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Abstract. In this paper three unrelated problems will be discussed. What
connects them is the rich methodology of classical probability theory. In
the first two problems we have a complete answer to the problems raised;
in the third case, what we call the Hungarian roulette problem, we only
have a conjecture with heuristic justification.

1. Introduction

This paper is devoted to three unrelated problems from the field of classical
probability theory. They are interesting individually.

The first problem leads to a joint characterization of two families of prob-
ability distributions: the exponential and the normal one. No doubt, they
belong to the most important families of distributions. Both have several char-
acterizations in the literature, see e.g [8, 5, 2], but a joint characterization has
not been presented until now, as far as we know.

In the second problem we ask if the independence ofX−X ′ and Y−Y ′ where
(X,Y ) and (X ′, Y ′) are iid, implies the independence of X and Y . Ex. 15.2
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on p.208 of [12] shows that cov (|X −X ′|, |Y − Y ′|) = 0 does not imply the
independence of X and Y . The joint density

p(x, y) = (1/4− q(x)q(y))1[−1,1]2(x, y)

where
q(x) = −(c/2)1[−1,0](x) + (1/2)1(0,c](x)

with c =
√
2 − 1 is a counterexample. (Here and in the sequel 1S and 1(A)

stand for the indicator of the set S and that of the random event A, resp.)

The third problem is about a game we call the Hungarian roulette. This
simple model is closely connected to classical allocation problems [9]. Though
they have a rich history, the question we will address seems to be missing from
the literature.

2. Joint characterization of the exponential and the normal distri-
bution

Let the random variables X and Y be independent and identically dis-
tributed with probability density function f that is positive over a bounded or
infinite open interval I (and 0 outside). Determine all possible distributions of
X for which the conditional density of U := X + Y given X − Y = v is of the
form Af(Au+B|v|) for some real numbers A > 0 and B.

Theorem 2.1. The probability density function f satisfies the conditions above
if and only if the distribution of X is either exponential, or negative exponential
(that is, the distribution of −X is exponential), or normal.

This is a novel joint characterization of the exponential and the normal
(Gaussian) distributions.

Proof. It is easy to check that the “if” part is true (see (2.1) below). In
order to prove the “only if” direction let us compute the conditional density of
U = X + Y given X − Y = v.

The joint density of U = X + Y and V = X − Y is

1

2
f
(u+ v

2

)
f
(u− v

2

)
,

and the density of V is

g(v) =
1

2

∞∫
−∞

f
(u+ v

2

)
f
(u− v

2

)
du.
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Clearly, g(v) > 0 if and only if |v| < |I|, the length of the interval I.

From this we obtain the following functional equation.

(2.1) f
(u+ v

2

)
f
(u− v

2

)
= 2Af(Au+B|v|)g(v).

This holds by supposition if |v| < |I|. In the opposite case at least one of the
arguments u+v

2 and u−v
2 falls outside of I, thus both sides of (2.1) are zero.

Thus (2.1) holds for all real numbers u and v. We can suppose that v ≥ 0.

Put s =
u+ v

2
, t =

u− v

2
. Then (2.1) is equivalent to

(2.2) f(s)f(t) = 2Af
(
(A+B)s+ (A−B)t

)
g(s− t),

for all real numbers s, t. There are two cases.

Case (i): A = |B|. Suppose A = B. (A similar argument works if A =
= −B.) Then (2.2) reduces to

(2.3) f(s)f(t) = 2Af(2As)g(s− t).

If A = 1/2, then (2.3) implies that both f and g are constant. Thus random
variables X and Y are uniformly distributed on the bounded interval I. But
in this case g is not constant, as it has a triangular shape. This means that
A ̸= 1/2.

If A > 1/2 and I = (a, b) with a positive and finite b we have 2As > s
for all s ∈ (0, b). Thus there exists an s such that a < s < b < 2As, and
f(2As) = 0. This, together with (2.3) implies f(s) = 0, which is excluded.
Therefore, if b > 0 then b = +∞. Similarly, if a < 0, then a = −∞, and if
a ≥ 0, then a = 0. We shall see that I = (−∞,+∞) cannot hold, therefore
either I = (−∞, 0) or I = (0,+∞). The same argument applies if A < 1/2.

