l y f a v o r a b l e ’ ;

{ f ah r enhe i t , N} when N >= 68 , N =< 113 =>
’ f a v o r a b l e in the US ’ ;

=>
’ avoid beach ’

end .

Graph-based duplicated code detection 159

beach2 (Temperature) =>
case Temperature of

{ c e l s i u s , N} when N >= 20 , N =< 45 =>
’ f a v o r a b l e ’ ;

{ f ah r enhe i t , N} when N >= 68 , N =< 113 =>
’ f a v o r a b l e in the US ’ ;

=>
’ avoid beach ’

end .

40 (case_expr)

1 (clause_expr)

2 (clause_pattern)

4 (clause_pattern)

5 (clause_pattern)

3 (clause_pattern)

4 ("Temperature")

15 (favorable)

6 (clause_fundef)

3 ("Temperature")

2 (beach1)

37 ('favorable in the US')

39 ('avoid beach')

26 ('scientifically favorable')

18 (clause_fundef)

96 ("Temperature")

122 (case_expr)

95 (beach2)

14 (clause_expr)

15 (clause_pattern)

16 (clause_pattern)

17 (clause_pattern)

97 ("Temperature")

108 (favorable)

119 ('favorable in the US')

121 ('avoid beach')

3 (form_func)

5 (form_func)

Figure 5. Type III code duplicates

In addition to our small examples, we also tested the prototype algorithm
adapted to the RefactorErl graph on several open source libraries. The first
examined library was the source code of Mnesia DBMS [5] (Database Manage-
ment Systems). Mnesia is a distributed, soft real-time database management
system written in Erlang. The source code of Mnesia is easily accessible as
part of the OTP framework and has a relatively large code base - more than
22 thousands of lines of source code. Because of this, we found the Mnesia
source code suitable for testing the algorithm. Since the algorithm does not re-
quire further processing of the raw source code and only uses the SPG built by
RefactorErl to analyze the code base, the prototype of the algorithm processed
the code base of Mnesia in a few minutes.

The Mnesia source code did not contain textually-identical (Type I) dupli-
cates, but the algorithm identified some parametrical identical ones. Such an
example can be seen in Listing 8 and Listing 9 source code snippets.

160 I. Bozó, Zs. Erdei and M. Tóth

Listing 8. Code clones in the mnesia lib modul

%15 (c l a u s e b l o c k)
% . . .

case Storage of
d i s c o n l y c o p i e s =>

dets : s e l e c t (Tab , Pat) ;
{ext , Al ias , Mod} =>

Mod: s e l e c t (Al ias , Tab , Pat) ;
=> e t s : s e l e c t (Tab , Pat)

end
% . . .

Listing 9. Code clones in the mnesia lib modul

%23 (c l a u s e b l o c k)
% . . .

case Storage of
d i s c o n l y c o p i e s =>

dets : match object (Tab , Pat) ;
{ext , Al ias , Mod} =>

Mod: s e l e c t (
Al ias , Tab , [{Pat , [] , [’ $ ’]}]) ;

=> e t s : match object (Tab , Pat)
end

% . . .

Listing 10. Type 3 clones in mnesia

% From mnesia example 1

l o c k r e c o r d (Tid , Ts , Tab , Key , LockKind)
when i s atom (Tab) =>

Store = Ts#t i d s t o r e . s to re ,
Oid = {Tab , Key} ,
case LockKind of

read =>
mnes i a l o cke r : r l o c k (Tid , Store , Oid) ;

wr i t e =>
mnes i a l o cke r : wlock (Tid , Store , Oid) ;

s t i c k y w r i t e =>
mnes i a l o cke r : s t i c k y w l o c k (Tid , Store , Oid) ;

none =>
[] ;

=>

Graph-based duplicated code detection 161

abort ({bad type , Tab , LockKind})
end ;

% From mnesia example 2

l o c k t a b l e (Tid , Ts , Tab , LockKind) when i s atom (Tab) =>
Store = Ts#t i d s t o r e . s to re ,
case LockKind of

read =>
mnes i a l o cke r : r l o c k t a b l e (Tid , Store , Tab) ;

wr i t e =>
mnes i a l o cke r : w lock tab l e (Tid , Store , Tab) ;

load =>
mnes i a l o cke r : l o a d l o c k t a b l e (Tid , Store , Tab) ;

s t i c k y w r i t e =>
mnes i a l o cke r : s t i c k y w l o c k t a b l e (Tid , Store , Tab) ;

none =>
[] ;

=>
abort ({bad type , Tab , LockKind})

end ;

