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Abstract. Various authors analysed simultaneous number systems over
different lattices. This paper presents additional characterisations on num-
ber expansions over the “triple” Eisenstein lattice. The main objective is
determining a small and enumerable set (so-called testing set), including
the periodic points. The algorithmic exploration of these systems poses a
significant challenge due to the substantial increase in the size of the digit
set and the testing set, even for small parameters. Efficient algorithms are
introduced to address the classification problem, and finally, we offer an
algorithm for computing the last digit deletion function without storing it.

1. Introduction

Let M be an n × n integer linear operator. Let furthermore D be a finite
subset of Zn containing 0. The system (Zn,M,D) is a number system (GNS)
if each element x of Zn has a unique, finite representation of the form

x =

m∑
i=0

M idi ,

where di ∈ D, m ∈ N. Here M is called the base or radix, and D is the digit
set or alphabet.
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Since an integer similarity transformation does not change the structural
properties of number expansions, it is enough to consider Zn as a lattice. Some
necessary conditions for the unique representation property are [10]:

1. The expansivity of the base.

2. The full residue system property of the digit set,

3. The unit condition, i.e., det(M − I) ̸= ±1.

The congruence relation here means that two elements are congruent if they
belong to the same coset of the factor group Zn/MZn. When the first two
conditions hold, we call the system a radix system.

Let Φ : Zn → Zn, Φ(x) = M−1(x − d) for the unique d ∈ D satisfying
x ≡ d (mod M). Since M−1 is contractive and D is finite, there exists a vector
norm ∥.∥ on Rn such that for the induced norm

∥∥M−1
∥∥ < 1, and there is a

constant L such that the orbit of every x ∈ Zn eventually enters the finite set
T = {x ∈ Zn | ∥x∥ < L} for the repeated application of Φ, and after entering
the orbit never leaves it. This means that the sequence x,Φ(x),Φ2(x), . . . is
eventually periodic for all x ∈ Zn. A point p is called periodic if Φk(p) = p for
some k > 0. The orbit of p constitutes a cycle. It is known that if p is periodic
then ∥p∥ ≤ L = Kr

1−r , where r =
∥∥M−1

∥∥ < 1 and K = maxd∈D ∥d∥ ([9]). We
denote by Bn(x, l) the closed ball around x ∈ Rn with radius l and by N (s)
the number of lattice points inside B2(0, s). A system is a number system if
the orbit of each point goes to zero, i.e., the only periodic point is zero.

Since the testing set is finite, the finite representation property can be algo-
rithmically decided. Unfortunately, the testing set can be enormous, depending
on the eigenvalue spectrum of M [14]. We note that there exist different meth-
ods for deciding the number system property for a given base and alphabet
(box type, carry propagation type [1], or via iterated function systems [15]). It
is conjectured that the complexity of the general decision problem is NP-hard.

The two most extensively studied and applied types of structured digit sets
are the arithmetic type and the dense one. Dense alphabets contain elements
with minimal norms from each residue class. An adjoint alphabet is a special
dense one, where D = {0 = d1, . . . , dt}, t = |det(M)|, and each coordinate of
Madjdi belongs to the interval (−t/2, t/2].

Block diagonal systems were defined in [11]:

Definition 1.1. Consider the direct product of the lattices Zn = Z
∑k

i ni

and the direct sum M = M1 ⊕ · · · ⊕ Mk of the operators. The radix sys-
tem (Zn,M,D) is a block diagonal system if (Zni ,Mi, Di) are radix systems
(1 ≤ i ≤ k ≥ 2).

For simplicity, we denote the components of any z ∈ Zn by z = z1 • z2 •
• . . . • zk, where zi ∈ Zni .
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2. Simultaneous systems

Definition 2.1. A block diagonal system SimR = (Zkn,M1 ⊕ M2 ⊕ · · · ⊕
⊕ Mk, D) is called an (n, k)-simultaneous system if Mi : Zn → Zn and all the
digits dj ∈ D have the form v • v • · · · • v, v ∈ Zn.

Kátai et. al. [7] investigated the (1, k)-simultaneous system with mutu-
ally coprime integers (N1, N2, . . . , Nk), none of them are ±1, and D = {δe},
e = 1 • · · · • 1, δ = 1, 2, . . . |N1N2 · · ·Nk| − 1. They showed that the system
(Z2, N1 ⊕N2, D) is a number system iff N1 < N2 ≤ −2 and N2 = N1 +1. Van
de Woestijne [19] investigated special polynomial homomorphic systems with
canonical digit sets.

