Annales Univ. Sci. Budapest., Sect. Comp. 56 (2024) 167-18/

REAL-TIME WEB-BASED VISUALIZATION
OF THE RADON TRANSFORM

Zsoéfia Gal and Levente Locsi

(Budapest, Hungary)

Communicated by Laszlé Szili
(Received April 29, 2024; accepted July 10, 2024)

Abstract. The Radon transform is the mathematical tool behind nowa-
days widely used medical imaging techniques for diagnostic purposes such
as Computer Tomography (CT). In this paper we discuss two of our web-
based approaches which allow one to interactively create sample images
and examine their Radon transform in order to study simple examples and
basic properties of the transform. We present that the transform (more
precisely its support) can be calculated in an analytic way such that it
allows (near) real-time visualization, orders of magnitude faster than in
earlier accessible solutions. We claim that currently this may be the best
approach for introductory educational and science communication purposes
about the Radon transform.

1. Introduction

The Radon transform is the mathematical tool behind nowadays widely
used medical imaging techniques for diagnostic purposes such as Computer
Tomography (CT). It was introduced by Johann Radon in 1917 [6], more than
a hundred years ago [7]. The basic idea of the transform is to calculate the
integral of a given real function defined on the plane along lines of the plane,

Key words and phrases: Radon transform, real-time visualization, JavaScript.

2010 Mathematics Subject Classification: 44A12, 92C55, 97U60.
EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies — The Project is supported by the Hungarian Government and co-financed
by the European Social Fund.

https://doi.org/10.71352/ac.56.167

https://doi.org/10.71352/ac.56.167

168 Zs. G4l and L. Lécsi

corresponding to the adsorption of X-rays travelling through segments of the
human body from different directions. In practical applications the inverse
Radon transform shall be used to reconstruct the original function (or medical
image) from the measured line integral values. Radon already showed that this
is mathematically possible, and it is closely related to the Fourier transform. It
is worth mentioning that later the theory was elaborated so that the first CT
machine could be engineered, and the Nobel Prize in Physiology or Medicine
1979 was awarded jointly to Allan M. Cormack and Godfrey N. Hounsfield for
the development of computer assisted tomography.

If someone wanted to see examples for the Radon transform on their com-
puter screens, to study it in case of some simple images to get familiar with its
basic properties, one needed to write at least some short programs in Matlab
(with the Image Processing Toolbox), Octave or Mathematica etc. to utilize
their built-in commands for the transform and for visualization. (And/or do
the calculations using pen and paper.) This is slow and cumbersome for most
introductory purposes.

Our project to be presented aims for a web-based solution, where one could
easily create a simple image consisting of some basic objects (rotated ellipses
and rectangles, such as in the case of the well-known Shepp-Logan phantom
[8] or the recently introduced Bogndr lung phantom [1]) and modifications are
immediately reflected on the transform. This kind of visualization already
existed e.g. in case of the two-dimensional Fourier-transform (see the ‘Fou-
rifier’ under https://ejectamenta.com/imaging-experiments/fourifier/
by Watts, D.), and is in-line with trends also in educational tools emphasiz-
ing quick feedback and interaction with students [2]. We see that with some
trade-off concerning the details of the transform shown, suitable accuracy and
(at least near) real-time interaction is achievable, orders of magnitude faster
than using earlier solutions.

In this paper we summarize the basic mathematics of the Radon transform,
discuss and express criticism to earlier methods in order to find motivation
for our project, then we describe two of our recent approaches: a server-side,
numerical, and a client-side, analytic one, with some details about the calcu-
lations. Finally, the conclusions are drawn, and further research directions are
pointed out.

