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Abstract. Here we study the multivariate quantitative approximation of
Banach space valued continuous multivariate functions on a box or RY,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We investigate also
the case of approximation by iterated multilayer neural network operators
of the last four types. These approximations are achieved by establish-
ing multidimensional Jackson type inequalities involving the multivariate
modulus of continuity of the engaged function or its partial derivatives.
Our multivariate operators are defined by using a multidimensional density
function induced by a g-deformed and A-parametrized hyperbolic tangent
function, which is a sigmoid function. The approximations are pointwise
and uniform. The related feed-forward neural network are with one or
multi hidden layers.

1. Introduction

The author in [2] and [3], see Chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifically
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defined neural network operators of Cardaliaguet-Euvrard and ”Squashing”
types, by employing the modulus of continuity of the engaged function or its
high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these
operators ”bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class
of smooth functions, see chapters 4-5 there.

Motivations for this work are the article [14] of Z. Chen and F. Cao, also
by [4]-[12], [15], [16].

Here we perform a ¢-deformed and M-parametrized, g, A\ > 0, hyperbolic
tangent sigmoid function based neural network approximations to continuous
functions over boxes or over the whole R, N € N and also iterated, multi layer
approximations. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its partial derivatives
and given by very tight multidimensional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RY, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our re-
sults we establish important properties of the basic multivariate density func-
tion induced by the g-deformed and A-parametrized hyperbolic tangent sigmoid
function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x):chU(<aj~w>+bj), rzeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is a kind of hyperbolic tangent sigmoid function.
About neural networks read [17]-[19].

2. About g-deformed and A-parametrized hyperbolic tangent func-
tion gq,x

We will study in detail g4 5, see (1), and prove that it is a sigmoid function
and we will give several of its properties related to the approximation by neural
network operators.
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So, let us consider the function

Az — Az
e —qe
(1) 9g,\ (Z‘) = W, A,q > 0’ x € R.
We have that
(0) = ﬂ
gq,)\ 1 n q.
‘We notice also that
(2)
( ) e~ AT _ qe)\x %67)\:13 e (6)\13 . %67)\1,
—1) = _ _
Gq,x e~ e | qua: %67)‘9” + M By %67)“7”
That is
(3) gor (—2) = —g1 5\ (z), Yz ER,
and
g1y () = —=ggx(—2),
hence
(4) 9%7/\ (1‘) :g(I]’/\ (_.'17)
It is , .
62)\32 —q — =
xT) = = € N 1’
gq)\( ) e2X\r 4 ¢ 1+ 62% (@—t00)
i.e.
(5) gg (+00) =1,
Furthermore o
e —q —q
= - —=-1,
907 (%) = 2z ¢ (2o o0) q
i.e.
(6) g (—o0) = —L.
We find that
4q)\€2>‘x
(7) Gor (2) = ———5 >0,
(27 +q)

therefore gq,» is striclty increasing.
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Next we obtain (z € R)

2z
qg—e
8 g\ (z) =8gN\%e? | —— | e C(R).

(8) @) gt O

We observe that

Ingq

2/\”’>0<:)q>e2)‘“”<:)1nq X e s S o

q—
So, in case of x < lg‘—f, we have that g4 is strictly concave up, with
" Ing
Ja.x ( 2 ) =0.
And in case of x > 1;‘—/\‘1, we have that gg ) is strictly concave down.
1—
) =

Clearly, gq, is a shifted sigmoid function with gg » (0) = 1+q’ and gg.x (—

9q-1.x (), (a semi-odd function), see also [13].
By 1> —-1,2+ 1>z — 1, we consider the activation function

9) My (@) = § (0 (2 +1) ~ gy (1)) >0,

Vo € R; ¢, > 0. Notice that M, 5 (£o00) = 0, so the z-axis is horizontal

asymptote.
We have that

L o (2 +1) = gg (~z — 1)) =

(10) My (~2) =
= 1 0 (~ @ = 1) = gor (- (4 1) =
= (orae—D o @+D) =
%(gl (achl)fg;’,\(x—l)) =M, (x), VzeR.
Thus
(11) My (—2) = M1, (1), V2 €R; ¢, >0,

a deformed symmetry.
Next, we have that

(gor(@+1) =g, \(z—1)), VzeR.

NH

(12) M\ (z) =
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Let 2 < 2% — 1, thenz — 1 < 2+ 1 < 24 and gor(@+1) > g,y (x-1)
(by gg.x bemg strictly concave up for z < 1nq) that is M; , (¥) > 0. Hence

My » is striclty increasing over (—oo, 1;1—;1 - ) .

Let now z—1 > 1;1}?’ thenz+1>2z—1> 1;1)?7 and g, (v +1) < g, 5 (v — 1),
that is M/ , (x) <O0.

Therefore M, » is strictly decreasing over (1;’—)? + 1, —i—oo) .

Let us next consider, ;‘—/\ —1<z< lnq + 1. We have that

(13 i3 @) = (g (& +1) = g (2~ 1)) =

=2g)\? | =D ﬂ _ A1) ﬂ '
(e2M=+1) +q)3 (e2M@=1) +q)3
BylM_l <z & 1;1;1 <zrt+loehg< 2 (z+]) & q< D0t o
= q— 2>\(JE+1) S 0
B}’l'gh;f)?-f—l@x 1<1;)?<:>2)\($—1)§1I1q<:>62>‘(£_1)§q<:>
=N q _ e2>\ﬂ(a:—1) Z 0

Clearly by (13) we get that M, (x) <0, for z € {1;—)? -1, IS/\q + 1}

More precisely M,  is concave down over [lg—f -1, 1;1 o+ 1] and strictly

concave down over (h‘—q -1, l;’ e+ 1)

Consequently M, » has a bell-type shape over R.