Our prototype algorithm could be configured to find duplicates on different
levels. We tested the algorithm to find duplicate clauses, which are a bigger
units, and on the level of expressions, which are much smaller units. When
searching for duplicate clauses, there were fewer results, but the analysis yielded
many subgraphs that although indeed isomorphic, did not cover syntactically
correct code snippets. Extending there subgraphs to the AST we got subtrees
where the structure of the upper part of the tree was largely the same among
the code clones grouped together, there were cases where the difference between
the found code snippets was too large at the token level to consider them real
clones. However, when searching for expressions, the duplicates were broken
up into smaller pieces as demonstrated in examples 10, these were less useful
than finding the full code snippet. The prototype algorithm was examined
on multiple open-source modules like crypto, mnesia and eunit. Our analysis
found in crypto 17 groups and 117 code snippets, in eunit 36 groups and 105
code snippets, in mnesia 111 groups and 492 code snippets and in ssl 151 groups
and 1248 code snippets. It is worth noting that the large amount of duplicate
candidates in ssl mainly originates from macro calls and map data structures
(Listing 11). After manual inspection of the clone groups and duplicates found
in the modules, in crypto 87%, in eunit 83% in mnesia 70% and in ssl 72% of
overall of the results could be considered duplicates. Table 6 shows the number
of duplicate groups, duplicates and the number of false positive results of our

162 I. Bozó, Zs. Erdei and M. Tóth

prototype algorithm broken down into the examined modules.

Listing 11. Similar maps in SSL module

. . .

124893 (assoc map expr)
#{ id => t l s d i s t s e r v e r s u p ,

s t a r t => { t l s d i s t s e r v e r s u p ,
s t a r t l i n k , []} ,

r e s t a r t => permanent ,
shutdown => 4000 ,
modules => [t l s d i s t s e r v e r s u p] ,
type => s u p e r v i s o r

}
161191 (assoc map expr)

#{ id => s s l l i s t e n t r a c k e r s u p ,
s t a r t => { s s l l i s t e n t r a c k e r s u p ,

s t a r t l i n k , []} ,
r e s t a r t => permanent ,
shutdown => 4000 ,
modules => [s s l l i s t e n t r a c k e r s u p] ,
type => s u p e r v i s o r

}
161217 (assoc map expr)

#{ id => t l s s e r v e r s e s s i o n t i c k e t ,
s t a r t => { t l s s e r v e r s e s s i o n t i c k e t s u p ,

s t a r t l i n k , []} ,
r e s t a r t => permanent ,
shutdown => 4000 ,
modules => [t l s s e r v e r s e s s i o n t i c k e t s u p] ,
type => s u p e r v i s o r

}
. . .

LOC # groups # candidates % of duplicates
crypto 3321 17 117 87.17 %
eunit 4029 36 105 83.81 %
mnesia 24526 111 492 70.73 %
ssl 34096 151 1248 72.01 %

Table 3. Module statistics

Graph-based duplicated code detection 163

7. Conclusion and future works

Code duplicates are generated by various reasons such as code reuse by
copying existing fragments of code (copy-and-paste programming). While it is
possible that such cloning is intentional and can be useful in some, generally
in the long term the presence of duplicate code makes software maintenance
more difficult and thus it is considered a bad practice. Studies show that code
duplicates not only inflate maintenance costs but also considered defect-prone
as inconsistent changes to code duplicates can lead to unexpected behavior [12].

Several tools exist using different approaches and methods that can be used
to identify code duplicates within the source code. The majority of these tools
focuses on a specific language. There are also some attempts of creating general
tools for code duplicate identification in source codes written in an arbitrary
language. These methods are mostly based on pattern matching on the raw
source code mostly using a sliding window algorithm or analyzing a sequence of
tokens generated from the source code. These methods can be used to identify
completely identical snippets of code, but they cannot be reliably used to detect
code clones that are slightly different (have been modified). The more refined
tools for identifying code duplicates exist mostly for mainstream languages, in
the context of functional programming, only a few of them are available.

In this paper, we presented a graph-based algorithm which can find different
types of code clones in the source code. We use the representation of Erlang
programs defined by RefactorErl (a static analyser and transformer tool) to
find code clones based on their corresponding subgraphs in the SPG. The algo-
rithm was able to efficiently detect Type I, Type II and most Type III clones
in the source code, as we have demonstrated with several examples. Since the
semantic program graph provided by RefactorErl is a complete and easy to
examine the representation of the source code, the algorithm presented in the
paper does not require further processing of the raw source code. Due to the
nature of the graph structure, it provided easily accessible information for the
duplicate code detection than if we would have chosen a different representa-
tion. The algorithm uses an edge labelling function classify the edges of the
SPG and builds a similarity graph that determines a degree of similarity be-
tween the subgraphs. With this method, we can group the similar subgraphs
of the SPG, each set determining a class of code clones. By selecting which
attributes of the nodes of the SPG the labelling function uses, we can influence
what types of code duplicates the algorithm can detect.