2. The Radon transform

In this section we summarize the basic mathematics of the Radon transform,
we recall the definition, introduce the used notation, formulate the relation to
the Fourier transform, and shortly mention the problem of the inverse trans-
form.

https://ejectamenta.com/imaging-experiments/fourifier/

Real-time visualization of the Radon transform 169

2.1. Definition

For the mathematical definition of the transform let a line L on the R?
plane be represented by parameters ¢ and r, where ¢ € [0,7) is the angle of
the normal of the line and r € R is the distance between the line and the origin.
Let S denote the class of functions with a compact support: S := {f € C*°(R?):

: supp f is compact}. Then we can define the Radon-transform of a function
[€ S as the function Rf(L) := Rf(¢,r) := [, f(z,y)ds, where [, - ds denotes
the integral along the line L.

Using the equation of the line with parameters ¢ and r (that is: x cosp +
+ysing = r) the Radon transform of a function f can be written in the
following form:

Rf(sw)=//f(x,y)5(xcoss0+ysinso—r)dxd%
R R

where 0 denotes the Dirac delta function. We may get another useful form of
this integral using the parameterization of L as follows:

Rf(p,r) = /f(r-cosgo—s-singo,r~sin<p—|—s~cosgp)ds
R

If we fix the angle ¢ and compute the integral along each line with normal
angle ¢, then we obtain a projection of f in direction ¢, denoted by p,(t), i.e.:

Dy (t) := ’Rf((p,t)://f(x,y)d(xcosgo—i—ysingp—t)da?dy.
R R

Figure 1 depicts how a projection for a fixed angle is calculated.

v A point g (pj, 6x) in
. L Q the projection
Complete projection, g(p, ;). >

Figure 1. Projection to the line with angle 6. Source: [5].

170 Zs. G4l and L. Lécsi

In the discrete version of the transform we can think of f as an image of
size M x N pixels, and its transform has a form similar to the continuous case.
However, instead of considering the Dirac delta function interpolation and/or
Fourier techniques are usually applied in practice, pixel extents, subpixels,
accumulation matrices could be utilized.

To visualize the transform as an image we take the normal angles along
the horizontal axis, and the distance from the origin along the vertical axis.
This visualization of the Radon transform is also called sinogram, referring to
the fact that the transform of a single point has the form of a sine wave. As
an example Figure 2 presents the Shepp—Logan (brain) phantom [8] and its
sinogram.

Sinogram
400
350 - .
300

250
200

150

Original image

100

distance from origin (in pixels)

50

0

0 50 100 150

normal angle (in degrees)

Figure 2. Sinogram of the Shepp—Logan phantom.

2.2. Relationship with the Fourier transform

An important property of the Radon transform is its connection with the
Fourier transform. It can be shown, that the one-dimensional Fourier transform
of a projection with angle ¢ is the same as the values along the line with angle
¢ of the two-dimensional Fourier transform:

(Fpy)(w) = /pg,(t) eIt gt =
R

:///f(x,y)é(a:cosgoersingaft)e*%i“’tdxdydt:
R R R

Real-time visualization of the Radon transform 171

://f(x,y)/é(xcosap—i—ysingo—t) e 2t dtdady =
R R R
://f(x,y) e—27riw(zcos<p+ysinga) dl‘dy:
R R

://f(l”,y) 6727ri(wcostp-a:+wsinap-y) d:l?dy
R R

This property has a role in the inverse problem.
2.3. Inverse of the transform

In most real-life problems we want to reconstruct the original function or
image knowing only an approximation of its transform which is determined by
measurements. Several methods exist to obtain an approximate solution to the
problem.

In backprojection first we take one projection, and project it along the image.
We do the same with all projections, and add the results to create one image,
which we scale to the interval [0,1]. The blurring effect can be avoided if we
apply a high-pass filter on the projection before backprojecting. This method
is called filtered backprojection.

It is also possible to use iterative methods to approximate the solution.
Here an initial guess is taken, and it is improved iteratively by computing its
transform and comparing it with the original transform. The books [3, 5, 9]
provide further details about solving the inverse problem.

3. Visualization methods

This section provides an overview of the visualization methods about the
Radon transform available in popular mathematical software. Since these are
not to our satisfaction with respect to our goals, we find our motivation, and
present two of our solutions.