Of course it holds Mé’A (1;—;1) < 0.

_ Ing
At x = 51, we have

(14) Mg (x) =

q;

(Goa(+1) —ghy(x—1)) =

NH

\ (z+1) 22 (z—1)
=q (62)\(z+1) +q)2 - (62,\(171) Jrq)z .

Thus

1
(15) 4 (;f) =X (62,\6(1;‘"+1) + q)2 (e”\(lgfq*l) + q>2
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_ q)\ qe2)\ B qe—2/\ B
= 5 5| =
(ge** +q)° (g +4q)

62/\ 672)\
=\ - =
(P +17 (1)

2X (,—2X 2 _ox(.2x 2
)\(e (e —|—1) e (e +1)>O.

(# + 1) (e + 1)

That is, 1;‘;1 is the only critical number of M,  over R. Hence at z = 1;/\‘1, Mg

achieves its global maximum, which is

g\ 1 (g \_ (g ]
i (5) s (549) - (50

-1|(555) - (555)]-
2(er —e *)] 1 (ek_e—k) _ tanh (A)

er + e~ 2\ e +eA 2

1
1 2

Conclusion: The maximum value of M,y is

Ing tanh ()
(18) My » ( o ) 5 A>0.

We give

Theorem 2.1. We have that

(19) > Mya(w—i)=1, VxR,V \q>0.
Proof. We notice that

oo

> (ggr(@—i) —ggn (@ —1—14)) =

1=—00
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-1

Z g (@ —ggr (@ —1—14)) + Z (Ggn (. = 1) = ggn (x =1 —14)).
i=0

i=—00

Furthermore (p € ZT)

(20) quA (x—1) —ggr(x—1—19)) =
=0

= plggo ; (ggr (x — 1) —ggr (x —1—14)) (telescoping sum)

= lim (ggn (2) —gga (@ — (p+1))) =1+ ggnq (7).

p—ro0
Similarly,

-1

Z (ggr (x—1) —ggr(x—1—1)) =

i=—00
-1
= pli{{}lo Z (g (x—1) —ggr (x —1—1)) =
i=—p

(21) = pli_>r§o (ggr (@ +p) —ggr () =1 =gy (2).

By adding the last two limits we derive

o

(22) > (Gea(z—i) —ggnr(@—1-1i) =2, VaeR.
1=—00
Consequently we get

o0

S (gar(@+1-1) —gea(@—i) =2, VzeR.

i=—00

Therefore it holds

oo
(23) Y Gar(@+1—i)—ggr(z—1-i) =4, Vo eR,
proving the claim. |
Thus
oo
(24) ZMq,A(nx—i):LVnEN,VxE]R.

1=—00
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Similarly, it holds

(25) ZMl (x—i)=1,YzeR.

1=—00

But M1, (x — 1) () Mya(i—z), Yz eR.
L

Hence
(26) > Mya(i—z)=1,VzeR,
and
(27) ZM7 y=1,VzeR.
i=—00
It follows

Theorem 2.2. It holds

(28) /M7 ydz =1, Aq>0.

Proof. We observe that

J+1 o 1
(29) /Mq,\ yar= 3 [ Mar@dz= Y [ My (o) da
]——oo- j=—00]
1 1
/ (x +j)dx :/1dx:1. ]
0 \J=— 0

So that M,  is a density function on R; A, ¢ > 0.
We need the following result

Theorem 2.3. Let0 < a <1, andn € N withn'=® > 2; ¢,A > 0. Then

oo

(30) > M, » (nx — k) <
k= —o00
s na — k| > ntme
{ 1} ax —2xp(1=) —2xp(1=)
< max- q, 6 e*e =Te ,

where T := max {q, é} e
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Proof. Let z > 1. That is 0 < z — 1 < = + 1. Applying the mean value
theorem we obtain

1 1 4gre &
Mgy (x) == ggr(z+1)—ggr(z—-1)]=--2- ——,
that is
2qNe2M¢
(31) Mg (2) = ——,
(€2 +¢q)

forsome 0 <z—-1<&<xz+1; A\ qg>0.
But €2 < e2X + ¢, and

(32)
2g) (e?*¢ + ¢q) 2g\ 29\ 2g\
M, < = < < , > 1.
g (2) (e2X 1 q)z (e2Xé 4 q) (62/\(3;—1) + q) e2A(z—1) r=
That is 2
q

Mg (2) < 1) Vae>1,
or, better
(33) My (x) < 2 e e Y gz > 1.
Thus, we observe that
(34) > My (Inw — k) <

k= —o0
tnx — k| > ntme
00 oo
< 207 Z =Nkl £ 932 / o2 g
k= —00 nl—a_1
s na — k| > ntme
= g / e 22 d (2\x) ¥=222)
nl—a_1
(y=2\z)
y=2xe 2\ / e ydy_qu)\{_e y’f:ifafl}:
nl-o—1
— ge {62,\1‘"10‘—1} = ge {6—2/\(n1*0‘—1) _ 672)\00} _