One of the main research problems regarding simultaneous systems is num-
ber system constructions with corresponding digit sets. As a first attempt,
Nagy [17] applied canonical digit sets for the blocks in the lattice of Gaussian
integers. He proved that, in this case, simultaneous number system construc-
tions are not possible. Then, in the same lattice, the following structure was
applied: for two blocks M1 and M2 with digit sets D1 and D2 let us consider
the set

(2.1) D = {d1 +M1d2}, where d1 ∈ D1 and d2 ∈ D2 .

Clearly, D is a full residue system. For more than two blocks, the construction
can be made recursively. Similar digit set construction was used in different
papers [2, 3, 18, 8]. Kovács analysed the (2, 2)-simultaneous systems in the
Gaussian ring [11, 12] and presented a complete solution for the number system
construction problem. The (2, 2)-simultaneous systems in the Eisenstein lattice
were also investigated by him [13]. Regarding the real quadratic fields, Krutki
and Nagy ([16]) investigated the (2, 3)-simultaneous systems numerically with
(2.1) type alphabets where the blocks are integers from the ring Q[

√
5].

The following result was proven by Farkas and Kovács ([4]): there are in-
finitely many (2, 2)-simultaneous number systems over the integers in imaginary
quadratic fields.

Lemma 2.1. If SimR is a simultaneous GNS, then det(Mi −Mj) = ±1 for
all i ̸= j.

The Lemma 2.1 was proven in [11].

Lemma 2.2. Let S1 = (Z2,M1, D1), S2 = (Z2,M2, D2), S3 = (Z2,M3, D3) be
three radix systems with some D1, D2, D3. Let A = M2 ⊕M3, DA = {d • d :
: d = d2 + M2d3, d2 ∈ D2, d3 ∈ D3} and SA = (Z4, A,DA) . If the block
diagonal system S = (Z6,M,D) with the alphabet
(2.2)
D = {d • d • d : d = d1 +M1d2 +M1M2d3, where di ∈ Di and i ∈ {1, 2, 3}}
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is a (2, 3)-simultaneous number system then S1, S2, S3 and SA are all number
systems.

Proof. Consider the function f : Z2 × Z4 → Z6,

f(z1, z2) = (cm • cm • cm, cm−1 • cm−1 • cm−1, . . . , c1 • c1 • c1, c0 • c0 • c0)M =

= (cm, cm−1, . . . , c1, c0)M1
• (cm • cm, cm−1 • cm−1, . . . , c1 • c1, c0 • c0)MA

=

= x • y,

where ci = ai + M1bi, z1 =
∑m

i M i
1ai, z2 =

∑m
i M i

A(bi • bi), ai ∈ D1,
bi • bi ∈ DA. The function f operates on those points which have finite expan-
sions in S1 and SA, respectively. Observe that f is injective but not necessarily
surjective. Let x ∈ Z2 be any point chosen, and the expansions of the points
x • y ∈ Z6 have to be examined. These points all have finite expansions in S.
Exactly one of them is f(z1, 0) =

∑
i M

i
1ai •

∑
i M

i
A(ai • ai), which shows that

x has a finite expansion in S1. Similarly, let y ∈ Z4 be any point chosen. Con-
sider the (necessarily finite) expansions of the points x • (M2 ⊕M3)y. Exactly
one of them is f(0, z2) =

∑
i M

i+1
1 bi •

∑
i M

i
A(M2bi •M3bi) showing that y has

finite expansion in SA. Moreover, if SA is a number system, then S2 and S3

are both number systems (see [4] Lemma 2.1). ■

Remark 2.1. The Lemma 2.2 gives the necessary condition for S to be a
number system. If any of the systems S1, S2, S3, SA is not a number system
then the (2, 3)-simultaneous system is not a number system as well.

Remark 2.2. The number system properties of S1, S2, S3 and AA are insuf-
ficient for S to be a number system.

Example 2.1. Let M1 =

(
5 −2
2 3

)
, M2 =

(
6 −2
2 4

)
, and M3 =

(
6 −3
3 3

)
.

In this case, S1, S2, S3 are number systems with adjoint digit sets, and the SA

is also a number system with digit set DA, which is defined in Lemma 2.2, but
S is not a number system since p = 19 • 0 • 16 • 2 • 14 • (−2).

The generalization of Lemma 2.2 is the following:

Lemma 2.3. Let Si = (Zn,Mi, Di) be radix systems with some Di (1 ≤ i ≤ k),
and suppose that the block diagonal system S = (Zkn,M,D) with the alphabet
D = {d • · · · • d : d ∈ D∗} is an (n, k)-simultaneous number system, where

D∗ = {d : d =d1 +M1(d2 +M2(. . . (dk−2 +Mk−2(dk−1 +Mk−1dk) . . . )),

where di ∈ Di and 1 ≤ i ≤ k}

Then, all the systems Si are number systems.
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Proof. The proof is reached by recursively applying the proof of Lemma 2.2.