The prototype algorithm was examined on multiple open-source modules
like crypto, mnesia and eunit. We tested the algorithm to identify duplicates
on the clause as well as on the expression level. While searching for duplicate
clauses, we obtained fewer results. However, the analysis revealed numerous
subgraphs that were isomorphic but did did not cover syntactically correct

164 I. Bozó, Zs. Erdei and M. Tóth

code snippets. By expanding these subgraphs to the AST, we obtained subtrees
where the upper portion of the tree was largely the same among the code clones
grouped together, there were cases where the difference between the found
code snippets was too large at the token level to consider them real clones.
On the other hand, when searching for expressions, the duplicates were often
fragmented into smaller components, these were less useful than finding the
full code snippet. After manual inspection of the clone groups and duplicates
found in the modules, in crypto 87%, in eunit 83% in mnesia 70% and in ssl
72% of overall of the results could be considered duplicates.

In the future, we will further evaluate and improve our methods. One
obvious development is the refinement of the filtering method used on the set
code clones. Since the similarity of subgraphs of the SPG is mainly based on
the syntactic structure, but they do not always correspond to actual clones
in the source code. Sometimes some false-positive results are also included in
the result. Better filtering of the initial sets of subgraphs would help filter out
irrelevant clones thus improve the accuracy of the results.

References

[1] Wrangler, cs.kent.ac.uk/projects/wrangler/Wrangler/Home.html
[Acc. 04.10.2020].

[2] Bozó, I., D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, M. Tejfel
and M. Tóth, Refactorerl - source code analysis and refactoring in erlang,
in: Proceedings of the 12th Symposium on Programming Languages and
Software Tools, ISBN 978-9949-23-178-2, pages 138–148, Tallin, Estonia,
10 2011.

[3] Brown, C. and S. Thompson, Clone detection and elimination for
haskell, in: Proceedings of the 2010 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM ’10, pages 111–120, New
York, NY, USA, 2010. ACM.

[4] Cesarini, F. and S. Thompson, Erlang Programming: A Concurrent
Approach to Software Development, O’Reilly Media, 2009.

[5] Mnesia DBMS,
http://erlang.org/doc/apps/mnesia/Mnesia_overview.html

GitHub, 2019.
[6] Horváth, Z., L. Lövei, T. Kozsik, R. Kitlei, A. Nagyné Vı́g, T.

Nagy, T., M. Tóth and R. Király, Modeling semantic knowledge in
Erlang for refactoring, in: Knowledge Engineering: Principles and Tech-
niques, Proceedings of the International Conference on Knowledge En-
gineering, Principles and Techniques, KEPT 2009, volume 54(2009) Sp.
Issue of Studia Universitatis Babeş-Bolyai, Series Informatica, pages 7–16,
Cluj-Napoca, Romania, 7 2009.

cs.kent.ac.uk/projects/wrangler/Wrangler/Home.html
http://erlang.org/doc/apps/mnesia/Mnesia_overview.html

Graph-based duplicated code detection 165

[7] Jürgens, E., F. Deissenboeck, B. Hummel and S. Wagner, Do
code clones matter? CoRR, abs/1701.05472, 2017.

[8] Li, H. and S. Thompson, Tool support for refactoring functional pro-
grams, in: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM ’08, page
199–203, New York, NY, USA, 2008. Association for Computing Machin-
ery.

[9] Li, H. and S. Thompson, Similar code detection and elimination for
erlang programs, in: Manuel Carro and Ricardo Peña, editors, Practical
Aspects of Declarative Languages, pages 104–118, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[10] Mayrand, J., C. Leblanc and E. Merlo, Experiment on the automatic
detection of function clones in a software system using metrics, in: Pro-
ceedings of the 1996 International Conference on Software Maintenance,
ICSM ’96, page 244, USA, 1996. IEEE Computer Society.

[11] Prechelt, L., G. Malpohl and M. Philippsen, Finding plagiarisms
among a set of programs with jplag, Journal of Universal Computer Sci-
ence, 8 (2002), 1016–1038.

[12] Roy, C.K., J.R. Cordy and R. Koschke, Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach, Sci.
Comput. Program., 74(7) (2009), 470–495.

[13] Schleimer, S., D.S. Wilkerson and A. Aiken, Winnowing: Local
algorithms for document fingerprinting, in: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’03, pages 76–85, New York, NY, USA, 2003. ACM.

[14] Tóth, M. and I. Bozó, Static analysis of complex software systems
implemented in erlang, Central European Functional Programming Sum-
mer School – Fourth Summer School, CEFP 2011, Revisited Selected Lec-
tures, Lecture Notes in Computer Science (LNCS), Vol. 7241, pp. 451–514,
Springer-Verlag, ISSN: 0302-9743, 2012.

I. Bozó, Zs. Erdei and M. Tóth
ELTE, Eötvös Loránd University
Budapest
Hungary
bozo i@inf.elte.hu

zsanart@inf.elte.hu

toth m@inf.elte.hu

	Introduction
	Background
	Related works
	Erlang and RefactorErl
	Algorithm for graph based clone detection
	The semantic program graph
	Similarity graph
	Initial classification of vertices and edges

	Detecting initial clones
	Filtering relevant clones

	Recognized types of code duplicates
	Conclusion and future works