_ (1-a)
2)\6 2An _

_ (1—a)
64)\6 2An .
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Therefore it holds

oo

(35) 3 My (Inz — k|) < gePe=2m" "™y X g> 0.
k=—o0
{ s na — k| > ntme

If (nz — k) > 0, then

o0

(36) 3 M, x (na — k) < ge*re 220"
k= —o0
nx — k| > ntme

Similarly, it is valid (by (35))

(oo}

1 1-a
(37) 3 M. , (jnz — k|) < 66‘%*”"‘ ¥ M\ g>0.
k= —o0
nx — k| > ntme

Assume now that nx — k < 0, then

3 My (nz — k) ‘2 3 My (— (n — k)
k=—o0 k= —o0
Dnx — k| >ntme s nx — k| > ntme
L oax —2ant-=
(38) <56 e , VA q>0.
Therefore, it holds (by (36), (38))
(39)
o0 1 701
Z Mg » (nz — k) < max {q, q} eiA =2 ), vV A q>0.
k= —o0
s nx — k| > ntme
The claim is proved. |

Let [-] the ceiling of the number, and |-] the integral part of the number.

Theorem 2.4. Let x € [a,b] C R and n € N so that [na] < |nb]. For ¢ >0,
A > 0, we consider the number Ay > zo > 0 with My (20) = My (0) and
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Ag > 1. Then
1 1 1
(40) ] < max ANEWE =:A(q).
S M, (nz — k) o Oal gy (0)
k=[na]

Proof. By Theorem 2.1 we have
i Mix(z—i)=1,VzeR, VAg>0,
and by (26), we have that
(41) iMq’,\(i—x)zl,VmER,V)\,q>0.
i=—o0

Therefore we get

(42) > Mya(lz—i)=1,VzeR, VAqg>0.
Hence
o) [nb]
43) 1= > Mga(nz—k)> > My (lnz—k|) > My (Inz — ko|)
k=—o00 k=[na]

V ko € [[na], [nb]] N Z.
We can choose kg € [[na], |nb]] NZ, such that |nx — ko| < 1.

Notice that |nz — ko| could be § lg—f. If 0 < |nz — ko| < l;—)?, by down con-
cavity of M, » over R, we can choose z € [l;—f, +00) such that M, » (|nz — ko|) =
= My (2). If [nz — ko| > 1;’—;1 we just set z := |nx — kg|. Next, we can choose
large enough A, > 1, and such that A\; > z9 > 0 where Mg ) (20) = Mg (0).
Clearly, it is z < zp < Aq.

Since M, » is decreaasing over [g‘—f,—&—oo) we get that M, x (|nz — kol) >
> Mg (Aq) -

Consequently,

Lnb]

ST My (Inz = k|) > My (Ag)
k=[na]
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and
1 1
(44) ) < Mo (0y)
> Mg (Inz — k)
k=[na]
VA q>0.
If no — k > 0, by (44), we get
1 1
(45) o] <3 NeSL YV A q>0.
ST Mya(ma—k)
k=[na]
We have also that
1 1
< ) ,q > 0.
46 VA 0
Lot M, (A)
>, M, (Inz — k) M\
k=[na] K
Let now nx — k < 0, then
1 (11) 1 (46) 1
4 =
4 T m S ()
; ]Mq,)\(nx—k) z[: 1M%)\(—(nm—k)) A\
k=[na k=[na
Vv 8,q > 0.
Consequently, it holds
1 1 1
(48) < max ) ,
nb
S () Max A) a (1)
k=[na]
v A q>0.
The claim is proved. |
We make
Remark 2.1. (i) We also notice for ¢ > 1 that
[nb] [nal—1 00
1= > Mya(nb—k)= Y Mya(mb—k)+ > Mys(nb—k)>
k=[na] k=—o00 k=|nb]+1

(49) > Mg x(nb— |[nb] —1) =



g-Deformed and A-parametrized hyperbolic tangent function 109

(call e :=nb— |nb], 0 <e < 1)

=Myx(e—1)= Mgy (—(1-¢) = M%,A (1-¢)>

0<$<1and0<1-e<1)

(M3 , is decreasing on [0, +00)).

2 Ml’)\ (1) > 0
Therefore
Lnb)
(50) lim (1~ > Mga(nb—k)| >0, ¢=1,A>0.
k=[na]

(ii) Let now 0 < ¢ < 1, then we work as in (i), and we have

[nb]
(51) = Y Myx(nb—k)> M\ (1-¢)
k=[na]
(e:=nb—|nb|,0<e<1).
— _— - I]l
Thatis%21,andchoose)\:0<1—5§1<)\,where)\>12—/\“:—1;’—)?.

First assume that 1 —¢ € [—%\q, +00). Hence

(52) My (1—e)> M, (A) >0,

by M1  being decreasing on [—ﬁ, +00).

Ifo<l—e< fg—/\q, then we use the concavity-bell shape of M, ».

So, there exists z. € ( ;f,—i—oo) such that My y (1—¢)= M3 (2:). We
also consider zy € (—IQ—A,—l—oo) such that M1 )\ (20) = M1  (0). Clearly it

holds —ln—q < z. < zg and we choose \ : zg < )\ Therefore, 1t holds
My \(1—¢)> M, (0) > M (X) >0,

by M1 , being decreasing on [_1;17):;7 +00).
L,

Again it holds
[nb]

(53) lim (1— > Mya(nb—k)| >0, 0<g<1,A>0.

n—00
k=[na]
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(iii) Similarly, (¢ > 0)

[nd] [na]l—1 50
1-— Z My x(na—k) = Z My (na—k)+ Z My (na—k) >
k=[na] k=—o00 k=|nb|+1

> My x(na—[nal +1) =

(54) (call n:=[na] —na, 0<n<1)

= Mg\ (1 - T]) , ete.

