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Abstract. We propose an Optimal Transport (OT)-based generative
model from the Wasserstein Autoencoder (WAE) family of models, with
the following innovative property: the optimization of the latent point posi-
tions takes place over the full training dataset rather than over a minibatch.
Our contributions are the following:

1. We define a new class of global Wasserstein Autoencoder models,
and implement an Optimal Transport-based incarnation we call the Global
Sinkhorn Autoencoder.

2. We implement several metrics for evaluating such models, both in
the unsupervised setting, and in a semi-supervised setting, which are the
following: the global OT loss, which measures the OT loss on the full
test dataset; the reconstruction error on the full test dataset; a so-called
covered area which measures how well the latent points are matched; and
two types of clustering measures.

3. We demonstrate on specific complex prior distributions that global
optimal transport improves the performance of generative models com-
pared to minibatch-based baselines when evaluated by the previously listed
metrics.
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1. Introduction

Our objects of interest in this paper are generative autoencoders, that is,
autoencoders where the decoder can be used as a generator when samples from
some simple prior are fed to it. The beautiful Theorem 2.1 of [23], generalizing
Theorem 1 of [29], gives a powerful and general guideline in designing generative
autoencoders. Informally, it states that assuming a Lipschitz generator, the
Wasserstein distance between the true data distribution and the generated
distribution is equal to the Wasserstein distance between the encoded true
data distribution and the latent prior, plus the reconstruction error.

In Tolstikhin’s original, slightly less general formulation in [29], the push-
forward of the true data distribution is assumed to be equal to the prior, and
it is deduced that the Wasserstein distance between the true data distribution
and the generated distribution is equal to the reconstruction error. Of course
the assumption of the theorem is of a “spherical cow” kind: it is impossible
to match the pushforward of the true data distribution exactly. But the ad-
vantage of this formulation, exploited by the Wasserstein Autoencoder class
of algorithms, is that we can apply Lagrangian relaxation, adding an extra
penalty term for matching the aggregate posterior to the prior, not necessarily
in Wasserstein distance, but in any well-chosen divergence. This penalty term
can be seen as a statistical test verifying that the pushforward is indeed close
to the prior.

Very often a further simplification is made: the prior is represented by a
sample, and the inputs of the statistical test are the two sets of samples. This is
the form that the Adversarial Autoencoder [22] and the Sinkhorn Autoencoder
[23] take. The obvious disadvantage of this approach is that it introduces a
further sampling error and potential bias in the gradients, when compared to
treating the prior analytically (which is called the semi-discrete case in the
field of Optimal Transport). One advantage is that it can deal with complex
artificially constructed priors.

In all incarnations of this idea that we are aware of, such as Adversar-
ial Autoencoders [22], Maximum Mean Discrepancy (MMD) nets [9], sliced
Wasserstein Autoencoders [32], or Sinkhorn Autoencoders [23], the input for
this statistical test is the latent image of the minibatch (latent minibatch for
short). However, as it is hinted by experiments of [26], the size of the minibatch
may strongly affect the performance of the WAE. In our work, we go further
and argue that in the WAE class of models, the minibatch size is not large
enough compared to the latent dimension, which means that the statistical
test will be too weak to guarantee a good match between the pushforward and
the prior. (The typical minibatch size in WAE-class models is in the range of
50-200, although some MMD-based generative models moved it into the 1000s
range exactly with the goal of strengthening the statistical power, as in [20]).
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It is not very surprising that a sample size that is approximately in the
same range as the data dimension can lead to a too weak statistical test: the
field of sampling is a natural habitat of the curse of dimensionality (see [8]).
But this intuition leads us toward an uncomfortable position: maybe even the
latent image of the full dataset might not be large enough to statistically verify
the closeness of the pushforward and the prior.

In this paper, we present tasks where a global model optimizing the regular-
ization loss term on the full dataset offers improvements over minibatch-based
loss, according to various evaluation metrics.

2. Theoretical framework for Wasserstein distance

Following [29], the sample spaces are denoted by X ,Y,Z, while X,Y, Z and
PX , PY , PZ denote the corresponding random variables and distributions. Now
let Π(PX , PY ) be the set of all joint distributions with marginals PX , PY , that
is, the set of couplings from PX to PY . For a measurable, non-negative cost
function c : X×Y → R+∪{∞} the optimal transport cost between distributions
PX and PY is defined by

Wc(PX , PY ) = inf
Γ∈Π(PX ,PY )

E(X,Y )∼Γ[c(X,Y )].(2.1)

If c(x, y) = d(x, y)p for a metric d and p ≥ 1, then Wp := p
√
Wc is called the

p-Wasserstein distance. (Also known as the Kantorovich–Rubinstein distance,
or in the case p = 1, earth mover’s distance.) In this special case, this concept
provides a way to measure distance between probability distributions such that
it reflects the geometry of their domain.