From (2.3) we get

(2.4) g(s− t) = h(s)f(t), s, t ∈ I,

for some function h. This is a Cauchy type functional equation (see [1]). It
follows that g is exponential, thus so is f . If I = R, then f is not a probability
density function; thus, as we claimed before, either I = (−∞, 0) or I = (0,+∞).

Case (ii): |A| ̸= |B|. We first show that I = R. Suppose indirectly that
f(t0) = 0 for some t0. Then from (2.2) we get

f
(
(A+B)s+ (A−B)t0

)
= 0

for all values of s, that is, f ≡ 0, which is impossible.
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Now we put f(x) = f(p(x)), q(x) = log g(x), C = log 2A in (2.1) to get

(2.5) p
(u+ v

2

)
+ p

(u− v

2

)
= p(Au+Bv) + q(v) + C.

Let Ω(u) a nonnegative, infinitely differentiable function such that

Ω(u) = 0 for |u| ≥ 1, and

+∞∫
−∞

Ω(u) du = 1.

Put Ωε(u) =
1

ε
Ω
(u
ε

)
. Multiplying both sides of (2.5) by Ωε(x − u) and inte-

grating with respect to u over the whole real line we get

(2.6) pε

(x+ v

2

)
+ pε

(x− v

2

)
= pε(Ax+Bv) + q(v) + C,

where pε is the convolution of p and Ωε. It is well known that pε is infinitely
differentiable. Differentiate both sides of (2.6) with respect to x to get

p′ε

(x+ v

2

)
+ p′ε

(x− v

2

)
= 2Ap′ε(Ax+Bv).

Set s =
x+ v

2
, t =

x− v

2
. Then

p′ε(s) + p′ε(t) = 2Ap′ε
(
(A+B)s+ (A−B)t

)
.

Differentiating both sides with respect to s we get

p′′ε (s) = 2A(A+B) p′′ε
(
(A+B)s+ (A−B)t

)
.

Here the left hand side does not depend on t. Therefore p′′ε is constant and
pε is a quadratic polynomial. Finally, pε → p a.e. as ε → 0, hence p is also a
quadratic polynomial a.e., thus f = exp(p) is normal. ■

3. Independence of symmetrized random variables

Let the random vectors (X,Y ) and (X ′, Y ′) be independent and identically
distributed. Suppose that the symmetrized X−X ′ and Y −Y ′ are independent.
Does it follow that X and Y are also independent?

The answer is negative as it is shown by the following
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Counterexample

Let the random variables X and Y have joint characteristic function

f̂(t, s) = e−2|t|−t2+it2s/(1 + s2).

Later we will prove that this is in fact a characteristic function. It is easy to
see that

|f̂(t, s)| = |f̂(t, 0)||f̂(0, s)|

for all t, s, thus if (X ′, Y ′) is an independent copy of (X,Y ) then X −X ′ and
Y − Y ′ are independent. On the other hand, X and Y are not independent
because

f̂(t, s) ̸≡ f̂(t, 0)f̂(0, s).

What remains to be proved is that f̂(t, s) is in fact a characteristic function,
or equivalently, the corresponding inverse Fourier transform

f(x, y) =
1

(2π)2

∞∫
−∞

∞∫
−∞

f̂(t, s)e−itx−isy dtds

is nonnegative. Now

f(x, y) =
1

4π

∞∫
−∞

e−2|t|−t2−itx

∞∫
−∞

eis(t
2−y)

π(1 + s2)
dsdt.

The second integral is the characteristic function of the standard Cauchy dis-
tribution at t2 − y, thus

f(x, y) =
1

4π

∞∫
−∞

e−2|t|−t2−itx e−|t2−y| dt

=
1

2
e−|y| 1

2π

∞∫
−∞

e−2|t|−t2−|t2−y|+|y| e−itxdt.

It is enough to show that

ĝ(t) = e−2|t|−t2−|t2−y|+|y|

is a characteristic function for every real number y, because then the inverse
Fourier transform

g(x) =
1

2π

∞∫
−∞

ĝ(t) e−itx dt
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is nonnegative and so is f(x, y) = 1
2 e

−|y|g(x). (Note that ĝ(t) and hence g(x)
depend on y as well.)