3.1. In mathematical software

Well-known and widely used mathematical software usually provide an im-
plementation of the Radon transform (and its inverse), and provide appropri-
ate visualization tools. Below we’ll examine Matlab, Octave, Octave-Online,
Mathematica, Wolfram Alpha, with remarks on Python, C+4 and Java.

In MathWorks’ Matlab there are the commands radon and iradon. These
commands are only available with the Image Processing Toolbox also installed.

172 Zs. G4l and L. Lécsi

Note that Matlab is a commercial software, with research and academic licenses
available, thus it is not reasonable for everyone to have access to Matlab. Nev-
ertheless its radon command works very fast, computes the transforms of a
small—e.g. 400 by 400 pixel image—within 1/20 seconds, thus it may be suit-
able even for real-time visualization purposes too. However the creation of a
basic image to transform would require one to write at least some code (even
when importing an image). E.g. the lines below create an empty image (zero
intensity), add a full intensity square, compute its Radon transform and display
the image and the transform aside each other.

% Radon transform of a square

image = zeros(400,400);
image (150:250,150:250) = 1;
tr = radon(image);

% Create plots

subplot(1,2,1)
imagesc(image)
colorbar

axis square

subplot(1,2,2)
imagesc(tr)
colorbar

axis tight

For just a simple image one may just use imagesc(tr) after the transform.
Creating a circle is a bit more involved, we provide two equivalent ways (in
terms of the results) to do so. The first way uses loops (as in an imperative
approach), and the second one uses matrix manipulation and indexing (array
programming fashion).

% An image with a circle - 1st way

image = zeros(400,400);
for i = 1:400
for j = 1:400
if (i-100)"2 + (j-200)"2 < 7072
image(i,j) = 1;
end

end
end

Real-time visualization of the Radon transform 173

% An image with a circle - 2nd way

image = zeros(400,400);
[i,j] = meshgrid(1:400);
image((i-100) .72 + (j-200).72 < 7072) = 1;

Figure 3 shows the above circle and its Radon transform as calculated by
the Matlab system.

1 140
50
50 09 -
100 .
08
100 150
07 100
. 200
06
250 80
200
- 300
60
250 0:4; 350
03 400 o
300
0.2 450
20
350 o 500
550
400 o 0

50 100 150 200 250 300 350 400 20 40 60 80 100 120 140 160 180

Figure 3. A circle and its Radon transform via Matlab.

If one wants to position the square(s) or circle(s) differently, or make them
rectangle(s) or ellipse(s), the commands must be issued again, or rather the
script modified, and run again. This makes editing the ‘scene’ cumbersome. Of
course one may also write graphical user interface programs in Matlab to create
some simple images as above, utilizing the fast Radon transform calculations,
but then again this may not be published for everyone to try. Nevertheless, we
find that for involved research purposes related to the Radon transform a tool
like Matlab is inevitable.

The GNU Octave is an open-source clone of Matlab, i.e. it is freely avail-
able to everyone unlike Matlab. The above commands and programs work the
same in Octave too, after loading the Image package with pkg load image.
Yet another difference is the speed of calculation. The Radon transform imple-
mentation in Octave is significantly slower than that of Matlab: the calculation
of the same—400 by 400 pixel—image takes about 5 seconds to complete, that
is about 100 times slower. This makes this implementation unsuitable for real-
time visualization, and the editing isn’t any more simple either.

The online version of Octave, available at https://octave-online.net/
deserves credit too. The above commands also work here (with minor lim-
itations). However to finish the calculation of the transform of an image of

https://octave-online.net/

174 Zs. G4l and L. Lécsi

the same size as above, one must even ‘request extra time’ by clicking on the
appearing Add 15 seconds link, so it is very slow. But it has the significant
advantage that no installation of any software or additional package is required,
it works simply within a browser, i.e. this approach is far more easily accessible
than the above mentioned software.

Wolfram’s Mathematica also provides access to the Radon transform of
images, the commands Radon, InverseRadon and also the symbolic variant
RadonTransform are available. One may also program parameterized visual-
izations, the calculation speed is comparable to Matlab’s (fast), but this is also
a commercial software.