■

Remark 2.3. For S to be a GNS, a prerequisite is that every other system
constructed in the proof must also be a number system. Specifically, this
condition implies that SA must be a GNS, as stated in Lemma 2.2.

For the rest of the paper, the (2, 3)-simultaneous systems will be investigated
in the Eisenstein lattice with the alphabet from (2.2). The objective is to
identify the smallest size of the testing set and ascertain the structure of the
periodic points.

3. The (2, 3)-simultaneous systems over the Eisenstein lattice

The Eisenstein integers are complex numbers of the form η = a+ bω, where

a, b ∈ Z and ω = −1+i
√
3

2 is a cube root of unity. They can be considered as
linear operators of the form

(3.1) M1 =

(
a −b
b a− b

)
acting on Z2. The norm of η is N(a+ bω) = a2 − ab+ b2.

Based on Lemma 2.2 and Lemma 1.1 form [13] the possible appropriate

blocks have form: Ma =

(
a+ 1 −b
b a− b+ 1

)
, Mb =

(
a −b− 1

b+ 1 a− b− 1

)
and

Mc =

(
a+ 1 −b− 1
b+ 1 a− b

)
. Consider the radix systems (Z6,M,D), where M =

= ⊕3
i=1Mi and D = {(d • d • d : d ∈ D∗}, where

(3.2) D∗ =
⋃

d2∈D2

⋃
d3∈D3

M1 M2 d3 +M1 d2 +D1 .

Suppose that D1, D2, D3 are adjoint digit sets belonging to the blocks of M1,
M2, and M3 respectively.

Lemma 3.1. The only possible radix bases of the simultaneous Eisenstein
number system are the following combinations of Ma,Mb,Mc and M1 fulfilling
Lemma 2.1:

(3.3) MA = M1 ⊕Ma ⊕Mc, MB = M1 ⊕Mb ⊕Mc,

where a, b ∈ Z and M1 was defined in (3.1).

TypeA denotes the systems, where M = MA and TypeB where M = MB .
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Theorem 3.1. Every non-null and non-unit Eisenstein integer may serve as
a block of a (2, 3)-simultaneous number system except 1 ± ω, −1 − ω, 2 + ω,
−1 − 2ω, −2ω, ±2, −2 − ω, −2 − 2ω in case of TypeA, and 1 ± ω, −1 − ω,
2± ω, 2, −2ω, ±1− 2ω, −2− ω, −2− 2ω in case of TypeB systems.

Proof. Implied by the necessary conditions of the number system property. ■

It is known that D ⊆ W where W = {(x, y, x, y, x, y)T |x, y ∈ Z} ≤ Z6

and |D| = |det(M)|. Since
∥∥M−1

∥∥
2
< 1 almost always holds (except in a few

cases), in the following, the norm ∥·∥ means 2-norm. The exceptional cases
are:

� (a, b) ∈ {(−2,−3), (0, 2), (1, 2)} in the TypeA system,

� (a, b) ∈ {(−2,−3), (−1,−3), (1, 2)} in the TypeB system.

The results presented below do not depend on the type of systems selected.
The following notations are introduced:

� K∗ = max{∥d∗∥ : d∗ • d∗ • d∗ ∈ D}, K = max{∥d∥ : d ∈ D},

� r =
∥∥M−1

∥∥ = max{
∥∥M−1

1

∥∥ ,∥∥M−1
2

∥∥ ,∥∥M−1
3

∥∥} ,
� R = max{∥M1∥ , ∥M2∥ , ∥M3∥},

� L = K r
1−r , Li =

K∗ri
1−ri

where ri =
∥∥M−1

i

∥∥, (i = 1, 2, 3),

� κi the condition numbers of Mi, respectively, and κ = r ·R.

Example 3.2. Let a = 2, b = 2 then

MA =


2 −2 0 0 0 0
2 0 0 0 0 0
0 0 3 −2 0 0
0 0 2 1 0 0
0 0 0 0 3 −3
0 0 0 0 3 0

 , MB =


2 −2 0 0 0 0
2 0 0 0 0 0
0 0 2 −3 0 0
0 0 3 −1 0 0
0 0 0 0 3 −3
0 0 0 0 3 0


In TypeA case, the values are: #D = 252, K =

√
390 ≈ 19.75, K∗ ≈ 11.4,

r ≈ 0.81, R ≈ 4.85, L ≈ 83.65, L1 ≈ 48.3, L2 ≈ 13.76, L3 ≈ 13.35. In the
TypeB case: #D = 252, K =

√
390 ≈ 19.75, K∗ ≈ 11.4, r ≈ 0.81, R ≈ 4.85,

L ≈ 83.65, L1 ≈ 48.3, L2 ≈ 21.06, L3 ≈ 13.35.

