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Abstract. Nowadays, Artificial Intelligence (AI) and Machine Learning
(ML) models are becoming increasingly widespread in practice and every
area. The central issue of AI and ML is to create the best model based on
the available input data. Building and choosing the best model are often
not trivial tasks. These models usually work well if the quantity and the
quality of the training datasets are appropriate. Thus, the process of the
model building and the raw data itself interact: the characteristics of the
data determine the possibilities of the model building. However, data are
not always available in large volume. Although smartening industrial, or
any other environments up has been going on in recent years, it is still a
problem when the data are very ’homogeneous’, i.e., there is a relatively
large amount of data, but much of it is irrelevant from the point of view
of AI or ML modelling. Thus, false models can be built that do not work
properly, especially if there are changes in the characteristics of the data.
In this paper, the theoretical background of two new, self-developed meth-
ods are presented which are able to systematically increase the volume of
the input data and examine the reliability and the stability of the applied
analysis method. These two methods are able to work together in a frame-
work and can extend the use and the applicability of AI models with new,
systematically generated datasets.
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1. Introduction

Artificial Intelligence (AI) and Machine Learning (ML) models based on
statistics, Data Mining techniques, Big Data and Internet of Things (IoT) are
often referred to as Data Science. The application of Data Science methods - in
almost all aspects of life - are becoming increasingly dominant [11], [13], [16].
By 2030, specialists expect a major scientific breakthrough that will affect the
industry, and, with it, many jobs as well [7], [14], [18]. Economic implications,
together with the previous ones, could transform the whole of economics and
society as we know it [1]. Along with this, the application of Data Science
models is not a trivial process, each problem may require a different approach
and conditions. Therefore, in recent years, newer and newer models have been
created in order to be as accurate as possible [12], [19].

A given Data Science problem can be divided into several sub-processes,
such as data pre-processing, feature selection, choosing of data science model,
which have been summarized by several authors [5], [9]. However, in practice,
it is a hard, maybe even impossible task to define a general process for different
problems. Nowadays, the data is often generated by sensors and the measured
datasets are collected, transformed, and stored in a database. Collecting and
storing a large amount of data technically is not a problem today, there are
many hardware and software solutions utilize for these tasks. However, the
reliable and efficient processing of this data is still a big challenge.

The (industrial) applications of Data Science methods consist of two main
steps. The first step is always a general statistical analysis of the data series to
get a general overview of them, and some kind of pre-processing or transforma-
tion steps to increase the data quality. The result of this step helps us to define
the adequate analysis method in the next phase. The second step, which we
often call modelling, is the implementation of the Data Science method itself
on the pre-processed input dataset. As indicated earlier, these two steps can-
not be truly separated, as the characteristics and quality of the input data will
influence the choice of the method. Based on the 4V (volume, variety, velocity
and veracity) definition of Big Data, we often consider collected data that have
no effect on the value of the dependent variable we are looking for. In practice,
we have a lot of data, but these datasets are not always suitable for explaining
the dependent variable. We cannot create new data besides what we already
obtained in the past. However, we can generate new, derived datasets from the
available collected data, thus expanding the range of the relevant input data.

In this paper, we present the theoretical background and description of two
new methods that extend the applicability of Data Science methods by gener-
ating data series derived from the originally measured sensor data in industrial
environments. The first new method is the ECReMIT (Extended Cyclic Re-
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verse Moving Intervals Technique) method, which uses time series to produce
the new derived time series described above. This new dataset can be the input,
or the training set of the applied analysis method. However, the systematic
extension of data series can inevitably create a data environment where corre-
lations or, in the case of AI and ML models, high accuracies can be achieved by
chance. The larger the size of the input, the higher the probability of finding
a good relationship. The increased input data space increases the probability
for finding random relationships or producing good accuracies. Random Cor-
relations (RC) aims to reduce correlations due to randomness and analyze the
reliability and stability of the applied analysis methods and the results. Our
main goal is to establish the extension opportunities of Artificial Intelligence
and Machine Learning models and to test their stability at the data level, but
the analytical method can be basically any method. The two methods are inde-
pendent of the model built, so we will use the word modelling as a generic term
hereafter. In this paper, our main aim is to introduce these two methodologies
and to show how they can be linked into a complex framework.