The online version of Mathematica’s tools also allows some basic usage of
the Radon transform. It is available at https://www.wolframalpha.com/, e.g.
try radon(square). More involved online usage is limited.

There is also a non-commercially available Radon transform implemen-
tation provided by the scikit package, written in Python language. The
speed of this is comparable to Octave’s (slow). One may find also C++
and Java implementations, however these are not suitable for visualization
purposes without any further implementation. There were also Java Applets
implemented earlier dealing with the Radon transform, such as the ones un-
der https://www.rabidhamster.org/java/JavaRadon.php (by Williams, G.,
2003) or http://rekrylov.chat.ru/tomography/, but browsers’ support for
such software is increasingly dropping, so that today to try, to judge the ca-
pabilities and assess calculation speed of these is not realistic, accessibility is
very limited.

Taken into account the capabilities and limitations of the above software,
we conclude to summarize our goals as:

¢ Provide a visualization method for the Radon transform, which allows
e real-time, interactive scene editing and transform (also real-time),
e and is publicly available, easily accessible to everyone.

We see that this is not possible with the tools examined so far. Finally we
arrive to the conclusion that a web-based approach is desirable, since it allows
easy access for all. (We consider having an up-to-date browser on a reasonable
hardware provided as a minimum.)

We argue that visualization is important also in education and science com-
munication. After all, the Radon transform is related to Nobel prize level
thoughts which are worth spreading to an audience broad as possible. Fur-
thermore, visualization is useful to understand some of the basic properties of
the transform deeper, to have some more insight compared to pure theoretical
examination. The aesthetic value is also worth to consider.

https://www.wolframalpha.com/
https://www.rabidhamster.org/java/JavaRadon.php
http://rekrylov.chat.ru/tomography/

Real-time visualization of the Radon transform 175

3.2. Our first web-based approach: server-side, numerical

In our first approach the Radon transform of the image is computed by a
server software written in Python. It uses the scikit library’s implementation
of the transform.

Using the graphical interface of the application the user can create a gray-
scale image in an interactive way in a browser, by adding and rotating rectangles
and ellipses with different sizes and intensity values. This facility is created
using the Fabric.js library (http://fabricjs.com/). At a click of a button
the image is sent to the server, which computes the Radon transform, and
then sends the transform (again as an image) back to the client. After the
transform is received and displayed, by clicking on a pixel of the sinogram we
can see which line of the image the pixel is referring to (shown by a green line).
The application also shows the intensity values along this line on a chart under
the image. It’s also possible to query only one projection with a given angle,
in this case the result is shown on a separate chart. To implement these charts
the JavaScript library Chart.js was used (https://www.chartjs.org/).

In its current state the application is only for local usage by running the
server on the local computer. The implementation of the server is based on the
hitp.server module of Python, which might not be appropriate for production.
(See the warning on the documentation page
https://docs.python.org/3/library/http.server.html.)

The software created via this approach is thoroughly described and doc-
umented (both from the user’s and the developer’s point of view) in [4]. A
screenshot of the application can be seen in Figure 4.

3.3. Our second web-based approach: client-side, analytical

The main lessons learned from the first approach are as follows. On one
hand, the scene editing methodology with the use of Fabric.js is highly desir-
able, it works well for this purpose, and follows the latest web development
standards. Therefore, we use it also in our second approach. On the other
hand, the freely available numerical transformation methods (especially when
client-server communication is also involved) are too slow for real-time visual-
ization purposes. Thus we conclude that the calculation of the Radon transform
should be also done on the client side (preferably implemented in JavaScript
for wide accessibility), but appropriate limitations shall be made on the details
of the transform shown, as a trade-off to enable real-time calculation.

