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Abstract. I, together with my friends, or alone formulated some open
problems in the last fifty years. Some of that problems are solved, some
others remained open. Here we shall present some new open problems.

1. Introduction

Notation.
(1) In the following let P, N, Z, Q, R and C denote the set of primes,
positive integers, integers, rational , real and complex numbers, respectively.
(2) We denote by A, A* M, M* the set of all additive, completely ad-
ditive, complex-valued multiplicative, completely multiplicative functions, re-
spectively.
(3) w(n),Qn),7(n), p(n),c(n) are typical arithmetical functions.
(4) p(n)= smallest prime divisor, P(n) = largest prime divisor of n.
(5) e(x) = €2™* @(x)=Gaussian distribution function.
(6) m(z) ={p < zlp € P}, m(x,k,0) = {p < z[p € P,p={ (mod k)}.

Key words and phrases: Additive function, multiplicative function, Gaussian distribution
function, distribution of primes, interval filling sequences, normal number.
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2. On a theorem of H. Daboussi

2.1. H. Daboussi [1] proved that if f € M, |f(n)| < 1, then

(2.1) S(z) = Z f(n)e(na) =o(x) as x — oo
n<z
holds for every irrational .

I gave a simple proof for it [15] by using a variant of Turdn-Kubilius in-
equality, namely the following;:

Let
Pl :{pla"' 7pk}g7)a P < <Dk Sxa
ko1
L= —  and wp,(n):= 1,

lej () =Y

J= pln

pEP1L
Then

2

(2.2) Z (wpl (n) — L) <czL,
n<zx

where ¢ is an absolute constant.

Hence, by using the Cauchy-Schwarz inequality, and that = > e(mf) — 0
m<zx
as x — oo for every irrational 3, (2.1) follows.

By using this method we proved

Theorem 1. (J. M. De Koninck and I. Kétai [8]) Let P1 C P, 3 cp, % =

Let B be the set of those function f: N — U, where U := {z € C||z| < 1}, for
which

flpm) = f(p)f(m) if p€Pi,(p,m)=1

Moreover, let a : N — U be a function for which

1
. Z a(pin)a(pen) -0 as x — oo

n<z

for every p1 # pa, p1,p2 € P1.
Then

% Z f(n)a(n) =0 as z— oco.

n<x
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By this method the theorem of Daboussi can be generalized in different
direction [15].

2.2. In [18] I considered the function

(2.3) Ala, x) =

p ’
m. X X e pl 9
Z(x) X 7)(1172 cu Z;m p1 P2 (a p )

p1<p2
and proved that A(a,x) — 0 for almost all irrational « and formulated the
conjecture that it holds for every irrational . This is proved by G. Harman [9].
In a joint paper written with K.-H. Indlekofer [10] we studied the sum

S(z|a; Y, Xp) == Z Yo, Xpe(am;p),
’m,jEMg_»
m;p<w

where
My={m <---<my}CN and Y, X, €U.

We proved: Let my < x%, §, — 0, and that

t

””3::5 — — 00 as T — o0.
- mj
Jj=1

Then

(2.4) max  S(z|a; Yim,, X,) = o(1) Zﬂ'(i) as & — 00

m1X:DE j=1 m]

for almost all a.

We formulated the conjecture that (2.4) is true for every irrational o.
G. Harman disproved this conjecture, and proved my next conjecture:

Let

1
A ,T) = ‘ X, .- X ,
by @) = s max > Xy Xpeelapr - pr)
P11 PR ST
where
m(z)= Y 1
P1- Pk ST
p1<--<pg

Then Ag(a,z) = 0 (z — o0) for every irrational «.

G. Harman proved my more strict conjecture.
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Theorem. (G. Harman) Let « be irrational, k > 3. Let

Ap(a,z) = max ’ Z X(1 k) e(apr - pr)|.

7Tk; ZC X(J)Eu PRz

Then
Ag(a,z) >0 as x — oo.

3. On some question in the probabilistic number theory
3.1. In a paper written with J.-M. De Koninck [6] we investigated the function

Ux(n), where it is the number of those prime divisors p of n, for which in the
interval (p,p%) there no exist prime divisor of n. Here 0 < A < 1.