Acting as in (i), (ii) we derive that

Lnd]
(55) im 1 > Mya(na—k) | >0
k=[na]
Conclusion: (i) We have that
Lnb]
(56) ngrfoo Z Mg (nz—k)#1, for at least some z € [a,b],
k=[na]
where A\, q > 0.

(ii) Let [a,b] C R. For large n we always have [na] < [nb|. Also a < % <,
iff [na] <k < [nb]. In general it holds

Lnb)
(57) > Mga(nz—k) <1
k=[na]

We make

Remark 2.2. We introduce
N

(58)  Zga (1, 2n) 1= Zg (@) = [ [ Mg (1), = (1, ...,zn5) € RY,
i=1

Aqg>0, NeN.

It has the properties:
(i) Zya(z) >0, V2 eRN,
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(i)
(59)

S Zoalw—k)= > > o Y Zga(wmi— ki, ay —ky) =1,

k=—o00 ki=—oco kg=—00 kn=—00

where k := (k1,...,k,) € ZN,V x € RV hence

(i)
(60) i Zgx(nx—k)=1,
k=—oc0
VzeRY; neN, and
(iv)
(61) / T (@) da = 1,
B

that is Z, is a multivariate density function.

Here denote ||z := max {|z1], ..., |zn]|}, z € RV, also set 0o := (o0, ...

—00 := (—00,...,—00) upon the multivariate context, and
[na] := ([na1],..., [nan]),

[nb] := (|nb1], ..., [nbN]),

(62)

where a := (ay,...,an), b:= (by,...,bn) .

We obviously see that

|nb] [nb] N
(63) > Zgp(nz—k)= > <H M, 5 (na; — m) -

k=[na] k=[na] \i=1

[nb1) [nbw ] N N [nb;]
= Z Z <H Mq7,\ (’I’in — k‘z)> = H Z Mq,)\ (nxl — ]4}1)
=1

k1:]'na1] kN:[naN] i=1 kIZ(nal]

For 0 < f* <1land n €N, a fixed z € RV, we have that

[nb]

(64) > Zya(nw—k) =

k=[na]
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[nbd] [nd]
= Z Zga(nx — k) + Z Zgx(nz—k).
k = [na) k = [na]
{ 15—l < = { 15 ==l > 75

In the last two sums the counting is over disjoint vector sets of k’s, because the

condition ||% — :c||oo > n% implies that there exists at least one |%’“ — xr| >

> —=, where r € {1,...,N}.
v) By Theorem 2.3 and as in [10], pp. 379-380, we derive that
(v) By
[nb]
P
(65) 3 Zg (nz — k) < Te-2n0™") g < g < 1,

et

withn e N:n!=F" >2 z ¢ Hf\[:l (@i, by] .
(vi) By Theorem 2.4 we get that
1

(66) 0< <A@,

nb
I\;:Hna] Zflv)\ (nx - k)

Ve (Hz 1[al,b]>, neN.

It is also clear that
(vii)

(67) 3 Zy (nz — k) < Te=2n "),

0<B*<1l,neN:n"f" >2 zecRN.
Furthermore it holds

Lnb)
(68) lim k_z[: | Zyx (nx — k) #1,

for at least some z € (Hf\il (@i, bl]> .
Here (X, ||||7) is a Banach space.

Let f € C (Hfil [ai, b;] ,X) , ¢ = (21,..,ZN) € Hfil [ai,b;], n € N such
that [na;] < |nb;|,i=1,...,N.
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We introduce and define the following multivariate linear normalized neural
network operator (x := (z1,...,xN) € (sz\; [ai,bi]>):

ZlEanna] (k) Zq A (TLLE - k)
69 An 5 g oeey = A’ﬂ y . =
60) o) = ()= S

[nb1] [nbs] [nbn] k
. Zlm:l[na]] Ekzi(naz] EkN N[naw] ( RS TN) (Hz 1 Mq A (TLJUI — ki ))
B nb; ’
Hz 1 ( IE —Hna 1 (nwi - kl))

For large enough n € N we always obtain [na;] < [nb;], i = 1,...,N. Also
a; < ﬂ < b, iff [na;] < k; < |nb;],i=1,...,N.

When g € C (Hz 1 lag, bl]) we define the companion operator

T leéanna‘\ 9 ( ) Zq»)‘ (TL.T - k)
70 A, (g,z) = .
(70) (9.) S o (n B)

Clearly Zn is a positive linear operator. We have that
N N
A, (1,:[7) =1, Vze (H [az,bz]> .
i=1

Notice that A, (f) € C (Hl 1 lai, byl ,X) and A, (g) € C (HZ 1 [az,bz]) .

Furthermore it holds

chanmﬂ 1f G, Zax (nz — k) _i <||f|| x)
n 'y’ b

(7)) AL (f2)l, < n
ZIE ana] (TLZ' - k)

VZEGH?]J%, bi] .
Clearly | fIl, € € (T, [as. )

So, we have that
(72) l4a (£ ), < A (161 1)

Vxenfil[ai,bl]VneNerC( lai, b, )

LetcEXandgéC(HZ 1 lai, b ]) then cg€C<HZ 1[al,bl],X).
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Furthermore it holds

(73) A, (cg,z) = cAy (g,2), V:I?GH ai,b

Since A, (1) = 1, we get that
(74) A,(¢)=¢, VeceX.