To use this machinery as the basis of a generative model, denote by PX the
true data distribution on X . To define the latent variable model, one can fix a
latent space Z with a prior distribution PZ on Z, and consider the conditional
distribution G(X|Z) parametrized by a neural network G. The generative
model is specified as G(X|Z)PZ , while the induced marginal is PG. The aim
of the neural network is to learn PG such that it approximates PX , that is

min
G

Wc(PX , PG).(2.2)

Theorem 2.1 of [23] states the following:

Theorem 2.1. Let X , Z be endowed with any metrics and p ≥ 1. Let PX be a
non-atomic distribution and G(X|Z) be a deterministic generator/decoder that
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is λ-Lipschitz. Then we have the equality:

Wp(PX , PG) = inf
Q∈F

p

√
EX∼PX

EZ∼Q(Z|X) [d(X,G(Z))p] +

+ λ ·Wp(QZ , PZ) ,(2.3)

where F is any class of probabilistic encoders that at least contains a class of
universal approximators.

If X , Z are Euclidean spaces endowed with the Lp-norms ∥ · ∥p then a valid
minimal choice for F is the class of all deterministic neural network encoders
Q (here written as a function), for which the objective reduces to:

Wp(PX , PG) = inf
Q∈F

p

√
EX∼PX

[∥X −G(Q(X))∥pp] +

+ λ ·Wp(QZ , PZ).

This theorem leads to the following unconstrained min-min-optimization
objective over deterministic decoder and encoder neural networks:

min
G

min
Q

p

√
EX∼PX

[∥X −G(Q(X))∥pp] +(2.4)

+ λ ·Wp(QZ , PZ),(2.5)

with λ ≥ ∥G∥Lip for all occuring G.

3. Entropy regularization and Sinkhorn autoencoders

We follow [23] to summarize the direct influences of our work in the field of
Sinkhorn autoencoders. By the previous section, using p-Wasserstein distance
to the prior to train a generative model is theoretically established. However,
even estimating the Wasserstein distance is incredibly difficult computationally.
Algorithms based on traditional combinatorial results as the Hungarian method
[17] have unacceptable time and sample complexity. This obstacle is overcome
via entropy regularizaton ([7], [13], [12] and [10]). Notably, for nonnegative ε,
the entropy regularized OT cost is defined as

S̃c,ε(PX , PY ) := inf
Γ∈Π(PX ,PY )

E(X,Y )∼Γ[c(X,Y )] +

+ ε ·KL(Γ, PX ⊗ PY ),(3.1)
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(where KL is the Kullback-Leibler divergence) which can be made a divergence
by removing the entropic bias:

Sc,ε(PX ,PY ) := S̃c,ε(PX , PY ) −

− 1

2

(
S̃c,ε(PX , PX) + S̃c,ε(PY , PY )

)
.(3.2)

We call Sc,ε,L the approximate Sinkhorn divergence, which can be computed
in O ∼ M2 · L time, where L is the number if Sinkhorn iterations ([7], [1]).
Moreover, as ε → 0, Sc,ε converges to Wc(PX , PY ), while as ε → ∞, it con-
verges to MMD−c(PX , PY ), which has favorable sample complexity compared
to Wc(PX , PY ). More explicitly, the sample complexity of MMD−c(PX , PY )
is independent of the dimension, and scales as 1√

M
([15]). Consequently, by a

clever balancing of ε we can get close to our original objective while maintaining
preferable computational, and statistical properties.

If we replace Wasserstein distance by Sinkhorn divergence in (2.4), we arrive
at the Sinkhorn AutoEncoder (SAE) objective introduced by [23]:

min
G

min
Q

p

√
EX∼PX

[∥X −G(Q(X))∥pp] +

+ λ · S∥·∥p
p,ε,L(QZ , PZ),

supposed to approximate our original objective.

4. Our method

Core idea: utilize the global scope. To optimize the Wasserstein distance (spe-
cifically, the Wasserstein-2 distance) between the aggregate posterior and the
prior, our models employ optimal transport, specifically, it utilizes the unbi-
ased Sinkhorn divergence as a loss function, similarly to the Sinkhorn Autoen-
coder models of [23]. The crucial difference that distinguishes our models from
Sinkhorn Autoencoders is that our model we call Global-SAE optimizes the
transport between the latent image of the full dataset and a similarly-sized
sample from the prior, as opposed to working on the minibatch level.