We proved that, if € > 0 is am arbitrary fixed number, then

lim ljj{ngx: ’%f)\‘>e}%0

r—00 I CU(TL
and that ) U 0
lim—{n< : ‘A(L—)\‘>e}—>0
w00 () (p+1)

Let fa(n) =Ux(n) — Aw(n). Our conjecture is the following.

Conjecture 1. We have that for every u € R

1 . frn)
xll)n;o;ﬂ{ngx ) logTozn <u} — D(u),

c(N) is a suitable positive constant.

The first step to prove it would be to prove that
- Z fin) = (1 4+ 0.(1))e(N) loglog .
n<x

Highly probable our conjecture is true for

p+1)
c(\)y/loglog(p + 1)

We remark that Conjecture 1 is proved by A. Sofos in arxiv: 2106.00298v3
3.2. In [7] we investigated the following question.

Let a(n) = n(n+1) (n € N,n > 2). Let p; < ps < --- < pg be the complete
list of the prime divisors of a(n). Let s, : {p1,--- ,pr} — {0,1}.
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We write

su(py) = 0 if pjn
"POTY 1 pinrt

Then consider the binary sequence:

h(n) == sn(p1) -+ sn(P)-

We proved that
E=0,h(2)h(3)...
is a binary normal number.

To prove it we considered

Kn|dy...00) =8{je{l,....k =L} | $n(Dj4r) =0p,r =1,...4}.

Here k = Q(n) + Q(n + 1).
We proved that, for every fixed d1,...,d;

1 K(n|oy...6,) 1
—Hn<z | - -
xlglgo xﬁ{n =7 ‘ 2loglogn 22 ‘ > 6} 0

holds for every fixed € > 0.

Conjecture 2. We have that

(A) 1 Z(QEK(an ...07) — 2loglog )% = ¢(1 + 0,(1)) loglog z,
x

n<zx
moreover that

~ 2'K(n|é; -+ 6;) — 2loglog @

®) On): dry/logTog 1

is distributed according to the normal law. Here dy is a suitable positive con-

stant.
Let b(q) = (¢ —1)(¢+1) (¢ € P). Let

b(q) =21 p, 2<p1 <<y

_ 0 if pilg—1
Sn(p]):{ ]|

and

1 if pj|q+1.

Let
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K(q|d1...60) == 8{sq(pjir) =0p, 7 =1,...0},
F=00@) - 3 1.

241b(q)

By our method we can prove that
n=0,h(3)h(5)...h(q)...

is a binary normal number.

We can prove that

1 — 2loglogx\2 9
(1) = ; (K(q|51 S — T) = o (z(loglog z)?) .
Conjecture 3. We guess that
1 — 2loglog x\2
© = (Klalor--60) - =5725)" = (1 +0,(1)) loglog
q<z

with a suitable constant ¢ > 0, and that

1 F(q\él...ég)—zlo%% _

Here dy is a suitable positive constant.

3.3. Let Rap={neNQn) =A4,Qn+1)=DB}, k=A+ B. Let Ta p be
the set of those d1,--- , 6 € {0, 1}* sequences in which 0 occur exactly A-times
(and then 1 occur B-times).

Conjecture 4. Let ©1,02 € Ta p, 01 # Os. Then, under the condition

max{|A — loglog z|,|B — loglog z|} < ¢y/loglog x,

we have

sp H{n<z|néeRap, h(n) =01}

— 1‘ —0 as xz — oo.
©1,02€R A B ﬁ{ﬂ <z | ne RA,th(n) = @2}

3.4. Let uy(n) = Q(n) (mod ¢q),q € N,q > 2

Open problem. Let (2 <)g; < g2 < --- be an infinite sequence of pairwise
coprime integers. How can we construct an infinite sequence of integers B =
={q1 < ¢2 <---} such that

& = 0,uq;(a1)ug; (az) ...,



Some old and new problems on arithmetical functions 139

are g;j-ary normal numbers for every j = 1,2,---, and more over that
[gla qr]
Ty = (m=1,2...)
[gkv q;gn}

is uniformly distributed in [0, 1]*.
I do not know how we can construct &1, &> ... with these properties.

4. The distribution of prime numbers in short intervals and some
consequences

4.1. K. Ramachandra [26] proved that

h h
4.1 h) — = (@]
@) o+ 1) = 7(o) = o +0 ()
if
(4.2) 22T < h <z, e arbitrary constant.