There are two cases. If y ≤ 0 then ĝ(t) = e−2|t|−2t2 is obviously a charac-
teristic function, because it is the product of two characteristic functions. The
other case is where y > 0. Then ĝ(t) is a Polya type characteristic function
meaning that ĝ(0) = 1, ĝ(−t) = ĝ(t), g(t) → 0 non-increasingly as t → ∞ and
g(t) is a convex function on the positive real half-line. The proof of all claims
are easy. We just need to separate the cases where 0 ≤ t ≤ √

y and t >
√
y.

In the former case ĝ(t) = e−2t, while in the latter case ĝ(t) = e−2t−2(t2−y).
Clearly, g′(t) ≤ 0 and g′′(t) ≥ 0 for all t > 0.

Remark. Let X and Y be real valued random variables with finite second
moments. The distance covariance of X and Y can be defined in the following
form [12, 13].

Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′) denote independent and identically dis-
tributed copies then the distance covariance is the square root of

dCov2(X,Y ) := E(|X −X ′||Y − Y ′|) + E(|X −X ′|E(|Y − Y ′|)−
− 2E(|X −X ′||Y − Y ′′|)

= cov(|X −X ′|, |Y − Y ′|)− 2cov(|X −X ′|, |Y − Y ′′|).

The definition of their distance correlation is the following:

dCor(X,Y ) :=
dCov(X,Y )√

dCov(X,X) dCov(Y, Y )
,

provided the denominator is positive. An important property of distance cor-
relation is that it characterizes independence, i.e. dCor(X,Y ) = 0 if and only
if X and Y are independent. The counterexample above makes the distance
correlation even more interesting.

Next we show that the independence of X and Y does follow if in addition
we suppose that X and Y are bounded and their joint distribution is symmetric
in the sense that (X,Y ) and (−X,−Y ) are indentically distributed. What we
really need is less than boundedness; we only suppose that all (mixed) moments
are finite and they determine the joint distribution.

Theorem 3.1. Let the random vectors (X,Y ) and (X ′, Y ′) be identically dis-
tributed with bounded and symmetric joint distribution. Suppose that X −X ′

and Y − Y ′ are independent. Then so are X and Y .

Proof. Let us start from the Taylor expansion of the joint characteristic func-
tion,

f̂(t, s) = E
(
eitX+isY

)
=

∞∑
k=0

∞∑
ℓ=0

(it)k(is)ℓ

k! ℓ!
E(XkY ℓ).
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It is enough to show that E(XkY ℓ) = E(Xk)E(Y ℓ) for all k, ℓ = 1, 2, . . . ,
because then

f̂(t, s) =

∞∑
k=0

(it)k

k!
E(Xk) ·

∞∑
ℓ=0

(is)ℓ

ℓ!
E(Y ℓ) = f̂(t, 0)f̂(0, s),

thus the independence of X and Y follows.

By symmetry, we have E(Xk) = 0 and E(Y ℓ) = 0 if k and ℓ are odd.
Similarly, E(XkY ℓ) = 0 = E(Xk)E(Y ℓ) if k + ℓ is odd. Hence all we have to
show is that E(XkY ℓ) = E(Xk)E(Y ℓ) whenever k+ℓ is even. This can be done
by induction over n := k + ℓ. Let k = ℓ = 1. Then

E ((X −X ′)(Y − Y ′)) = E(XY )− E(X ′Y )− E(XY ′) + E(Y Y ′) = 2E(XY ),

and by the independence of X −X ′ and Y − Y ′,

E ((X −X ′)(Y − Y ′)) = E(X −X ′)E(Y − Y ′) = 0.

Next, let k+ℓ = n even, and suppose that E(XiY j) = E(Xi)E(Y j) if i+j < n.
Then

E
(
(X −X ′)k(Y − Y ′)ℓ

)
=

=

k∑
i=0

ℓ∑
j=0

(−1)n−i−j

(
k

i

)(
ℓ

j

)
E
(
Xi(X ′)k−iY j(Y ′)ℓ−j

)
=

=

k∑
i=0

ℓ∑
j=0

(−1)n−i−j

(
k

i

)(
ℓ

j

)
E
(
XiY j

)
E
(
(X ′)k−i(Y ′)ℓ−j

)
.