2. Theoretical background of the methods

In data analysis, connected to a measurement we often have only one input
time series, X which includes the measured data. The ECReMIT is responsible
for the generating of the whole, complex dataset according to the parametriza-
tion by the user based on X. The output dataset of ECReMIT is the new,
extended input of the data analysis. The examination of the reliability and
the stability of these analysis methods and their results is the task of RC. In
this chapter we provide the details, the theoretical background and notations
of these two methods.

2.1. ECReMIT

The Extended CReMIT (ECReMIT) provides the opportunity to generate
new, derived time series from X, based on the periodicity of it. The basic
CReMIT method [15] was developed to improve the efficiency and completeness
of time series analysis methods by systematically increasing the set of possible
input data. The main idea behind CReMIT was a window-based technique to
create new time series using special aggregation, transformation functions on
the data in windows over the original dataset.

However, the basic CReMIT method uses the whole, available time series
X to create the new, secondary time series (STS). Nevertheless, sometimes we
do not want to use the whole length of the time series, but only a continuous
subpart of it. Because this approach gives the opportunity to examine the
changes in time series and in the examined relationships. The evolutionary and
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moving interval techniques in Fig. 1 make it possible to use only a given part
of X, but in a systematic way. The essence of the moving interval technique
is that the length of the examined interval is always fixed, and the starting
point is moved forward by one period in each iteration step. In the case of
the evolutionary technique the starting point is fixed, and the interval length
is increased by one period step by step [4]. Both two techniques use only a
continuous part of the whole, original time series in a given step.

Figure 1. (a) Moving interval technique (b) Evolutionary technique

These techniques allow us to further increase the number of input datasets,
but in a systematic way. Using Machine Learning algorithms, it is important
to create as big a learning dataset as possible. The ECReMIT method helps us
to create a huge number of input time series based on the original one, which
can be the input set of the Machine Learning algorithms to improve, optimize
the accuracy of the results.

Let X = {x1, x2, . . . , xi−1, xi, xi+1, . . . , xn} a time series with the next
four, given properties:

1. P is the periodicity of X,

2. n is the length of X,

3. x1 is the chronologically latest value in X,

4. NP is the exact number of periods in X (e.g., if we have monthly data
in X, then NP is equal with the number of whole years in X).

The ECReMIT method has six, user defined input parameters to determine the
running conditions of the algorithm. These parameters determine the number
and properties of the created new, secondary time series (STS):



Numerical-based input data extension 73

1. The starting point index, SP (1 ≤ SP ≤ P ) defines the starting point
xSP of the algorithm in SP , this value will be the beginning of the first
window over SP . In practice, SP is usually much smaller than n.

2. The maximum window width, MWW defines the maximum size of the
windows over X. There is a running index in the algorithm, the actual
window width, AWW and it covers the interval [1, MWW ].

3. The maximum time shifting value, MTS defines the maximum distance
between (XSP ) and the first windows over X. There is a running index
in the algorithm, the actual time shifting value, ATS and it covers the
interval [0, MTS].ATS = 0 means that the starting point of the first
window is the index SP .

4. The transformation function, TRF . It defines the method to create the
values of the new time series based on the windows values over X. TRF
can be a simple average, sum, min, max, or more complex transforma-
tions, it depends on the given examination.

5. The number of the examined periods, NEP . This parameter allows us
not to take the whole time series with NP into account, but only fewer
periods. This provides the opportunity to examine the possible temporal
changes in X according to the evolutionary or moving interval techniques.
When the evolutionary technique is used then the value of NEP is in-
creasing in each main iteration step by one. When the moving interval
technique is used then the value of NEP is constant in whole process.

6. A binary variable to define that the algorithm uses the evolutionary or
the moving interval technique, T . If T = 0 then the evolutionary if T = 1
then the moving interval technique is used in the algorithm.

According to these six input parameters the algorithm uses the next values to
create the windows and STS-s:

1. The beginning period, BP . It is the first, chronologically the latest pe-
riod, which is considered during the actual window creation over X. The
initialization value of BP is 1, it is the first period in X. When the
evolutionary technique is used then the value of BP is constant.

2. The ending period, EP . It is the last, chronologically the oldest period,
which is considered during the actual window creation over X. The initial
value of EP is BP +NEP . When moving the interval technique is used
then the value of BP increases in each main iteration step by one period.