His main observation was to use a complicated contour to estimate

h S _ .8 /
[ g,
s &(s)
the so called modified Hooley—Huxley contour. The contour depends on the

estimation of N (o, T), that is the number of roots of £(s) in the domain Re s >
>0, [Ims| <T.

By this he improved an older results of Huxley, namely that (4.1) holds
under the condition

(4.3) 2°/8 < h < z.

By using the method of Ramachandra I proved [19]:

Let
log 1 k—1
pur(x) = M, R, =loglogx + ¢,/loglogx
(k—1)!logx

¢, — 00 appropriately slowly.

Theorem 2. Under the condition (4.1) we have

(14) FH0 € [o o+ hllo(n) = K} = (1+ 0,(1)) i (2)
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uniformly as 1 < k < R,. Consequently

— log1
w(n) — loglogx -

Vl1oglog x u} 7<I>(u)‘ -0

1
(4.5) max  max ‘fﬁ{n € [z, z+h] |
weR pyunder (4.2) 1 h

as xr — OQ.

Repeating the procedure of Ramachandra one can obtain that

1 h h
(4.6) w(@ +hga) =z g,0) = oot O<log2 )

for every fixed ¢ > 3, and (a,q) = 1.
4.2. Let (2 <) A be a constant,

(log2)* < Y (= T()) < (log )+,

Let
(4.7) S(X,Y)={n< X | pn)>Y},
(4.8) N(X,Y)=45(X,Y).

By using the classical sieve method, we obtain that

(4.9) N(X,Y) = (1 +0n(1)) % o = e,
The following remark quite obvious:

(4.10) f{n e S(X,Y) | u(n) =0} < 122);
Let

(4.11) Sk(X,Y) = {ne S(X,Y) | wn) = k}.

One can prove that
(412)  Ne(X.Y) = $Su(X.Y) = (14 0, ()N (X, ¥)p(X,Y)

uniformly as 1 < k < R, (R, is defined earlier), where

(loglog z — loglog Y)k—1

(k—1)!logx

(4.13) Pr(X,Y) =
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Let

if pely,X
fp)=q logp i
0 if péglY,X].
Let f be additive. Let

(4.14) Zk: > fn).

n<x

neSy(X,Y)
We can prove that
eNE(X,Y)
4.1 _—
(4.15) Zk < log

uniformly as k < R,.
It is clear that (4.15) is true for kK = 1. Let k£ > 2. We have

1 X 1 X
Zk = Z logka_1 (p’Y) M Z IOgPN (Iﬂ,y) "

Y <p</z Y <p<Vz
1
+ Z — N1 (\/X, Y) .
logp
Vr<p<z
Since N v
max k11 Y) =0(1),
Vrz<u<z Nk(U,Y)
k€ER,
and

Y <y
v5ix plogp logY

therefore (4.15) is true.

4.3. Let ¢ > 3. Ay = {l1,--- ,£,(q)} be the set of reduced residue classes
(mod q).Let k(p) = a if p = £, (mod g). For some n, coprime to ¢, |p(n)| =1

let n=p1 - pr,p1 < - <pp. Write k(n) = &(p1)---&(py).

Let H4 be the set of words composed from {1,-- -, ¢(n)}. For some o € H,
let A(«) be the length of a.
Let
Sk(X,Y,a) ={n € Sp(X,Y, )| [u(n)] =1,k(n) = a}
and

Nk(X,KOt) = ﬁSk(X,KOt).
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Theorem 3. We have
()" Nk(X, Y, 0) = (1+02(1)) Ni(X,Y)
uniformly as a € Hq, M) =k, k < R,. In the other words

Ne(X.Yia) o .
su max —_— — as T Q.
Levtr,  aBen, |Nu(X,Y,p)
Aa)=A(B)=k

5
Proof. Let Ng =Y, F, = [Ng,Ng+1],Where Noyq ZNg-i-NS (6—0 A
and T is defined by Ny < 2 < Npy;. (Note: we shall use (4.1) instead of (4 4)
(¢ =

NN

Let us consider those n € Si(X,Y, «) for which in every interval F;
=0,...,T) no more than one prime divisors of n exists.

Let 57 < - < s, (£T), s={s1,...,8:) and M(s) be the set of those
n = p1...p for which p; € F;,(j = 1,... k), and M(s,a) be the set of those
n for which additionally x(n) = a holds.