Detailed description of the Global-SAE algorithm. Our main proposal for new
methods capable to work with point cloud sizes strongly exceeding the ones
encountered in the minibatch regime is summarized in Algorithm 1, in which we
proceed as follows. In lines 2-3 we resample the target latent point cloud, and
calculate the latent images ẑ of the dataset x. Note, that instead of considering
data and target samples of size M of a minibatch, we examine the complete
dataset x = {xi}ni=1 and a correspondingly sized target set z = {zi}ni=1 sampled
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from the prior distribution PZ , thus, we operate in the global scope of the
dataset. In lines 4-6 we calculate the reconstruction loss for a minibatch. (For
this regular autoencoder loss term we remain with the minibatch scope.) In
line 7 we calculate the error terms resulting from the optimal transport cost
between ẑ and z. Then in line 8 we update the model parameters by taking
a gradient step with the above global optimal transport loss function and also
with the reconstruction error.

Algorithm 1 Global Sinkhorn Autoencoder (Global-SAE)

Input: Dataset x = {xi}ni=1, prior distribution PZ ,
encoder weights Ψ, decoder weights Φ, learning rate µ, traning iters iter,
minibatch size M
parameters for the Sinkhorn algorithm: ε ∈ R, L ∈ N, c = ∥.∥22, sinkhorn
weight λ

Output: Trained model with encoder weights Ψ, decoder weights Φ
1: for i = 1..iters do
2: z = {zi}ni=1 ∼ PZ {Sample target point set from PZ — global data}
3: ẑ = {ẑi}ni=1 ← QΨ(x) {Encoded image of the entire dataset x — global

data}
4: x̃ = {xi}i∈I where I ⊆ {1, 2, ..., n} random subset, |I| = M {Minibatch

sample from x}
5: x̃′ ← GΦ(QΨ(x̃))
6: D ← 1

M ∥x̃− x̃′∥22 {Calculate reconstruction loss for minibatch}
7: S = Sc,ε,L(ẑ, z) {Calculate Sinkhorn loss for global point clouds ẑ and z

— global data}
8: (Ψ,Φ)← (Ψ,Φ)− µ · ∇(Ψ,Φ)(D + λ · S) {Update model parameters}
9: end for

4.1. Algorithm variants with different tradeoffs

Taking calculations in the global scope can be costly. To improve the effi-
ciency of our model for larger datasets, in this subsection we discuss possible
modifications to Algorithm 1 with different type of speed vs. accuracy vs.
memory footprint trade-offs. These approaches consider the three most expen-
sive steps of Algorithm 1. Here we list these three expensive operations with a
brief summary of the type of cost they introduce.

� Calculating the pushforward of the entire dataset (line 3 in Algorithm 1):
Considering that the memory footprint of the latent embeddings is fairly
low, the main cost here is the computational cost of the forward passes
with the encoder model QΨ(x) for the entire dataset.
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� Calculating the Sinkhorn divergence between large point clouds (line 7
in Algorithm 1): The iterative projections of the Sinkhorn algorithm has
memory complexity O(n), where n is the size of the point cloud. The
main cost here thus is the computational cost of the Sinkhorn algorithm
which is quadratic in the point cloud size n.

� Computing the gradients for the full latent point cloud (line 8 in Algo-
rithm 1): considering the backward pass also (instead of just the forward
pass in line 3) roughly only doubles the computational cost, however, to
backpropagate the gradients through the encoder, we must either store
all the activations for the entire point cloud (which we consider costly in
terms of memory) or introduce another doubling factor of necessary com-
putations (by making the global backward pass also with minibatches).

Frequency of global point cloud updates. One possibility is to update the push-
forward less frequently. For this we introduce a hyperparameter recalculate
frequency, which controls how often do we encode the entire dataset (if this
hyperparameter is greater than 1, then we use the last seen positions of the
points, except for the current minibatch).

Calculate in the global scope, but backpropagate only on a minibatch. In the
Global-SAE algorithm all latent positions are calculated by the encoder in each
iteration, thus the gradient signal coming from the Sinkhorn loss can be back-
propagated for all datapoints to the encoder weights. In contrast to this, we
introduce a new variant: Minibatch-Global-SAE, which takes the latent posi-
tions from a ”cache” for all points except for the current minibatch. This means
that for this variant, the gradient signal coming from the Sinkhorn loss can only
propatage to the encoder for the elements of the current minibatch, and the
gradient signal is ”thrown away” for all datapoints outside the minibatch. The
only difference between the two algorithms is that in case of Minibatch-Global-
SAE we take the gradient on the minibatch, while in Global-SAE we take the
gradient on the entire dataset. The runtime and the memory requirements
for the decoder forward-backward pass and the Sinkhorn loss calculation are
identical between the two variants. The significant differences between the re-
source requirements of the two variants lie in the way encoder gradient updates
are treated. The Full Global variant requires a forward-backward pass of the
encoder on the full dataset for each minibatch calculation.