We observe that for introductory visualization purposes the support of the
Radon transform of an object carries the most information, i.e. where is the
value of the transform zero or non-zero. Thus for our purposes we now set
aside the need for the calculation of the exact values inside the support of the
Radon transform, rather focus on finding only its boundary. The analytical

http://fabricjs.com/
https://www.chartjs.org/
https://docs.python.org/3/library/http.server.html

176

Zs. G4l and L. Lécsi

Add items Edit canvas Get sinogram Projection
Color: =g [Delete item | [Compute | Angle: =@
(from white to black) (Ciear canvas | (from 0 to 180°)
| Add rectangle | | Compute |
| Add ellipse | | Invertimage |
Canvas

Sinogram

Values along given line

Projection to given angle

Figure 4. Screenshot of the application of our first approach (numerical, server-
side calculation).

Real-time visualization of the Radon transform 177

calculations in case of ellipses and rectangles are manageable and are discussed
in more detail in Section 4. We conclude that finding the locations of appro-
priate points of interests for about 40 different angles distributed equally in
[0, 7) the transform may be displayed with sufficient accuracy, and in real-time
(near real-time using older hardware). Although the calculated points are just
connected with straight line segments, human perception ‘corrects’ the visual
information to observe the actual curves. Figure 5 shows the mentioned points
of interest via two examples. The significant increase in calculation speed is
due to the fact that instead of finding the transform’s values at e.g. 400 x 400
points, rather the positions of about 100 to 200 points are located (independent
of the screen resolution or image size). This is considered as the main idea of
this approach.

o 00000900000,
o

Oo,
%4,
0
004,
00000 0
0000 00000, 000,
o o 0
o 00, 000,
0 o
o o
0,
Yelelelele’olo? 0000
o
0000 000, 00,
000 o,
0 %o,
00, 00|

0o, o°
o 000000007 90000000009

Figure 5. Points of interest calculated analytically on the boundary and inside
the support of the Radon transform in case of an ellipse (left) and a rectangle
(right).

The application works as follows. On the left-hand-side panel (canvas) one
can edit the ‘scene’ or ‘image’: add and remove ellipses or rectangles, move,
resize and rotate them. One may also clear the scene to start over. On the right-
hand-side panel the Radon transform of the present objects is shown, such that
every modification made on the scene is immediately reflected on the transform
too. Furthermore, if a position is pointed on the transform’s panel, then the
corresponding line is shown on the image panel. Since intensity does not play a
role in this approach, instead of a grayscale visualization, the objects may have
their colors chosen from a predefined set of colors', and the transform will have
the same color as the corresponding object for easy identification. A screenshot
of the application can be seen in Figure 6. The application is available at

https://locsi.web.elte.hu/radon/

The Reader is encouraged to navigate to this page and try it out!

IThe currently available colors are based on and named after the characters in the ani-
mated series Sunny Bunnies by Digital Light Studio (Minsk, Belarus, 2015).

https://locsi.web.elte.hu/radon/

178 Zs. G4l and L. Lécsi

Add ellipse Add rectangle Delete object Clear scene

Set color >

Original image Radon transform

Figure 6. Screenshot of the application of our second approach (analytical,
client-side calculation).

4. Analytic calculation of the support of the transform

In this section we will formulate the mathematical problem of finding the
boundary of the support of the Radon transform, and deduce its solution step-
by-step in case of ellipses and rectangles.

Remark that the Radon transform is 27-periodic with respect to ¢, further-
more, since Rf(¢ + m,7) = Rf(p,—r) its domain is commonly considered to
be [0,7) x R. With this in mind the transform is shown only on the region
where ¢ € [0,7). But a point on the image may be located at any angle (in
polar coordinates) in [0,27), and the (mathematical) atan function (to deter-
mine the angle by the Cartesian coordinates) gives values between (—m/2,7/2).
Considering these differences, in an actual implementation care must be taken
to appropriately find the transform to display. It can be usually handled by
a single conditional statement. In our implementation the atan2 function was
utilized. These minor issues will be neglected in the below discussion.