We call A, the companion operator of A,.

For convenience we call

[nb]
(75) A (fox) =) f() s (nz—k) =
k=[na]

o> Y f<l;1k;:) (f[qu,A(n:ciki))

ki=[nai] ka=[naz] kn=[nan|

Ve (HjV:1 [ai,bi]> .
That is

A (f,2)
(76) An f7 Z‘) = ?
( St o Zax (na — k)

Ve (Hi\il [ai,bi]), n € N.
Hence
A, (f.2) = £ (@) (SN Zoa (nz = B))

7 An(f,z)— f(x) =
(77) (f ) ) S o (= B)

Consequently we derive

(78)
(66) N |nb]
1A, (f,2) = f @), < (A@)" | A5 (foe) = f(2) D Zgor (nz—k)|| |
k=[na]

Vae (vazl [ai,bi]).

We will estimate the right hand side of (78).

For the last and others we need
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Definition 2.1. ([11], p. 274) Let M be a convex and compact subset of
(RN, ||-||p>7 p € [1,00], and (X, ””’v) be a Banach space. Let f € C'(M,X).
We define the first modulus of continuity of f as

(79)  wi(f,0):= sup 1f (@)= f W, 0<6<diam(M).
x,y e M:
e —yll, <6

If 6 > diam (M), then

Notice wq (f,d) is increasing in § > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,0) is defined similarly.

Lemma 2.1. ([11], p. 274) We have w1 (f,8) = 0 as § L 0, iff f € C (M, X),

where M is a convex compact subset of (RN, ||'||p), p€[l,00].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff wy (f,0) — 0 as ¢ | 0, where w; is defined similarly to (79). The space
Cg (RN , X ) denotes the continuous and bounded functions on RV,

N

Let now f € C™ (H [a;, bi]), m, N € N. Here f, denotes a partial deriva-
i=1

N
tive of f, o := (a1, ...,an), a; €Z,,i=1,..,N, and |a| := > a; =, where
i=1

[=0,1,...,m. We write also f, := gz,’: and we say it is of order .
We denote

(81) Wit (fash) == ﬁn‘a} w1 (fa,h) .
Call also
(52) ISl o= max ]}

where |||, is the supremum norm.
When f € Cp (]RN,X) we define,

(83) B, (f,x) := B, (f,21,....,zn) := Z f (i) Zyx (nx — k) ==

k=—o00

oo [ee] o0 N
=3y ey (B (T ).

ki=—oco kg=—00 kn=—00
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n €N,V z RN, N €N, the multivariate quasi-interpolation neural network
operator.

Alsofor f € Cp (RN , X ) we define the multivariate Kantorovich type neural
network operator

Cn (fa‘r> = Cn (fa‘rla axN) = Z nN / f(t) dt Zq,A (’Il{E - k) =
k=—o0 &

/ / F(t1y oo ty) dby.dty
L) En

N
(84) : (H Mg (nx; — kz)) )

neN, VzeRV.
Again for f € Cp (RY,X), N € N, we define the multivariate neural
network operator of quadrature type D, (f,x), n € N, as follows.

Let 6 = (64, ... GN) IS NN r=(ri,...,rn) € ZY, w, = Wy, r,, .ry >0, such

0 0, 0>
that Y w,= > > .. Z Wy gy = 15 k € ZN and

r=0 r1=0172=0 rn=0

’ k r
(85) Onk (f) = On ks ko, (f) = ) wrf < + ) -
k - ; —+—

n  nly’ 7 n nly

(/ﬁ 1 k’z T2 kn TN )

= Z Z Z Wrrayorn f

7‘1_OT2 0 ’I‘N_O
where 4 := (%, ;—z,..., %) )
We set
(86) Dy (f,2) = Dy (fi1, . 2n) = > O (f) Zgr (nx — k) =

k=—o0

Z Z Z 5n,k1,k2, (H nxl— 7,))7

kl:—oo kQ:—OO kN:—OO

vV z e RV,
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In this article we study the approximation properties of A,,, B,,, Cy,, D,, neu-
ral network operators and as well of their iterates, that is acting with multilayer
neural networks. Thus the quantitative pointwise and uniform convergence of
these operators to the unit operator I.

3. Multivariate general Neural Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.

We give

Theorem 3.1. Let f € C (HZ 1 lai, by ,X) ,0<pB* <1, z€ (sz\; [ai,bi]) ,
N,n €N withn'=?" > 2. Then

)
1Au (f12) — £ (@), <

61 @@ o (5o )+ i | = v,

and
2)
(33) 140 () =171, <A
We notice that ILm A, (f) Il f, pointwise and uniformly.

Above wy is with respect to p = oo

Proof. We observe that

[nb]
(89) A(z) = A}, (f,x) 2) Y Zgx(naw—k) =

k=[na]

[nb] i Lnb]
= Z f(n)Zq’ nx —k Z f@)Zyx(nx—k)=

k=[na]
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Thus
) L
(90) |\A(:c)||7 < Z ‘f (n) — f(@)|| Zyx(nz—k) =
k=[na] v
[nb] By
- |r(E) -0 anwe-n+
k= [na K
{ 15 ==l < o
Lnt] (60)
D S 6 R O R
k = [na v
{ 15 ==l > o5
(60) Lnb] (65)
< w <f’nlﬁ*>+2H||f||7 . Z Zgx(nz—k) <
k= [na]

1% =2l > 7=

@ 1 —22n(=7")
<o (o ) e -

So that
_ 1 _ (1-8%)
o) [B@I, < (£ ) ere 7 i
Now using (78) we finish the proof. [ |

When X =R, next we discuss the high order of approximation.