4.2. Global model variants

Our general approach can be applied to different WAE variants resulting
in different global analogs. For example the Global-WAE-MMD abbreviation
could stand for a variant with the MMD loss, which is a particularly mean-
ingful choice. The necessary requirement is that the utilized WAE loss must
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be computable for the full dataset, hence the WAE-GAN has no direct analog.
Here we leave the exploration of the efficiency of these method for future work.

5. Experiments

In this section we present experiments that demonstrate the effectiveness
of our method.

5.1. MNIST with a two dimensional Gaussian mixture prior

In this experiment we followed [22], by choosing the dataset to be the stan-
dard benchmark MNIST dataset [18], and the prior to be a mixture of 10
2D Gaussians, shaping a flower, see Figure 1. Specifically, our prior point
cloud is a uniform sample from a Gaussian mixture with the following means:(
3 cos(α), 3 sin(α)

)
, and variances:

((
cos2(α)+ sin2(α)

100 , cos(α) sin(α)(1−1/100)
)
,(

cos(α) sin(α)(1− 1/100), sin2(α) + cos2(α)
100

))
, where α = 2π·i

10 i = 0, . . . , 9.

We conduct experiments with two neural network architectures: an MLP
network with 3 hidden layers of 256 neurons in each layer and ReLU activa-
tions, both in the encoder and the decoder; and a modern incarnation of the
LeNet-5 architecture [19] with maxpooling, ReLU activations, and transposed
convolutions in the decoder.

We used the SamplesLoss function from the geomloss [11] library to compute
the Sinkhorn loss. The geomloss library abstracts the underlying iterations of
the Sinkhorn-Knopp algorithm and instead allows users to control the regular-
ization and convergence behavior through the parameters blur and scaling. We
set blur = 0.05 and scaling = 0.7 in our experiments.

Figure 1: The ”flower” prior. A mixture of 10 Gaussians in 2 dimensions.
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5.1.1. Evaluation metrics

To obtain a detailed view on the quality of the models, we examine five dif-
ferent quantitative evaluation metrics, each of which shed light from a different
viewpoint on the quality of the learned model. Besides reporting the standard
test reconstruction loss, and the Sinkhorn loss on the entire test set (which we
call global OT loss for brevity), we also introduce three metrics that measure
the quality of the latent space formed by the trained model.

Local clustering To measure how well the same labeled points coalesce we
utilize the local clustering metric which is a standard evaluation metric in
semisupervised models. Here, we call an encoded point good, if the 10 nearest
encoded points to it in the latent space have the same label as this point. The
ratio of the good points in the test set is what we call local clustering.

Cluster matching. One might wish that working with such a prior (the ”flower”
prior), as there are 10 labels, all encoded images with the same label should
belong to the same petal. We are interested in how much the actual embedding
approximates this ideal. This consideration leads to a metric we call cluster
matching. Informally, the metric is the classification performance of the cluster-
ing algorithm assigning the points to petals by maximum likelihood, assuming
that the unknown assignment between clusters and labels is chosen optimally.
First, we split the plane by 5 lines passing through the origin, such that each
angle between adjacent lines is the same, and for each angular domain, the
angular bisector passes through the mean of one of the Gaussian distribution
in the mixture. We partition the plane into 10 domains, and we can assign each
encoded point to the petal which has its mean in that specific domain. Then
we create a complete bipartite graph where the two sets of nodes represent the
labels and the petals respectively, and the weight of the edge between the ith
petal and jth label is equal to the number of test points assigned to the ith
petal and has label j. The value cluster matching is the weight of the maximal
weight perfect matching divided by the size of the test set.

Covered area. As the latent space is two dimensional, we can check visually
how well the models are able to match the encoded points to the prior point
cloud. In addition we worked out a measure which we call covered area which
checks how well the encoded points are matched to the prior distribution.

For Gaussian priors, let T be a transformation that transforms the prior to
the uniform distribution on the unit square in the plane. We transform each
encoded point by T , thus each encoded point is transformed to the unit square.
We create a very dense grid on the square, look at the small neighborhood of
the transformed encoded points and compute how many little squares in the
grid intersect with the neighborhoods. The ratio of such squares to the number
of squares in the grid is what we call covered area.
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For Gaussian mixtures, we assign each encoded point to one of the mixture
components by maximal likelihood. Assuming large divergence between our
mixture components, every such “petal” is a Gaussian distribution with good
approximation, and we can calculate the covered area for each of the petals
separately, then take the average of these values.