Now by the induction hypothesis we have

E
(
(X −X ′)k(Y − Y ′)ℓ

)
= 2E(XkY ℓ)− 2E(Xk)E(Y ℓ)+

+

k∑
i=0

ℓ∑
j=0

(−1)n−i−j

(
k

i

)(
ℓ

j

)
E(Xi)E(Xk−i)E(Y j)E(Y ℓ−j).

Here the last line is equal to

k∑
i=0

(−1)k−i

(
k

i

)
E(Xi)E(Xk−i) ·

ℓ∑
j=0

(−1)ℓ−j

(
ℓ

j

)
E(Y j)E(Y ℓ−j) =

=

k∑
i=0

(−1)k−i

(
k

i

)
E
(
Xi(X ′)k−i

)
·

ℓ∑
j=0

(−1)ℓ−j

(
ℓ

j

)
E
(
Y j(Y ′)ℓ−j

)
=

= E
(
(X −X ′)k

)
E
(
(Y − Y ′)ℓ

)
=

= E
(
(X −X ′)k(Y − Y ′)ℓ

)
.
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Therefore
E(XkY ℓ) = E(Xk)E(Y ℓ)

as needed. ■

Remark. A similar result is proved in a forthcoming paper by Jakob Ray-
maekers and Peter Rousseeuw [11].

4. The Hungarian roulette

In this section we are going to pose an unsolved problem. Though the model
to be introduced is quite simple, we couldn’t find it in the literature.

n people stand in a circle; everyone has a gun. At a given signal, everybody
selects someone randomly and shoots at him. Each shot is fatal. The survivors
continue this over and over again until there is one single survivor left or none.
Let pn denote the probability that someone remains standing in the end, and ξn
the number of people staying alive after the first round. Then p0 = 0, p1 = 1,
p2 = 0, and

pn =

n−2∑
k=0

pk P(ξn = k), n ≥ 3.

What is the asymptotic behavior of pn as n → ∞? Approximately com-
puting the values by Monte Carlo and plotting the probabilities against log n
one can see sine-like periodicity, though with waves with slightly decreasing
amplitude (see Figure 1). Does it even subsist asymptotically or diminishes to
convergence? We do not know the answer yet, but we will discuss the subject.

Figure 1. Is this logarithmic periodicity or convergence?

Fix n and number the players from 1 to n. Now, ξn =
∑n

i=1 Yi, where
Yi = 1 (player i survives the first round). These indicators are exchangeable
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and

E
(
Yi1 · · ·Yiℓ

)
=

(
n− ℓ

n− 1

)ℓ (
n− ℓ− 1

n− 1

)n−ℓ

for 1 ≤ i1 < · · · < iℓ ≤ n. Therefore

P(ξn = k) =

n−2∑
ℓ=k

(−1)ℓ−k

(
ℓ

k

)(
n

ℓ

)
(n− ℓ)ℓ(n− ℓ− 1)n−ℓ

(n− 1)n

by Waring’s formula ([4], Section IV.3). Moreover,

E(Yi) =

(
n− 2

n− 1

)n−1

, E(YiYj) =

(
n− 2

n− 1

)2 (
n− 3

n− 1

)n−2

, i ̸= j,

E(ξn/n) =
(
n− 2

n− 1

)n−1

,

Var(ξn/n) =
1

n

(
n− 2

n− 1

)n−1

+
n− 1

n

(
n− 2

n− 1

)2 (
n− 3

n− 1

)n−2

−
(
n− 2

n− 1

)2n−2

.

By Taylor expansion it is easy to see that(
n− a

n− b

)n−c

= e−a+b

(
1− (a− b)(a+ b− 2c)

2n
+O

(
n−2

))
.

Therefore we have

E(ξn/n) =
1

e
+O

(
n−1

)
, Var(ξn/n) =

1

n

(
1

e
− 2

e2

)
+O

(
n−2

)
.

Furhermore,

(4.1)
√
n

(
ξn
n

− 1

e

)
→ N

(
0,

1

e
− 2

e2

)
in distribution. This can be proved as follows.