N
Theorem 3.2. Let f € C™ (H [ai,bi]>, 0<pB*<1,n,mNeN,n=# >3,
i=1

N
A>0,¢g>0,z€ <H [ai,bi]). Then

=1
i)

02) |, (o) - r@ -3 | 3 | L An(ﬂp_xz-)aax) <
=1 \lal=i \ T ! i=1

b — a2 || a2, N 2T62M<1—ﬁ*)}

m!

< (A(g)" {eri‘f,f(fm 1)y
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(93) A (fi) = £ @)] < (A @)™

+

m N
[y [ e [ L +<H(bi_%)m>T€_mom
j | =3 i i=1

N™ 1 b—a max .
_|_ . wina,x fa, . + || || ||fOtH 2T6_2>\n(1 B ) .
mlpmB* T hm nf m!

(94) |4 -1 _ < @@

ol Dol E [ (R

i=t \lal=i | JJa! i=1
=1

N™ 16— allZ | fallem N™ _oan(1-5%)
+W m (me *> ( ml 2Te :

N
iv) Assume fo (zg) =0, for all a:|a|=1,...,m; zg € (H [ai,bi]>. Then

i=1

+

(95) A (f.20) = f (o) <

N'ﬂL ||b_ a]”"n ||fa||1’l’la,x .
S (A (q))N {wmax (fom n/ﬁ*) + 2Te—2kn(1 8*) 7

mlnmB”* m!
notice in the last the extremely high rate of convergence at n=F (m+1),

Proof. As similar to [10], pp. 389-391, is omitted. |

We continue with

Theorem 3.3. Let f € C’B(RN,X), 0<p*<1l,zeRN, ¢g>0 x>0,
N,n e N withn'=#" > 2, wy is for p=oco. Then

D
9) 18, (f.2) = £ @, <o (£, ) +2eig1 | = o,
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2)
97) 182 (= 11| < 2= ().

Given that f € (CU (RN,X) NCg (RN,X)), we obtain lim By, (f) = f, uni-
n—oo
formly.

Proof. We have that

(98)
5ot~ £0) D Y 1 (E) Zutne -0 5 @) 3 Zua (a1 =

k=—o00 k=—o00

= k
= Z (f <n) — f(x)) Zgx (nx —k)

k=—o0
Hence
@) 1B - 1@< 3 [ (5) -1 @) Zate -

k=—c Y
= k
_ 3 11 (2)- 1@ zirto-n+
k= —00 v
1% -2l < o
2 r(5)-re) znee-n'S
— _ Y
{ 1% =2l . > =
(60) e (67)
Salrg)eim), X Zuee-n's
k=—00
1% =2l > =

(67) 1 o (-5%)
<o (o) e s

proving the claim. [ ]

We give
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Theorem 3.4. Let [ € C’]g(IR]\[7X)7 0<p*<1l,zeRYN, ¢g>0 \>0,
N,n €N withn'=?" > 2, wy is for p=oco. Then

1)
(100)

16 (e = £ @I, < (1.5 + = ) 420 ip1 | =),
2
(101) liCa (=11, < 2a ).

Given that f € (CU (RN,X) NCg (RN,X)) , we obtain ILm Cn(f)=f, uni-
formly.

Proof. We notice that

t t: tl,tQ,...,tN tl t2 tN =
102 f@t)d ! i ;
k ki k2 kN
(] i k k i k
n n n n
0 0 0 J

Thus it holds (by (84))

(103) Cn(f,x)= i nNif<t+:) dt | Zyx(nzx —k).

k=—o00

We observe that
1Cn (f,2) = f(2)]l, =

- anf<t+§)dt Zorlnz— k)= 3 J @) Zgn (nz—B)|| =
0

k=—o00
Y

f(t+z>dt —f (@) | Zyr (nz— k)| =

Y

Il
(]
3
2
O~
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dt | Zg(nx —k) =

R CHIVE

dt | Zyx (nx —k)+

dt | Zga (nx —k) <

+ i an“f(t+s>—f(x)
, v

k= —o0
I — 2l > 7

< Z nN/w1 (f,|t| H—x )dt Zgx(nx —k)+
{ k = —0 0 e
15 ==l < 75
2171, | Z Zoa (nz = k) | <
I% \ > e
1 1 —2xn(1-87)
(105) <wi (f)n—i_nﬁ*) +2Te H||f||7Hoo’
proving the claim. |

We also present
Theorem 3.5. Let f € Cp (IRN,X), 0<pB* <1, zeRY ¢g>0 \>0,
N,n e N withn'=#" > 2, w, is for p=co. Then

1)
(106)

D () = £ @l < (£ ) 27 | = v,
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2)
(107) 1D ()= £ || < 2.
Given that f € (CU (RN,X) NCg (RN,X)) , we obtain lim D, (f) = f,
n—oo
uniformly.
Proof. Similar to the proof of Theorem 3.4, as such is omitted. ]

Definition 3.1. Let f € C (RY,X), N €N, ¢ > 0, A > 0, where (X, ||.H7)

is a Banach space. We define the general neural network operator

(108) Fo(fix) =Y lun(f) Zgx (nz — k) =

k=—oc0
kE+1
Dn (f7 l‘) 5 if lnk (f) = 5nk
Clearly I (f) is an X-valued bounded linear functional such that ||,k ()], <
< |lisi, -
Hence F, (f) is a bounded linear operator with H||Fn (f)””fH < H||fH7H .
(o) o0
We need

Theorem 3.6. Let f € Cp (RN,X), N > 1, \;qg > 0. Then F,(f) €
€ Cp (RV,X).