Let M(s) = §M(s), M(s,a) = gtM(s, a). Let

k k
Ui:HNSw V§:Hst+1-
Jj=1 j=1

If there exists n € M(s) for which n < z, then U, < z, and if there some n > x
in M(s), then Vi > 2. Let s€ Aif Vs <z, and s € Bif Uy <z < V.
If n € U,ep M(s), then

k
H1+N 8 <x(14 Y38k <

< zexp (2(10glogx)(logx)_3/8‘4) <z+0 < ° >

log x
and
- x
"ijnl(leji/f)Zx <logx>
Consequently
(4.16) M(s) =0 (be) .
sE€B

Let now s be such a vector for which Uy < z. From (4.1) we obtain that

1) Aﬁig) N w(IQ)’“ ﬁ (1 o (10glej >) '
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The product of the right hand side is bounded since R, /log Ny = O(1). Hence

(4.18) ZM sla) < v

O o

follows.
Let

k
g ogNs

Then (4.17) can be rewrite as

(4.19) [o(a)* M(sla) = M(s)| < ev(s)M ().
Observe that ) )
f) =Y o = +0 ()

if n € M(s). From (4.14), (4.15) we obtain that

Y arlslo) - 30 w(s) = o X s = o HEL),

seA seA n<x

It remains to estimate the contribution of those n for which there are at
least two prime divisors in one of Fy (£ = 0---,T). We can use the same
method to prove that contribution of these n is small. We omit the proof. W

5. On interval filling sequences

Assume that (0 <)\, tends to zero monotonically. Let L, = A\p41+ Lpto+
+-++. Assume that Ly < oo. Let

S{An}) = {x—Zen o | en €10, 1}}

We say that {\,,} is an interval filling sequence if S({\,}) is an interval. Since
0,Lo € S({\.}), therefore it means that S({\,}) = [0, Lo]. According to a
theorem of S. Kakeya [19] a sequence A, | 0 is an interval filling sequence if
and only if A\, < L,y1 (n € Np).

We say that F' is an additive function with respect to the interval filling

sequence {\,}, if
(oo}
x) = Z enF (N
n=1
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for every x € [0, Lo], where z = >" " | €, A, is the regular expansion of z. The
regular expansion means that e; = 1 iff z > A\; and in general

N-1
ey =1 <— Zej)\j+>\N§I-
j=1

We wrote some papers with Z. Daréczy and A. Jarai on such additive func-
tions several years ago ([1], [3], [4]).

The next question seems to be hard.

Let K = {0 =Ko, K1,...,K;} CC. Let W, (j =1,2,...) be a sequence of
complex numbers such that |W;| # 0 (j € N), furthermore that Z]oil |W;| <
< 0.

Let

o0

SUWIE) = {z= Y Wjlen € K},

j=1

Open problem: Give necessary and sufficient condition for S({W;}|K) to be
a connected domain the O of which is an interior point.

Let {\,} be an interval filling sequence, z; = e(f) = U +iV, 0< 6§ < 1.
Let

K= {O, 1,21, 1 + 21}.
Then
SUW;HE) = {u+vzrlu,v € S0, 1))}

is a paralelogramma with endpoints (0,0), (0, Lo), LoU, LoV), (LoU + Lo, Ly V).
Let us choose z; = w = e(%),zz =w, K ={0,-1,1,w,—w,w,—w}. Then
S({AM}K) is a hexagon with the endpoints +Lg, £wLg, £@Lo.

This is very special case. More than ten years ago Prof. M. Laczkovich
proved my conjecture: Let ¢1 be a continuous curve connecting 0 and A, A # 0.
Let U5 be another curve connection 0 and B,B & (5. Then there exists an
interior point in {z1 + 22|21 € {1,292 € la}.

6. Mean values of g-multiplicative function over the set of primes

Let ¢ > 2,g € N, A, = {0,--- ,¢g — 1}. We say that g : Ny — C is a ¢-
multiplicative function if g(n) = Z?:o g(ejg?), if n = Z?:o 64 (&5 € Ag).
Let M, be the set of g-multiplicative functions, and ./\/11(11) be those for which
additionally |g(m)| < 1 holds.
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Assume that g € /\/lél), and

oo g—1
(6.1) > (glad) - 1)
§=0a=0
is convergent.
Let
(6.2) P(z):=Y g(p).
p<z
In [17] we proved that in this case
P
(6.3) M, = lim L&)
T—00 71'(1')
exists, furthermore
M, = H K;,
§=0
where
1 1
Ko=——= > gla) and K;=-% glag’) (j=1).
wla) o 1=

Consequently, if K; # 0 (j € Ng), then M, # 0.