Let us slightly modify the game. Allow people to shoot at themselves, and
let ξ′n the number of players remainig alive. This is just the classical random
allocation problem where n balls are thrown into n urns uniformly at random,
independently of each other. Here ξ′n is the number of empty urns. Then by
Theorem 1 of Ch. I, §3 in [9] ξ′n satisfies (4.1). Let us make a coupling between
ξn and ξ′n in the following way. Denote by η the number of people who turn the
gun on themselves in the modified model. We ask them to shoot someone else
instead (chosen from the others with equal probability). In this way we just
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obtain the original model. Each redirection changes the number of survivning
players by at most one, thus |ξn − ξ′n| ≤ η. Since E(η) = 1, (4.1) immediately
follows for ξn.

Denote how far counterclockwise the person player i is targeting is by Xi

(thus Xi ∈ {1, 2, . . . , n − 1}). Then X1, . . . , Xn are iid, and with a suitable
function φ:{1, . . . , n − 1}n → {0, 1, . . . , n − 2} we have ξn = φ(X1, . . . , Xn).
Obviously, if one of the arguments x1, . . . , xn is changed (i.e., one of the play-
ers shoots at somebody else) then φ can change by at most one. Now the
McDiarmid inequality [10] gives

P
(
|ξn − E(ξn)| ≥ ε

)
≤ 2 exp

(
−2ε2/n

)
.

This shows that pn is basically equal to the weighted mean of o(n) probabilities
pk around pn/e, which makes it likely that pn shows some kind of logarithmic
periodicity. Of course, this allows convergence, too.

Conjecture. The sequence pn does not converge as n → ∞ over the positive
integers, but it does along all subsequences of (n) for which the fractional part
of log n converges (asymptotic logarithmic periodicity).

This phenomenon is called merging [3].

In what follows we are going to present a heuristic reasoning to show why
we refute convergence. We argue that the increasingly flattening waves do not
flatten out completely.

Suppose pn ≈ c+ h(log n), where h is a smooth, sine-like damped periodic
function with period 1, and c is a constant between the peaks and the troughs,
i.e., h is not of constant sign. Consider a whole wave (period) over an interval
of unit length. Let x = M be the point where f(x) is maximal in that interval
and let n = eM . Then

h(M + 1) ≈ pen − c = E (pξen − c) .

By (4.1) we have

ξen = n+ σ
√
n ζn = n

(
1 +

σ√
n
ζn

)
,

where σ =
√
1− 2

e and ζn → N(0, 1) in distribution. Therefore

log ξen ≈ log n+
σ√
n
ζn = M + σe−M/2ζn,

thus
h(M + 1) ≈ Eh

(
M + σe−M/2 ζn

)
.
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Since h′(M) = 0 we get

h(M + 1) ≈ h(M) +
σ2

2
e−Mf ′′(M)E(ζ2n) ≈ h(M) + κf ′′(M)e−M ,

with a suitable constant κ. Note that f ′′(M) ≤ 0.

If the waves are similar in shape, i.e., each sufficiently distant wave is a
constant times of the previous one, then f ′′(x + k)/f(x + k), k = 0, 1, . . . are
approximately equal, thus

h(M + 1) ≈ h(M)
(
1− κ′e−M

)
, κ′ ≥ 0,

which is a lower bound for the maximum of the next wave. Therefore, the wave
maximum k waves away is no less than

h(M + k) ≈ h(M)

k−1∏
i=0

(
1− κ′e−M−i

)
.

Since
∑

i e
−M−i < ∞, these maxima do not drop down to 0, not even gradually.

It can be seen in exactly the same way that the minima do not increase to 0
either.

Remark. Asymptotic logarithmic periodicity emerges in many different prob-
abilistic models. An old example is the length Ln of the longest head run in a
sequence of n tosses with a fair coin. It satisfies

P(Ln − ⌊log2 n⌋ < k) = exp
(
−2−(k+1−{log2 n}

)
+ o(1),

for every integer k, as n → ∞, where {a} = a − ⌊a⌋, the fractional part of a,
see [6]. A recent publication is [7], where the discussed model also seems to
exhibit log-periodicity, though the authors only give a heuristic proof. See also
the references therein.

Acknowledgements. Authors are grateful to an anonymous reviewer who
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