—nN

Proof. Clearly F,, (f) is a bounded function.

Next we prove the continuity of F, (f). Notice for N = 1, Z, x = M, x
by (9).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, My, M3, ..., can be found such that in some interval

(@) [lun ()], < Mp, n=1,2,3,...
(b) > M, converges,

then " w, (x) is uniformly and absolutely convergent in the interval.
Also we will use:

If {u, ()}, n=1,2,3,... are continuous in [a,b] and if > u, (x) converges
uniformly to the sum S (z) in [a,b], then S (x) is continuous in [a,b]. Le. a



124 G. A. Anastassiou

uniformly convergent series of continuous functions is a continuous function.

First we prove claim for N = 1.

We will prove that > "2~ Ik (f) My (nz — k) is continuous in z € R.

nl
There always exists A € N such that nx € [-A, A]. Call \* := A+ F?;-‘,

Ini
)\* = 7)\+ \‘T;J .

nl
Since nx < A, then —nx > —Aand k—nx >k —\> [12—)\"—‘, when k& > \*.

Therefore
Z Myx(nz—k)= Z Mg\ (k—nx) <
k=X\* k=X*
<Y Mpeap(k=N= > Mo ()<L
k=X\" k/_rnﬂ
==

So for k > \* we get

(109) ok (Il Mo (n = k) < [ | Mg-10 6 = ),

and

(110) 0] 32 My =) < sl
k=\*

Hence by the generalized Weierstrass M test we obtain that

Z lnk (f) Mgx (nz — k)
k=M\*

A

is uniformly and absolutely convergent on [—%, E] .

Since Uy (f) Mg A (ne — k) is continuous in z, then

D bk (f) My (na — k)
k=X~
is continuous on [—%, %] .

Because nx > —A, then —nz < A\, and k —nzx < k+ X < {

Ini
q

2X

J , when
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k < \.. Therefore

A A
Z My (nx — k) = Z M1\ (k—nx) <

k=—oc0 k=—0c0

N [
< Y Mg (k+A) = > Mg (K) <1

k=—o0 k'=—o0

So for k < A\, we get

WD)k (Dl Moo (= 8) < |[I7]1, ]| M0 e+ ),

and

(112) s 55 My 2) < )|
k=—o00

Hence by Weierstrass M test we obtain that Ziifoo Lnk (f) My-1 5 (nx — k) is
uniformly and absolutely convergent on [—2, 2] . Since Ly, (f) My,x (nz — k) is
A A

continuous in z, then Zz*:_oo Lok (f) My (nz — k) is continuous on [—2, 2],

So we proved that
> lnk (f) Mg (nz — k) and Z nk (f) Mg.x (nz — k)
k=X\* k=—o00

are continuous on R. Since Zk . +1l (f) Mg\ (nz - k) is a finite sum of
continuous functions on R, it is also a continuous function on R.

Writing

(113) > bk (f) My (na — k Z Lok (f) My » (nz — k) +

k=—o0 k=—o0
A -1

+ Z Ik ( (nx — Z Lok (f (nx — k)
k=X, +1 k=A*

we have it as a continuous function on R. Therefore F,, (f), when N =1, is a
continuous function on R.

When N = 2 we have

w (frx, @) = Z Z Lok (f A (nxy — k1) Mg a (nxe — ko) =

kl——()o kz——OO
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Z Mg (nzy — ky) ( Z Ink (f) My x (nze — kz)) =

klzfoo kzzfoo
(there always exist A1, A2 6 N such that nz; € [\, \1] and nxo € [— A, Ag],
nl Inl
also call Af = A1 + [ 5 ] A= <At S| A = e+ ], and
ln—
Aos 1= —A2 + { J)
A2
Z My 5 (nay — /ﬁ)[ > bk (f) Mox (nxy — ks) +
]"51:7C>O k:g:*OO
Ap—1
+ > Mg (nze — ko) + Zlnk Mg (nzg — ko) | =
ko= >\2*+1 ka=M\%
A24
(114) Z > L ( A (nay — ky) My (n@y — ko) +
k}lz—OO kQ——OO
Ap—1
+ Z Z (mcl k’l) qA (’I’Ll‘g — k‘g)
ky=—o00 ko= ,\2*+1
+ Z Zlnk Mg (nwy — k1) Mg\ (nwg — k) =: ().
kl——OO kz
(For convenience call
Fy (k1 ko, w1, 22) = Uk (f) Mg (nwy — k1) Mg\ (nze —k2) . )
Thus
Als A24 AT-1 A2
Z Z Fy (k1 k2,21, 22) + Z Z Fy (k1, ka2, 21, 22) +
k1=—o00 kg=—00 k1=X1x+1ko=—c0
A2x Alx A5—1
+ Z > Fy(ky ke, me)+ > Y Fy(kr ke, w,m0) +
=A] ka=—o00 ki=—00 ka=MX2.+1
Ar-1 Ap—1 -1

+ Z Z Fq (kl,kz,l'l,xg Z Z F kl,kz,xl,iﬂg)

k1=A1x+1 ka=Xo.+1 k1=X] ka=X2.+1
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A s AT—1
(115) Z Z (k1, ko, 21, 22) + Z Z (K1, ko, 21, 22) +
ki=—00 ko= )\ ki=A1.«+1 ko= /\
+ Z Z ]{31,]{12,.’,5171:2)
k1=MAT ka=\3

Notice that the finite sum of continuous functions Fy, (k1, ke, 1, Z2):

Ap—1 3-1 . . .
Dk mara 41 2bo—ng.+1 Fa (K1, k2, 71, 72) is a continuous function.