Let us first formulate the notions of the support of the Radon transform
and its boundary. We will consider the function f to be compactly supported,
usually a characteristic function of a simple geometric object (circle, ellipse,
square, rectangle). For simplicity we may speak of the Radon transform of a
circle, instead of the Radon transform of the characteristic function of a circle.

Definition 4.1. The support of the Radon transform

SRf :=suppRf = {(50,7“) €ER?: Rf(p,r) 750}-

Real-time visualization of the Radon transform 179

The boundary of the support of the Radon transform is defined topologically:
0sR f contain the points that are in the closure of sRf but not in the interior
of sSRf.

Clearly for all angles ¢ € R, there are lines with normal angle ¢ that
intersect a given object of compact support, and the set of corresponding r € R
values is bounded.

Definition 4.2. The upper and lower boundary radius functions for a com-
pactly supported function f are

r(p) =1 f) =mf{r e R : Rf(p,r) #0},
r7(p) =17 (o, f) =sup{r eR : Rf(p,r) #0}.

It is easy to see that this gives us a more analytic approach for the boundary
in polar coordinates:

osRf = |J {(e.r™ (0. 1), (0.7t (0) }-

pER

Proposition 4.1. For a fized point on the plane at polar coordinates (po, 7o)
(one may consider a Dirac delta function here), the lines crossing this point
are given by parameters (o, 7(p)), such that r = r(p) = ro - cos(p — o). (Let
us call such an r(y) a radius function.)

Proposition 4.2. Consider the characteristic function f of a circle of radius
a > 0 centered at the origin. Then
o

r (p)=—a and r7(p)=a.

This may be shortly written as r*(p) = 4-a (constant).

Proposition 4.3. Consider now the characteristic function f of a circle of
radius a > 0 centered at the point with polar coordinates (¢o,r0). Then
rE(p) = 70 - cos(p — o) £ a.
The above 3 claims are trivial, their proofs are left as an exercise. These
already solve the problem in case of circles. To express the solutions for r~ (y)
and r(y) in case of ellipses is not that simple, but not very difficult either.

Lemma 4.1. Consider the characteristic function f of an ellipse located at the
origin with principal semi-azes a (in the direction of the horizontal axis) and b
(in the direction of the vertical axis). Then

rE(p) = :I:\/b2 sin? ¢ + a2 cos? .

180 Zs. G4l and L. Lécsi

Proof. This formula may be deduced using coordinate geometrical considera-
tions. The parameterization of the line L(p,r) can be written as

(x,y) = (r-cosep—t-sinp, r-sing+t-cosyp) (t € R).

2 2
x
Substituting this into the equation — + Y — 1 of the ellipse we get
a

b2

1 1
a—g-(r-cosgp—t~sin<p)2+b—2~(7’-Sin<p+t-cosgo)2:1.

We want to find such values of r that this equation has exactly one solution in
t (the line is a tangent line of the ellipse). Collecting the terms for ¢, we get
the quadratic equation:

2 2
At?+B-t+C=0 with A= <Sm (90)+°°S (“p)),

a? b2

1 1 r2 cos? 2 sin?
B(<b2az)~2rosingaocosap> and C(2 SDJr b2 <,01>.

By trigonometric identities the discriminant B? —4AC being zero simplifies to

r2 _ sin?¢ cos? o
a2b? a2 b2’
thus the statement of the Lemma holds. [|

Now to find the upper and lower border functions for arbitrarily translated
and rotated ellipses is straightforward.

Theorem 4.4. Let us now consider the characteristic function f of an ellipse
centered at the point with polar coordinates (g, ro), with principal semi-azes a
(pointing in the direction) and b. Then

() = ro - cos(p — o) £ \/52 sin®(p —) + a2 cos?(p — 7).

Proof. Starting from the statement of the above Lemma, and taking into
account the effects of translation as in our earlier Claims, it is only left to
consider the effect of rotating the ellipse around its center point. Clearly this
does not change the position of its center point and the added or subtracted
values also stay the same, only occur at a line with angle changed against the
angle of rotation. |

Remark that in case of @ = b (both in the Lemma and in the Theorem) we
get the result already presented for circles.