3. The number of all STS-s,



74 G. Bencsik and Z. Pödör

NSTS (MWW, MTS, NEP ) =

= MWW × (MTS + 1)× (NP −NEP + 1) ,

where z is the index of a given STS and

1 ≤ z ≤ NSTS (MWW, MTS, NEP ) .

4. A new STS is defined by the next five, user defined parameters,

STSz (SP, AWW, ATS, NEP, TRF ).

5. The length of STS, or with other words, the number of the opened win-
dows over the time series

NOW = [(n− (SP +AWW +ATS − 1)) /P ] + 1,

where [ ] is the entire function, but only between BP and EP .

Based on the six user defined parameters ECReMIT creates the above
described five parameters in each iteration step and creates all of the STS-
s on the output. The STS-s are stored in a matrix MoSTS (Matrix of
Secondary T ime Series), where each row is according to a new, derived STS.
STSz is stored in the zth row of MoSTS. The size of matrix MoSTS is
NSTS (MWW,MTS,NEP )×NoW , with the user defined parameters, it is:

(MWW × (MTS + 1)× (NP −NEP + 1))×
× ([(n− (SP +AWW +ATS − 1)) /P ] + 1).

The actual length of an STS depends on the parameters, the empty cells
are filled with NA (Not Applicable) values in the matrix. In a given win-
dow, we usually create the sum or the average of the values in the window,
which is a simple elementary operation. The time complexity of the algorithm
ECReMIT is the linear function of the above-mentioned parameters. The basic
CReMIT method was applied by many practical problem connected to forestry
and climate change [6], [8], [10].

2.2. Random correlations

As mentioned before, the goal is always to find some kind of relationship
between data, or to automate natural or industrial processes based on data
that we have processed with learning or analysis algorithms. However, despite
the research being conducted about the same question in the same field under
identical conditions the results can be conflicting. Random Correlations as a
method seeks to find answers to such contradictions. The main idea behind the
Random Correlations is to aim to discover the false relationships that appear
among the methodologically correct results. Sometimes the collected data,
based on their length and the applied transformations on them, can cause
some relationship without practical meaning. There are several methods to
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test the reliability of the results which create for example R2 and various other
statistical values. In the case of Machine Learning, many similar properties
can be found, such as accuracy or F1 score which calculates the harmonic
mean of precision and recall scores of the models or ROC (Receiver Operating
Characteristic) curve which graphically illustrates the performance of the model
at various thresholds [17]. The theory of Random Correlations does not replace
the methods used to gain the above-mentioned properties, its aim is to eliminate
the randomness of the results, thus increasing the reliability of the models. The
main difference between reliability analyses and the Random Correlations is the
way in which ”bad” results are approached. If the reliability analysis of the
results is adequate, we are more likely to believe that the relationship we are
looking for really exists. The Random Correlations technique, on the other
hand, assumes that, under certain circumstances, despite the good reliability
value of the results their existence might be untrue.

The secondary datasets generated by the ECReMIT method are stored in
the matrix MoSTS and each row z in MoSTS contains a new derived datarow.
This extension of the data can create an environment where the models built
are highly accurate, but in reality, this accuracy is the result of chance. As
more and more data sets are produced, the accuracy of the models built may
inevitably increase. To filter this random property, we compute the variance
Dz for each datarow z. Let denote by c the constant step to produce all possible
values that can be measured given the MoSTS element and the variance Dz

according to the following steps:

1. The vectors V Vz,w (V alues of V alues) are produced based on the fol-
lowing rule:

V Vz,w = [vvz,w] =

= [mostsz,w]−Dz + i× cz [w [z]] , i = 0, 1, 2, . . . , kz [w [z]] ,

kz [w [z]] = Dz/cz [w [z]] , Dzmodcz [w [z]] = 0.

2. Based on values of vectors V V , all combinations are produced. We go
through the indices of the vectors V V systematically. In each iteration,
changing the index of one vector V V and leaving the others unchanged
will result in the next tertiary data series.