In the following, we present some simple observations.

Lemma 3.2. ∥M−1
i −M−1

j ∥ = ∥M
−1
i ∥∥M

−1
j ∥, where i, j ∈ {1, 2, 3} and i ̸= j.
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Proof. The proof is straightforward. ■

Lemma 3.3. K∗ ≤ 1√
2
∥M1∥ (∥M2∥ ∥M3∥+ ∥M2∥+ 1).

Proof. Since max
d∈Di

∥d∥ = max
b∈[−1/2,1/2)2

∥M∗
i b∥ ≤ ∥Mi∥√

2
, for all i ∈ {1, 2, 3} hence

K∗ = max
di∈Di

∥M1 M2 d3 +M1 d2 + d1∥ ≤
∥M1∥ (∥M2∥ ∥M3∥+ ∥M2∥+ 1)√

2
. ■

Lemma 3.4.

L =

√
3K∗r

1− r
≤

√
3

2

∥M1∥ (∥M2∥ ∥M3∥+ ∥M2∥+ 1)r

1− r
.

Proof.

K = max
d∈D
∥d∥ = max

(x,y,x,y,x,y)∈D
∥(x, y, x, y, x, y)∥ =

√
3K∗. ■

Theorem 3.3. Let R = (Z6,M,D), and

K1 =

∥∥M−1
1 M−1

2

∥∥ (L2 +K∗)

1−
∥∥M−1

1

∥∥ =
L1L2

K∗ ,

K2 =

∥∥M−1
2 M−1

3

∥∥ (L3 +K∗)

1−
∥∥M−1

2

∥∥ =
L2L3

K∗ ,

K3 =

∥∥M−1
1 M−1

3

∥∥ (L1 +K∗)

1−
∥∥M−1

3

∥∥ =
L1L3

K∗ .

If K1,K2,K3 < 1 then R is a number system, otherwise if Ki ≥ 1 for some
i ∈ {1, 2, 3} then the testing set is formed by v = (v1, v2, v3, v4, v5, v6) ∈ Z6

such that ∥v∥ ≤ L and ∥∥(v1, v2)T − (v3, v4)
T
∥∥ < K1 ,∥∥(v3, v4)T − (v5, v6)

T
∥∥ < K2 ,∥∥(v1, v2)T − (v5, v6)

T
∥∥ < K3 .

If the orbit of the points from the testing set terminates in 0 ∈ Z6, then it is a
number system.

Proof. Let v = (v1, v2, v3, v4, v5, v6), ∥v∥ ≤ L, and z1 = (v1, v2), z2 = (v3, v4),
z3 = (v5, v6) be arbitrary. Then
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∥Φ1(z1)− Φ2(z2)∥ =∥∥M−1
1 (z1 − d)−M−1

2 (z2 − d)
∥∥ =∥∥M−1

1 (z1 − d)−M−1
1 (z2 − d) +M−1

1 (z2 − d)−M−1
2 (z2 − d)

∥∥ ≤∥∥M−1
1 ((z1 − d)− (z2 − d))

∥∥+
∥∥(M−1

1 −M−1
2 )(z2 − d)

∥∥ ≤∥∥M−1
1

∥∥ ∥z1 − z2∥+
∥∥M−1

1 −M−1
2

∥∥ ∥z2 − d∥ ≤∥∥M−1
1

∥∥ ∥z1 − z2∥+
∥∥M−1

1 M−1
2

∥∥ ∥z2 − d∥ ≤∥∥M−1
1

∥∥ ∥z1 − z2∥+
∥∥M−1

1 M−1
2

∥∥ (L2 +K∗)︸ ︷︷ ︸
(1−r1)K1

< r1K1 + (1− r1)K1 = K1

The used inequalities are

∥z2 − d∥ ≤ ∥z2∥+ ∥d∥ ≤ L2 +K∗ and
∥∥M−1

1 −M−1
2

∥∥ =
∥∥M−1

1 M−1
2

∥∥ .
Hence, if ∥z1 − z2∥ ≤ K1 then ∥Φ(z1)− Φ(z2)∥ < K1. Similarly,

� If ∥z3 − z2∥ ≤ K2 then ∥Φ(z3)− Φ(z2)∥ < K2.

� If ∥z1 − z3∥ ≤ K3 then ∥Φ(z1)− Φ(z3)∥ < K3.