(a) Local (b) Minibatch global (c) Full global

Figure 2: The encoded test set in the latent space, using the MLP net. ”Local”
refers to the baseline SAE method. The points match the prior better and they
have a more orderly arrangement in the global versions.

(a) Local (b) Minibatch global (c) Full global

Figure 3: The encoded test set in the latent space, using the LeNet-5 architec-
ture. ”Local” refers to the baseline SAE method. The points match the prior
better and they have a more orderly arrangement in the global versions.

5.1.2. Results

Hyperparameter selection. We did extensive grid search for the λ parameter in
all three models, altogether in the set {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}.
The metric which we primarily took into consideration in choosing the best
lambda was the global OT loss, and secondarily the cluster matching. From
this we found that the best λ value for the baseline and full global models was
0.1 and it was 100 for the minibatch global model. To further validate these
choices, as the latent space is two dimensional, we can track visually how well
the models are able to match the prior point cloud. We found that the visually
chosen λ parameter concides with the λ parameter chosen according to the
numerical results.
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We report the metrics introduced in the previous section with each of the
three models. The results can be seen in Tables 1 and 2. For the MLP net
the experiments ran for 50 epochs, and 30 epochs for LeNet-5. The highlighted
number in each row is the best result in that metric. We also present generated
images (Figures 4 and 5) for both nets.

MLP. In the case of the MLP net, the differences between the Sinkhorn loss and
test reconstruction were small, although both global models performed better
than the baseline model. The significant differences came in the other three
metrics, where again both global models performed better, with an almost 0.1
difference in favour of the global models for the cluster matching and 0.05 for
the local clustering.

LeNet-5. For LeNet-5, in cluster matching all three models performed better
than for the MLP. There was a significant jump in the performance of the
baseline model in this measure, although one of the global models was still
better. As for the local clustering, the baseline model offered the same result,
but the global models performed significantly better.

MLP Local Minibatch global Full global

Sinkhorn loss ↓ 0.018 ±0.28e−2 0.013 ±0.33e−2 0.014 ±0.38e−2

Reconstruction ↓ 0.036 ±0.19e−3 0.034 ±0.33e−3 0.034 ±0.1e−3

Local clustering ↑ 0.456 ±0.012 0.505 ±0.019 0.516 ±0.017

Cluster matching ↑ 0.55 ±0.067 0.64 ±0.033 0.64 ±0.01

Covered area ↑ 0.83 ±0.82e−2 0.89 ±0.007 0.87 ±0.008

Table 1: Results for the MLP net after 50 epochs. Averages of 5 runs with
different random seeds. An arrow indicates if lower (↓) or higher (↑) is better.

LeNet-5 Local Minibatch global Full global

Sinkhorn loss ↓ 0.016 ±0.21e−2 0.011 ±0.13e−2 0.015 ±0.13e−2

Reconstruction ↓ 0.0362 ±0.12e−3 0.0360 ±0.16e−3 0.0356 ±0.4e−3

Local clustering ↑ 0.5339 ±0.019 0.5305 ±0.033 0.5752 ±0.031

Cluster matching ↑ 0.6374 ±0.018 0.6406 ±0.073 0.6317 ±0.048

Covered area ↑ 0.862 ±0.85e−2 0.893 ±0.007 0.862 ±0.009

Table 2: Results for the LeNet net after 30 epochs. Averages of 5 runs with
different random seeds. An arrow indicates if lower (↓) or higher (↑) is better.

6. Conclusion

We introduced a new algorithm in the Wasserstein Autoencoder class of al-
gorithms, a global version of the Sinkhorn Autoencoder. For a Global Wasser-
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(a) Local (b) Minibatch global (c) Full global

Figure 4: Generated images using the MLP net.

(a) Local (b) Minibatch global (c) Full global

Figure 5: Generated images using LeNet-5.

stein Autoencoder, the optimization of the latent point positions takes place
over the full training dataset rather than over a minibatch.

We presented two variants of this global model, a full global variant, where
the gradient signal coming from the global regularization loss acts on all the
latent points, and a minibatch global variant, where it only acts on the current
minibatch. As our experiments demonstrate, our global models consistently
improve on the local baselines for complex priors in low latent dimensions.
The minibatch global model’s performance was consistently on par with the
full global model’s performance, despite the less robust theoretical guarantees.
This makes the minibatch global model a promising alternative to the full global
model, thanks to its significantly lower memory- and runtime complexity.
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