Since the rows of theMoSTS are not the same length, the lengths are stored
in vector w. Similarly, the constants are different for each element of each row
and they are stored in vectors cz. The constants are freely defined by the user,
but the given variance Dz must be divided by it without a residue, otherwise
the last element will not be obtained properly. All combinations as the tertiary
data series for all data series z are stored in MoRCz (zth Matrix of RC).
Each data row of the matrix MoSTS is replaced by the corresponding tertiary
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data row MoRCz systematically. The general generation process of matrices
MoRC can be seen in Fig. 2.

In step S, the replacement is performed for each data row z and then the
model is built based on matrixMoSTS containing the new, replaced data rows.
At each step S, we record the value of the variable measuring the accuracy or
some kind of goodness-of-fit entity of the model. After step S, if these values
have small variance, i.e., if the variance is below a certain level α, the model is
stable. If α is large, the model is not stable, i.e., a small change in the original
data can lead to large model degradation. The α allows not only to filter out
randomness, but it also allows us to see the impact of the possible original data
value changes on the model itself.

Figure 2. Basic generation process of MoRC matrices

S is also an input parameter. To eliminate randomness, all possible combi-
nations of all possible exchanges of all data series z would have to be generated,
and the model would have to be built in each iteration. This is a very large
data space and although the method is highly parallelizable, it is still infeasible
in human time sometimes. The newly created datasets allow deeper analysis,
but the operational complexity is exponential. Just generating the possible
measured values for each value of the data series z and the constant cz is a
computationally expensive task, then, the combination phase has exponential
time complexity. Thus, the computational demand should be reduced. A trivial
reduction of the computational demand is if the parameter value of S is smaller
and the step cz [w [z]] is larger. A further reduction is to look for correlation
between the tertiary data series of each MoRCz. In this case, classes denote
by Cz,1, Cz,2, . . . , Cz,t are created and it is true that all data series within
a class are correlated. We take the data series in order, the first one clearly
generates class Cz,1. If the next data series is correlated to the previous one, it
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is placed in class Cz,1, otherwise class Cz,2 is created with one element. Then,
we do not need to perform all possible swaps, but only form a combination of
data series representing classes.

From the RC point of view, data stability can also be examined in terms of
time. In this case, the NEP parameter of ECReMIT is systematically chosen
so that one or p pieces of data are always omitted backwards along the time
axis. This is done as long as the omission of data is meaningful or until a certain
predefined l limit is reached, below which no more data can be examined. In
each iteration, we train a model and then use an α to evaluate the variance
of these models. If α is large, then the accuracies or the model goodness-of-
fit ratios are highly deviated, the model is not considered stable, and the data
suggest that there is a high probability that the model will probably not perform
well later. The limit of the α is also defined by the user. The numerical results
of RC related to ANOVA (Analysis of Variance) and regression techniques were
showed out before [2], [3].

3. Data process pipeline

The introduced methods are implemented as part of a complex data pro-
cessing pipeline. The Fig. 3 shows the main concept of the data handling
process.

Figure 3. Concept of the pipeline

The pipeline starts with the original time series, X. A complex analysis
process contains the next main steps:

1. ECReMIT module gets the input dependent variable X, and generates
the new, derived time series, STS (SP, AWW, ATS, TRF ) from the
dependent variable (s) and stores them in matrix MoSTS.
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2. All the time series from MoSTS can be used as training set to build the
data analysis model (m).

3. RC module verifies the stability of these models with generating tertiary
data rows based on the MoSTS rows.

4. Swap MoSTS data rows for MoRC data rows. Accuracies or some sim-
ilar entities are notified in vector A and model selection are made based
on the limit α.

The implementation of the framework can be different, adjusted to the
given research, but pseudo code can help to implement the framework easier.
Thus, the main steps of the framework’s algorithm pseudo code according to
the notations of the definitions is introduced.

Algorithm 1 ECREMITRC

1: procedure ECREMIT(SP, MWW, MTS, P, NEP, T and Function
TRF )

2: initialization parameters SP, MWW, MTS, P, NEP, T and
Function TRF

3: MoSTS := empty matrix
4: z := 0
5: BP := 1
6: EP := BP +NEP
7: if (T == 0) then ▷ evolutionary technique
8: for i := 1 to (NP −BP + 1) do
9: NEP := EP −BP + 1

10: for AWW := 1 to MWW do
11: for ATS := 0 to MTS do
12: z := z + 1
13: NoW := [(n− (SP +AWW +ATS − 1)) /P ] + 1

between BP and EP
14: STS (SP, AWW, MTS, NEP, TRF )z := empty array
15: for t := 1 to NoW do
16: open the window over X according to SP, AWW,