If K1,K2,K3 < 1 then the testing set is W ∩ B6(0, L)\{0}. Let p ∈ W ∩
B6(0, L)\{0} be a periodic point. It is known that Φ(p) ∈ W ∩ B6(0, L)\{0}
and p − d ∈ W ∩ B6(0, L)\{0} (d ∈ D). Let p − d = (x, y, x, y, x, y) such that

z ≡ d (mod M). Then M−1
1

(
x
y

)
= M−1

2

(
x
y

)
= M−1

3

(
x
y

)
for some x, y ∈ Z.

This is possible only for x = y = 0. ■

Example 3.4. Let a = 2, b = 2. In this case K1 ≈ 58.3, K2 ≈ 16.11,
K3 ≈ 56.55 and the testing set size is roughly 177 698 711 505 in TypeA case
and K1 ≈ 89.21,K2 ≈ 24.65,K3 ≈ 56.55, and the testing set size is roughly
1 046 597 011 869 in TypeB .

The previous example demonstrates that small a, b parameters may result
in huge K1,K2,K3 values. Let

(3.4) A =
κ(κR+ κ+ r)√

2(1− r)2
.

Then

K1 ≤
(∥M3∥+ 1)κ1κ2 + κ1

∥∥M−1
2

∥∥
√
2(1−

∥∥M−1
1

∥∥)(1− ∥∥M−1
2

∥∥) ≤ (R+ 1)κ2 + κr√
2(1− r)2

= A

K2 ≤
∥∥M−1

3

∥∥∥∥M−1
2

∥∥ ∥M1∥ (∥M2∥ ∥M3∥+ ∥M2∥+ 1)
√
2(1−

∥∥M−1
3

∥∥)(1− ∥∥M−1
2

∥∥) ≤ R(κ2 + κr + r2)√
2(1− r)2

= A

K3 ≤
∥∥M−1

3

∥∥∥∥M−1
1

∥∥ ∥M1∥ (∥M2∥ ∥M3∥+ ∥M2∥+ 1)
√
2(1−

∥∥M−1
3

∥∥)(1− ∥∥M−1
1

∥∥) ≤ κ(κR+ κ+ r)√
2(1− r)2

= A .
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Therefore, for every K1.K2,K3, r, κ there exist A′ > A such that

(3.5) A′√2r3 − (2A′√2 + κ)r2 + (A′√2− κ2)r − κ3 > 0

Theorem 3.5. Let (Z6,M,D) be a (2, 3)-block diagonal system over the ring
of Eisenstein integers, where M is MA or MB from (3.3) with digits from (3.2).
Suppose that A′ ∈ R satisfies the condition (3.5). Then, for the possible periodic
elements π = (π1, π2, π3, π4, π5, π6) the following conditions hold:

∥(π1, π2)− (π3, π4)∥ < A′ ,

∥(π3, π4)− (π5, π6)∥ < A′ ,

∥(π5, π6)− (π1, π2)∥ < A′ ,

∥π∥ ≤ A′√3(1/r − 1),

π ∈ T ,

where T is an effectively computable set having less than N(A′)3 elements.

Proof. If π is periodic, then

∥π∥ ≤ L =
Kr

1− r
≤ r
√
3∥M1∥(∥M2∥∥M3∥+ ∥M2∥+ 1)√

2(1− r)
,

hence
Lr√

3(1− r)
≤ κ3 + κ2r + κr2√

2r(1− r)2
< A′

from which ∥π∥ ≤ L < A′√3(1/r − 1). This bound can easily be computed.
Now, we construct the set T . If π′ = (π′

1, π
′
2, π

′
3, π

′
4, π

′
5, π

′
6) is periodic then

∥(π′
1, π

′
2)− (π′

3, π
′
4)∥ < A′ ,

∥(π′
3, π

′
4)− (π′

5, π
′
6)∥ < A′ ,

∥(π′
1, π

′
2)− (π′

5, π
′
6)∥ < A′ ,

and

∥(π′
1 − d1, π

′
2 − d2)− (π′

3 − d1, π
′
4 − d2)∥ < A′ ,

∥(π′
3 − d1, π

′
4 − d2)− (π′

5 − d1, π
′
6 − d2)∥ < A′ ,

∥(π′
1 − d1, π

′
2 − d2)− (π′

5 − d1, π
′
6 − d2)∥ < A′

for any digit (d1, d2, d1, d2, d1, d2) ∈ D. For the appropriate congruent digit d,
let x1 = π′

1 − d1, x2 = π′
2 − d2, x3 = π′

3 − d1, x4 = π′
4 − d2, x5 = π′

5 − d1,
x6 = π′

6 − d2.
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Hence, M1(π1, π2) = (x1, x2), M2(π3, π4) = (x3, x4), M3(π5, π6) = (x5, x6)
for some (π1, π2, π3, π4, π5, π6) ∈ Z6, where

∥(π1, π2)− (π3, π4)∥ < A′ ,

∥(π3, π4)− (π5, π6)∥ < A′ ,

∥(π5, π6)− (π1, π2)∥ < A′ .