Conjecture 5. Let g € Mgl). Assume that (6.3) exists, and My # 0. Then
K; #0 (j€Np) and (6.1) holds true.

Let g € /\/l((ll),

(6.4) S(ala) = > g(0)e(al).

We would like to know under which condition holds
P(z)
m(x)

(6.5) -0 (z— c0).

Conjecture 6. (6.5) holds if and only if
S(z|r)

r

(6.6) -0 as x—

for every r € R.

In [17] we proved that (6.5) implies (6.6).
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Let Y (x) be monotonically increasing, Y (x) — oo, % —0 as z—
— 00,
Ny ={n<z|phn)>Y,}, N(x)=41N,.
Let

! if p>2,p¢
1 p 7p q
L(p) == p—2

0 otherwise.

Let L be strongly multiplicative.
Let g € Mc(ll),

(6.7) Ulw)= ) g(n).

In [19] we proved the following theorem.

Theorem 4. Under the above conditions, we have

2 d—1
<2 Lﬁld)z;) V5 (aM19)] "+ %+ 0u(),
d<oo a=

where M is an integer satisfying

(6.8) ‘ U((z)

N(z)

Al

¢ ot < ¢M < gz,

where ¢y is a positive constant, which may depend only on q, 0,(1) depends on
Y., D > 1 is an arbitrary integer.

If (6.6) holds, then Ulz) —0 as x — oo.

N(z)
7. On a functional equation with polynomials
In our paper written together with Z. Doréezy [4] we investigated the equa-
tion

(7.1) Q(S(x)) = cQ(2)Q(z + 1),

where S, Q are polynomials in C[z], degS = 2.

Let A :={p1, -+, Bn} be the roots of Q. @ is a solution of (7.1) with some
S(z) = Az® + E, where AE # 0, if

(7.2) A={1=p1,- 1= Bp} ={S(B1), - ., S(Bn)}-
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We could determine the solutions of (7.2) if @ is a polynomial with real coeffi-
cients, or if @) has a real root.

Open question. Let S(z) = Ax?> + E,AE # 0, and let A= {B1,-,Bn} be
a set of n complex numbers, satisfying the conditions

A= {17515"' alfﬁn} = {S(ﬂl)a 7S(ﬂn)}-
How can we characterize the set A?

Kovdes A. [25] proved an interesting partial result concerning this question.

Naturally, the solution of the equation

k

Q(S(@) =c][Q@+A;), degS=k

Jj=1

seems to be much harder.
8. On some uniformly summable functions on the set of primes

In our paper [12] we investigated the sum
> b
(p+1)g(p+1)<=

where g is a positive multiplicative function with light condition on primes.

We mentioned that we are unable to give the asymptotic of

Z 1 or Z 1.

(p+1)7(p+1)<z (p+1)2« (D <y
The problem is almost the same as to give the asymptotic of
Hp<z|wlp+1) =k}

log Y ()
log x

S(X,)Y)={n<z|pn)>Y} and N(X,Y)=4S(X,Y).

Let <Y(z) < =, —0 as Y(z)— oo. Let

As we known,

-
as X — oo.

NEY) = (Lt 0n(1) 15



148 I. Katai

Highly probable by using the Selberg method we can determine the asymptotic

of
Hn < 2,p(n) > Viw(n +1) = k)

NX.Y)
uniformly as 1 < k < R,, and hence we can give the asymptotic of

> 1.

(n+1)2“’("’+1) <z
neS(X,Y)

Let «, 8 be positive real numbers such that % ¢ Q. In joint papers written
with B. M. Phong ([20]-[24]) we formulated the following conjecture:

Conjecture 7. If f € M, f(n) €U, and there exists some C for which either

(a) F([Bn)) = C(fom] =0 as n— oo
o 10; s D =Chlond

then f(n) = n'.

We could prove this conjecture in the special case, when a = 1, 3 = /2.
Try to prove it for o = 1, 8 = v/3.
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