ATS and P
17: use TRF over the window′s values
18: create STS (SP, AWW, MTS, NEP, TRF )z [t]
19: end for
20: MoSTS [z, ] := STS (SP, AWW, MTS, NEP, TRF )z
21: EP := EP + i
22: end for
23: end for
24: end for
25: end if
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26: if (T == 1) then ▷ Moving interval technique
27: NEP := EP −BP + 1
28: for i := 1 to (NP −BP + 1) do
29: for AWW := 1 to MWW do
30: for ATS := 0 to MTS do
31: z := z + 1
32: NoW := [(n− (SP +AWW +ATS − 1)) /P ] + 1

between BPandEP
33: STS (SP, AWW, MTS, NEP, TRF )z := empty array
34: for t := 1 to NoW do
35: open the window over X according to SP, AWW,

ATS and P
36: use TRF over the window′s values
37: create STS (SP, AWW, MTS, NEP, TRF )z [t]
38: end for
39: MoSTS [z, ] := STS(SP, AWW, MTS, NEP, TRF )z
40: end for
41: end for
42: BP := BP + i
43: EP := EP + i
44: end for
45: end if
46: end procedure
47: procedure RC(NSTS, c [ ] , α)
48: for z := 1 to NSTS do
49: Az := AV ERAGE (MoSTS [z, ])
50: Dz := DEV IATION (MoSTS [z, ])
51: for w := 1 to w[z] do
52: DEFINE (cz [w])
53: V Vz,w[z] := CREATEALLV ALUES (Dz, cz [w])
54: end for
55: MoRC [z, ] := CREATEALLCOMBINATIONS

(
V Vz,w[z]

)
56: NoC [1] := 1 ▷ number of classes and members
57: for i := 1 to p do
58: for j := 1 to NoC [p] do
59: if CORRELATE (MoRCz) then
60: ADD (MoRCz,i, Cz,j)
61: NoC [i] := NoC [i] + 1
62: else
63: p := p+ 1
64: NoC [p] := 1
65: CREATE(Cz,p, MoRCz,i)
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66: end if
67: end for
68: end for
69: end for
70: end procedure
71: procedure EVALUATION(S, NSTS, α)
72: A := empty vector
73: for i := 1 to S do
74: for z := 1 to NSTS do
75: SWAP (MoSTS [z, ] ,MoRCz, RANDOM (Cz,p) ,

RANDOM
(
Cz,NoC[p]

))
76: A[i] := MODEL (MoSTS)
77: MODELS SELECTION(α)
78: end for
79: end for
80: end procedure

4. Conclusion

Data Science algorithms require a lot of input data. We have to use more
data than we may reasonably require in classical statistics. Estimating the
amount of data needed for Machine Learning models is critical in any data
science project. When determining the volume of data necessary for an ML
model, factors such as the type of problem being solved, the complexity of the
model, the quality and accuracy of the data, and the availability of labeled
data all come into play.

We usually need thousands of examples in training dataset. Ideally, tens or
hundreds of thousands for “average” modelling problems. Millions or tens-of-
millions for “hard” problems like those tackled by deep learning. Keep in mind
that Machine Learning is a process of induction. The model can only capture
what it has seen. If your training data does not include enough and adequate
cases, they will very likely not be supported by the model.

The ECReMIT method is able to create a big size input time series from
only one long enough time series based on the periodicity of it. It significantly
increases the size of the training data in a systematic way. The RC technique
always provides a kind of measurement based on derived data that could have
been measured at all, and based on these values, it takes measurement inac-
curacies and randomness into account. RC tries to explain to what extent the
change of data, i.e., randomness, can affect the subsequent use of the model.
In this article, our goal was to introduce these two new methodologies and to
establish the theoretical background of these two algorithms’ connection into
one framework.
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Our aim in the future is to build these methodologies into a pipeline, that
covers the entire analysis process from the prepared basic input to the reliability
of the obtained results. This pipeline, according to ECReMIT and mainly
RC creates a huge number of training sets. The parallel processing gives an
opportunity to use and run this pipeline and in the near future the quantum
computers can be the solution for the significant computing capacity problem.
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