Rewriting the previous equations in the Eisenstein-lattice, we get that

−b(π2 − π4) + a(π1 − π3)− π3 = x1 − x3

(a− b)(π2 − π4) + b(π1 − π3)− π4 = x2 − x4

−b(π4 − π6) + (a+ 1) (π3 − π5) + π6 = x3 − x5

(a− b)(π4 − π6) + b(π3 − π5) + π4 − π5 = x4 − x6

−b(π6 − π2) + a(π5 − π1) + π5 − π6 = x5 − x1

(a− b)(π6 − π2) + b(π5 − π1) + π5 = x6 − x2 .

Simplifying the above equations, we have

(3.6)



π1 = bY − (a+ 1)X − ξ1,

π2 = −bX − (a− b+ 1)Y − ξ2,

π3 = π1 +X,

π4 = π2 + Y,

π5 = π3 + Z = π1 +X + Z,

π6 = π4 +W = π2 + Y +W,

where ξ1 = x1 − x3, ξ2 = x2 − x4, ξ3 = x5 − x1, ξ4 = x6 − x2,

Z = (a−b)X−(a2−ab+b2+a)Y+(b+1)ξ4+(a+1)ξ1+(a−b)(ξ3−ξ2)
a2−ab+b2+a+b+1 ,

W = (a2−ab+b2+a)X−(a2−ab+b2+b)Y+(a+1)ξ4+(a−b)ξ1−(b+1)(ξ3−ξ2)
a2−ab+b2+a+b+1 ,

X2 + Y 2 < A′2, Z2 +W 2 < A′2, (X + Z)2 + (Y +W )2 < A′2, ξ21 + ξ22 <
< A′2, ξ23 + ξ24 < A′2, and (ξ3 + ξ1)

2 + (ξ2 + ξ4)
2 < A′2.

The number of both (X,Y ) and (ξ1, ξ2) pairs are N (A′). The number of
(ξ3, ξ4) pairs is less than N (A′). Searching for all solutions, we have N (A′)3

periodic candidates, exactly what we stated. ■

Remark 3.1. The size of the testing set depends on parameters a, b. However,
using the formulas 3.6, the number of periodic candidates is less than or equal
to N (A′)3, which is independent of the parameters.
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4. Algorithms

In this section, we present the classification algorithm. The decision algo-
rithm uses the same logic.

4.1. Classification algorithm

Algorithm 1 is based on Theorem 3.3. It is known that if every Ki < 1
(i ∈ {1, 2, 3}), then the system is GNS. Otherwise, every point from the B6(0, L)
has to be checked by using the inequalities with Ki (i ∈ {1, 2, 3}).

Algorithm 1 ClassifyOne(L,K1,K2,K3,M,D)

1: if K1 < 1 and K2 < 1 and K3 < 1 then
2: return {0→ 0}
3: end if
4: P ← {}
5: for all v ∈ B6(0, L) do
6: if ∥(v1, v2)− (v3, v4)∥ < K1 and ∥(v5, v6)− (v3, v4)∥ < K2 and
∥(v1, v2)− (v5, v6)∥ < K3 then

7: P ← P ∪ { FindCycle(Φ(v),M,D)}
8: end if
9: end for

10: return P

The FindCycle(v,M,D) function calculates the orbit of v and returns the
cycle.

Let z1 = (v1, v2), z2 = (v3, v4) and z3 = (v5, v6). Algorithm 1 can be
improved by applying the following restrictions generating the testing set T1 =
= {z1 • z2 • z3} in case of small enough Ki parameters:

1. z1 ∈ B2(0, L),

2. z2 = z1 + t1, t1 ∈ B2(0,K1) and ∥(z1, z1 + t1)∥ < L,

3. z3 = z1 + t2, t2 ∈ B2(0,K3) and ∥(z1, z2, z3)∥ < L,

4. if ∥v2 − v3∥ = ∥t2 − t1∥ < K2 then t2 ∈ B2(t1,K2).

Algorithm 2 uses the previous optimisation steps. If the values K1,K2,K3

are bigger than L/2, we apply Algorithm 1 because there are too many points
outside of the ball.