Real-time visualization of the Radon transform 181

Now we turn our attention to rectangles. In this case the boundary radius
functions may be expressed as minimum and maximum of the radius functions
of the vertices of the rectangle. Appropriate calculation of the positions of the
vertices is what makes our formulas complicated in general: we can not do the
calculations directly in polar coordinates, we need the conversion to and from
Cartesian coordinates.

To find the boundary radius functions, the order of the calculation should be
as follows: (1) Find the values ‘half diagonal length’ and ‘angle’ describing the
rectangle in a useful way when also rotation may occur. (2) Find the positions
of the vertices starting from the center point of the rectangle in Cartesian
coordinates, considering also the rotation of the rectangle. This is the key
step in the procedure. (3) Convert the Cartesian coordinates of the vertices to
polar coordinates. (4) Thus the radius function may be written for each vertex.
(5) The boundary radius functions can be found as minimum and maximum of
the radius functions of the vertices. These are all simple steps by themselves,
but they must be combined appropriately in order to achieve the desired result.

Finally let us formulate and summarize the thoughts and mentioned calcu-
lations of the previous paragraphs in the following theorem.

Theorem 4.5. Let us consider the characteristic function of a rectangle cen-
tered at the point with polar coordinates (po,r0) with semi-side lengths a and
b, rotated with angle ~v. Then

7 (p) = min{71(p), r2(¢), r3(¢), Ta(0) }
r*(p) = max {r1(p), r2(9), r3(e), rale) },

with the radius functions of the vertices r;(p) =r;-cos(p—;) (i =1,2,3,4),

where
ri =/a?+y? and Lpi:atan& (i=1,2,3,4),
Zq

minding the different quadrants, calculated from the Cartesian coordinates of
the vertices

(21, 1) = (o - cosipn + ¢ - cos(y + 1), o -simpo + ¢ sin(y +),
(z2,y2) = (7" ~cos g — ¢ cos(y —), ro - sinpg — ¢ - sin(y — ,u))
(z3,93) = (- cos g — ¢ cos(y + p), ro - sinpg — ¢ - sin(y + ,u))
(w4,90) = (70 - cos o + ¢ cos(y —), 7o sinpo + e sin(y = 1),

b
where ¢ = va? + b2 the half-diagonal of the rectangle, and ;i = atan — the

a
half-angle of the diagonals.

182 Zs. G4l and L. Lécsi

An additional observation as a consequence of showing the transform only
for ¢ € [0,7), i.e. on a half-period, is that the boundary radius functions satisfy
an interesting ‘paired half-periodic’ boundary condition, namely

r(0) = —r¥(m), and (rF)(0) = —(rF)(n),

provided that the derivatives exist. (Among the above discussed situations
they do not exist only in case of rectangles when ¢ is parallel or perpendicular
to the sides.) Both algebraic and visual verification of this claim is possible.
This observation also helps in an implementation of a proper visualization,
specifically on the edges of the viewport.

5. Summary and further research

Our goal to create a tool for the Radon transform which provides real-
time scene editing and transform visualization, publicly available to everyone
is considered reached. Finally, we settled for a web-based, client-side, ana-
lytic calculation of the boundary of the support of the Radon transform of
simple objects (ellipses and rectangles) and sets thereof. We claim that—as of
today—this may be the best approach for introductory educational and science
communication purposes about the Radon transform. The main milestones of
the posed and met requirements are very briefly summarized in Table 1, we
refer to Section 3 for the detailed discussion.

Server-side, Client-side,

Requirement Octave Matlab . .
numerical analytical
Easily accessible no no almost yes
Interactive editing no no yes yes
Real-time transform no yes no yes
Detailed transform yes yes yes supp

Table 1. Overview table of requirements.

The profound effect of these applications on the accessibility of the Radon
transform is highlighted by the fact that to create e.g. a lung phantom (cross
section of the body, with lungs and spine, c.f. [1]) and to examine the basic
properties of its transform now becomes a child’s play: see the example in
Figure 7 which may now be created by anyone within minutes.