The rest of the summands of F), (f,z1, z2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.

We will prove that Zk —ar sziioo nk () Mg x (nx1 — k1) My (nxe — k2)
is continuous in (z1,x2) € R2

The continuous function

[k ()Nl Ma,x (nay — k1) Mgx (nwe — ko) <

< L] Mo n s = X) My s Gz + 2a),
and
s | P 3 My 2 My (ks 5 2) =
)\*sz—oo

o0 A2

> Mgy (k= M) ( > Mgy (k2+A2>> <

k1:>\f k}g:*OO
(116)

In 1
‘1

<L | X Moo ST

ky=—o0
b=

So by the Weierstrass M test we get that
Ekl —ar Z/\Q* nk (f) Mg x (nz1 — k1) My \ (nxe — k2) is uniformly and ab-

k)Q—*OO

solutely convergent Therefore it is continuous on R2.

Next we prove continuity on R? of

AT—1 A2
Zk =A1at1 ijffoo nk (f) Mg\ (no1 — k1) My (nz2 — k).
Notice here that

(117) [lnk ()l Ma,x (nw1 = ky) Mg (nwy — k2) <
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<[] M (s = o) Myos Gz + 20) <
Ing
<[lnaw] v (52 ) My (b 2a) =
tanh
0 800 G 20,
and
tanh ol Q2
(118) oo ( > Mqu)\(k2+)\2)>_
ki=X1«+1 ko=—00

R [
tanh HHfH H <2)\ L ’712;-‘ \‘E;J _1> Z My (k) | <

T
kj=—o00

<O (o | 53] - 5| ) o

So the double series under consideration is uniformly convergent and continu-
ous. Clearly F, (f,z1,22) is proved to be continuous on RZ.

Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,z1,...,xn) is continuous on RY, for any N > 1. We choose to omit

this similar extra work. |
Remark 3.1. By (69) it is obvious that H||An f)H7H < H||f|| H < 00, and
N N
A, (f)eC (H [ai,bi],X), given that f € C <H [ai, bi], X
i=1 i=1

Call L,, any of the operators A,,, B,,Cy, D,.
Clearly then

m9) Iz || = 12 @ o] < iz < s

etc.

Therefore we get
(120) iz ol < 1] vren,

the contraction property.
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Also we see that
a2y [zl | < Ik @l < < iz o] <[t

Here LF are bounded linear operators.

Notation 3.1. Here ¢ >0, A >0, N € N, 0 < 8* < 1. Denote by

— (A (Q))N , Af Ly = Ay,
(122) CN == { 1 if L, = B,.C,. Dy
1 .
L oy R if L, = Anv Bna
(123) P (n) = { 1 i L, = Cy. Dy,
N
(12 0. 0(1‘[1 ai7bi],X)7 if L, = Ay,
CVB ( NaX)a if Ln = Bn7Cn7Dn7
and
N .
(125) Y — H [ai,bi] s if Ln = An,

i=1
RN, if L, = B,,,Cy, D,.

We give the following combined result.
Theorem 3.7. Let f € Q,0<p* <1, z€Y;¢>0,A>0,n, N €N with
n'=8" > 2. Then

(i)

(126)
—oan(1-5%)
1o (£,2) = £ (@)1, < ex [wr (frp () + 27 1)

=

where wy is for p = oo,
and
(i)
(127) H||Ln (f)—f||7H <7(n) =0, asn — oco.
For f uniformly continuous and in  we obtain
Jim Ly, (f) = f,
pointwise and uniformly.

Proof. By Theorems 3.1, 3.3, 3.4, 3.5. |
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Next we talk about iterated multilayer neural network approximation (see
also [9]).

We give
Theorem 3.8. All here as in Theorem 3.7 andr € N, 7(n) as in (126). Then
(128) Iz = 1| < e o).

So that the speed of convergence to the unit operator of LI is not worse than
of Ly,.

Proof. As similar to [12], pp. 172-173, is omitted. ]

We also present the more general

Theorem 3.9. Let f € Q; ¢ >0, A >0, N, my,ma,...m, € N:mp < my <
e <my, 0< B* < 1 mil_ﬁ* >2,i=1,..,r,x €Y, and let (L, ..., Lm,) as
(Amyy ey Am,) o7 (Bmyy ooy Bim,) o1 (Conyy ooy Cin) 07 (Dipyy ooy Din,), p = 00.
Then

(129) Lo, (Lo, s oLy (Lny 1)) (@) = f (@)]], <
< s s (o )—waHooS

<3 12mer =11 <
=1

< CNZ {wl (f, o (mi)) + o) HHfHWHOO] =

i=1
<reny [wl (f,o(m1)) +2Te . OJ )

Clearly, we notice that the speed of convergence to the unit operator of the
multiply iterated operator is not worse than the speed of Ly, .

Proof. As similar to [12], pp. 173-175, is omitted. ]
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