Algorithm 2 investigates at most N (L)N (K1)N (K3) points in T1. The
FindCycle algorithm has at most #T1 −#D + 1 steps.
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Algorithm 2 ClassifyOneOptimised(L,K1,K2,K3,M,D)

1: if max{K1,K2,K3} < 1 then
2: return {0→ 0}
3: end if
4: if min{K1,K2,K3} > L/2 then
5: return ClassifyOne(L,K1,K2,K3,M,D)
6: end if
7: P ← {}
8: for all z1 ∈ B2(0, L) do
9: for all t1 ∈ B2(0,K1) do

10: if ∥z1 + t1∥2 < L2 − ∥z1∥2 then
11: z2 ← z1 + t1
12: for all t2 ∈ B2(0,K3) do

13: if (∥z1 + t2∥2 < L2−∥z1∥2−∥z2∥2 and ∥t2 − t1∥ < K2 then
14: P ← P ∪ { FindCycle(Φ(z1 • z2 • (z1 + t2)),M,D)}
15: end if
16: end for
17: end if
18: end for
19: end for
20: return P

Algorithm 3 is based on Theorem 3.5, where A is from (3.4).

It generates N (A)3 points, producing the set T2. Similarly to the previ-
ous case, the worst-case running time is O(#T2(#T2 − #D)). The functions
GetZ(x, y, ξ1, ξ2, ξ3, ξ4) and GetW(x, y, ξ1, ξ2, ξ3, ξ4) return the corresponding
z and w values from equation system (3.6).

Figure 1 compares the testing set size for Algorithm 2 and Algorithm 3 in
the TypeA case. In the measurements, b = 2 is fixed, and 1 < a < 100. The
size of the original B6(0, L) is so huge that it could not be illustrated together
with the testing set’s size. The TypeB case is similar.

It can be noted that the computation of K is time-consuming. Hence, the
upper estimate of K was used from Lemma 3.3.

4.2. The Φ function without storing the digits

The calculation of the orbits is based on the function Φ. The classification
and decision algorithms also rely on it. Based on Figure 2, it is easy to see
that the digit set size can be large. Therefore, the Φ function calculation can
be beneficial without storing any digit in the computer memory.



Simultaneous number systems 145

Algorithm 3 ClassifyTwo(A,M,D)

1: P ← {}
2: for all (x, y) ∈ B2(0, A) do
3: for all (ξ1, ξ2) ∈ B2(0, A) do
4: π1 ← by − (a+ 1)x− ξ1
5: π2 ← −bx− (a− b+ 1)y − ξ2
6: t1 ← ξ21 + ξ22
7: for all (ξ3, ξ4) ∈ B2(0, A) do
8: if 2ξ1ξ3 + 2ξ2ξ4 + ξ23 + ξ24 < A2 − t1 then
9: z ← GetZ(x, y, ξ1, ξ2, ξ3, ξ4)

10: w ← GetW(x, y, ξ1, ξ2, ξ3, ξ4)
11: if z2 + w2 < A2 and (x+ z)2 + (w + y)2 < A2 then
12: π ← (π1, π2, π1 + x, π2 + y, π1 + x+ z, π2 + y + w)
13: P ← P ∪ { FindCycle(Φ(π),M,D)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: return P

Figure 1. The testing set sizes for Algorithm 2 and Algorithm 3

Let z = z1 • z2 • z3 ∈ Z6. The challenge is to find d ∈ D without knowing
(storing) the digit set D. We know that if z ≡ d (mod M) then M∗z ≡ M∗d
(mod det(M)I6), where

M∗ =

det(M2) det(M3)M
∗
1 0 0

0 det(M1) det(M3)M
∗
2 0

0 0 det(M1) det(M2)M
∗
3

 .
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Figure 2. The left side shows the digit set size for fixed b, and the right side
shows the heatmap of the digit set size with log10 scale for every a, b ∈ [−50, 50]
in TypeA systems.

We analyse the values M∗
i zi (mod det(Mi)I2) for i = 1, 2, 3. If M∗z ≡ M∗d

(mod det(M)I6) then 
z1 ≡ d∗ ≡ b1 (mod M1)

z2 ≡ d∗ ≡ b2 (mod M2)

z3 ≡ d∗ ≡ b3 (mod M3).

It is known that if (det(Mi),det(Mj)) = 1 fulfils for i, j ∈ {1, 2, 3}, i ̸= j,
then based on Chinese remaindering the values d∗ can be computed by

(4.1) d∗ = M2M3x1b1 +M1M3x2b2 +M1M2x3b3

where x1b1 = A2,3b1, x2b2 = A1,3b2 and x3b3 = A1,2b3, and further
M2M3A2,3b1 ≡ b1 (mod M1)

M1M3A1,3b2 ≡ b2 (mod M2)

M1M2A1,2b3 ≡ b3 (mod M3).