It is worth mentioning that students may get a new insight also to some
basic geometric problems such as locating the common (inner or outer) tangent
lines of two circles (or even ellipses).

Real-time visualization of the Radon transform 183

e

__/\

Figure 7. An interactive lung phantom on the web.

As directions of possible future research we mention the following:

e May the effect of discretization or the presence of noise be modeled fol-
lowing our approaches?

e Would GPU acceleration have any advantage here?

e Could we give some indication about the varying values of the Radon
transform within its support while preserving the advantages of real-time,
web-based calculations? The application of (approximate) level-lines may
be considered. This points out a quite interesting problem by itself: locate
the points of the Radon transform of an ellipse (or rectangle), where the
intensity value is e.g. 50% of the maximal value.

e The web page containing the current implementation should be further
developed: add a short description, links, more options, colors, dynamic
layout, save & load functionality. ..

e Add support for the Radon transform of further objects: triangles etc.

Since the main web page for the project at https://locsi.web.elte.
hu/radon/ may be subject to continuous improvement, the version currently
discussed is saved for reference under https://locsi.web.elte.hu/radon/
macs2020/.

Acknowledgement. This project was presented at the 13th Joint Conference
on Mathematics and Computer Science (MaCS 2020) on October 3rd, 2020.
We would like to thank the organizers at ELTE Eo6tvos Lorand University,
Budapest and BBTE Babes—Bolyai University, Cluj-Napoca for their work that
made this online event possible!

https://locsi.web.elte.hu/radon/
https://locsi.web.elte.hu/radon/
https://locsi.web.elte.hu/radon/macs2020/
https://locsi.web.elte.hu/radon/macs2020/

184 Zs. G4l and L. Lécsi

References

[1] Bognar, G., A no-reference image quality metric with application in low-
dose human lung CT image processing, Int. J. of Advances in Telecommu-
nications, Electrotechnics, Signals and Systems 5(1) (2016), 1-7.

[2] Bakonyi, V., T. Szabé and Z. Illés, A real-time tool integration for lec-
tures, 15th Int. Conf. on Emerging eLearning Technologies and Applications
(ICETA), Stary Smokovec (2017), 1-6.

[3] Deans, S.R., The Radon Transform and Some of Its Applications, John
Wiley & Sons (1983).

[4] G4l, Zs., Theory, Visualization and Applications of the Radon Transform
(Hungarian), MSc thesis (supervisor: Ldcsi, L.), ELTE Faculty of Infor-
matics, Department of Numerical Analysis, Budapest (2020).

[5] Gonzalez, R.C. and R.E. Woods, Digital Image Processing, Pearson,
3rd edition (2007).

[6] Radon, J., Uber die Bestimmung von Funktionen durch ihre Integralwerte
léngs gewisser Mannigfaltigkeiten, Ber. dber Verh. Koniglich-Sdchsischen
Ges. Wiss. Leipzig, 69 (1917), 262-277.

[7] Ramlau, R. and O. Scherzer, The first 100 years of the Radon trans-
form, Inverse Problems, 34(9) (2018), 1-4.

[8] Shepp, L. and B.F. Logan, The Fourier reconstruction of a head section,
IEEE Transactions on Nuclear Science, 21(3) (1974), 21-43.

[9] Zaidi, H., Quantitative Analysis in Nuclear Medicine Imaging, Springer
US (2006).

Zs. G4al and L. Lécsi

ELTE Eo6tvos Lorand University
Budapest

Hungary

gal.zsofi@gmail.com
locsi@inf.elte.hu

	Introduction
	The Radon transform
	Definition
	Relationship with the Fourier transform
	Inverse of the transform

	Visualization methods
	In mathematical software
	Our first web-based approach: server-side, numerical
	Our second web-based approach: client-side, analytical

	Analytic calculation of the support of the transform
	Summary and further research