By equation (4.1) d∗ • d∗ • d∗ ∈ W such that z ≡ d∗ • d∗ • d∗ (mod M).
There exists a corresponding digit d′ ∈ D∗ such that d∗ ≡ d1 (mod M1),
M−1

1 (d∗ − d1) = d∗1 ≡ d2 (mod M2) and M−1
2 (d∗1 − d2) ≡ d3 (mod M3) where

di ∈ Di (i ∈ {1, 2, 3}). Hence d′ = d1 +M1(d2 +M2d3) and d = d′ • d′ • d′ ∈ D
such that z ≡ d (mod M) satisfies.

Remark 4.1. The presented Φ function calculation can be generalised to every
simultaneous system assuming that the determinants are co-prime.
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Algorithm 4 returns the value of Φ without knowing (storing) the digit set
when the determinants are co-prime. In the algorithm, Mi, Di (I ∈ {1, 2, 3})
are the parameters of the investigated system.

Algorithm 4 Φ(z1 • z2 • z3)
1: a1 ← SolveMod(det(M2) det(M3)x ≡ 1,det(M1))
2: a2 ← SolveMod(det(M1) det(M3)x ≡ 1,det(M2))
3: a3 ← SolveMod(det(M2) det(M1)x ≡ 1,det(M3))
4: b1 ← a1M

∗
3M

∗
2 z1 (mod M1)

5: b2 ← a2M
∗
3M

∗
1 z2 (mod M2)

6: b3 ← a3M
∗
2M

∗
1 b3 (mod M3)

7: d∗ ←M2M3b1 +M1M3b2 +M1M2b3
8: d1 ← GetDigit(d∗,M1)
9: d2 ← GetDigit(M−1

1 (d∗ − d1),M2)
10: d3 ← GetDigit(M−1

2 (M−1
1 (d∗ − d1)− d2),M3)

11: d← d1 +M1(d2 +M2d3)
12: return M−1(z1 • z2 • z3 − d • d • d)

The SolveMod(ax ≡ y, b) function returns the solution of ax ≡ y (mod b).

The GetDigit(z,M) function returns d such that d ≡ z (mod M) where
d is a digit from the adjoint digit set of base M .

5. Measurements and observations

This section investigates the behaviour of the parameters L and A with
fixed b and increasing a values. It can be observed that the parameter values
increase drastically for every b, even for small a values. Figure 3 shows that the
TypeB cases are very similar to the TypeA cases, so the next figures will only
present the TypeA case. Figure 3 shows that storing the points of the ball with
radius L is hardly possible. Figure 4 shows similar measurements to Figure 3
for the parameter A. If a < 5000 for every investigated b, the values of A will
remain below 104. The values of L are bigger than the A with several orders
of magnitude. This implies that Algorithm 3 is preferable.

Figure 5 shows the parameter values A without extreme cases. For a, b ∈
∈ [−100, 100], the values of A are changing gradually from 11.64 to 1030,
except for the few extreme cases in Table 1. Those values are not shown on the
heatmap. On the fourth column of the table, there is a periodic point, which
proves that the system is not a number system, and on the last column is the
length of the periods. No solution could be found for the missing entries in our
computing environment.
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Figure 3. Approximation of L by Lemma 3.3

Figure 4. Parameters A for fixed b ∈ {1, 2, 5, 10, 50}. On the right side, the
horizontal axis shows 1 < a < 5000, while on the left side, the a values are
focused on the [2, 100) interval.

a b A π ∈ P #Cπ a b A π ∈ P #Cπ
-3 -4 659.08 (4, 5, 5, 4, 7, 7) 3 -3 -2 946.54 (−1, 0,−1, 1,−2,−1) 16
-3 -3 1811.8 (1,−1, 0,−2, 2,−2) 3 1 3 622.44 (1,−4, 4,−2, 2,−2) 6
-1 2 1811.8 (0,−2, 2,−2, 1,−1) 3 -2 1 575.4 (−1, 1,−2, 2,−2, 0) 3
-2 -4 659.08 (−5,−1,−4, 1,−7, 0) 6 0 3 659.08
-1 -3 1811.8 (−2, 0,−1, 1,−2, 2) 6 2 3 659.08
2 2 1811.8 (2,−2, 2, 0, 1,−1) 6

Table 1. Extremely large A values, where π ∈ P and #Cπ is the length of the
period of π.

6. Conclusion

This article presents theoretical and algorithmic results for determining the
testing set of (2, 3)-simultaneous systems. It specifies the necessary conditions
for the number system property. Different conditions were presented for the
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Figure 5. The heatmap of A.

location of periodic points, which helped reduce the testing set size. From the
classification point of view, algorithms were provided that can solve the problem
more efficiently than the previously known algorithms. From computational
aspects, in most cases, the digit set size is so huge that it can not be stored in
memory. A new algorithm was provided, which can compute the Φ function
without storing the digit set in case the pairwise determinant of the blocks are
co-primes.
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