
Annales Univ. Sci. Budapest., Sect. Comp. 55 (2023) 77–96

EXTENDED ZABREJKO THEORY OF THE

NEWTON–KANTOROVICH ITERATION AND THE
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Abstract. A new methodology is introduced that allows to extend the ap-
plication of the Newton–Kantorovich Iteration (NKI) for solving non-linear
Banach space valued operator equations containing a non-differentiable
term. In particular, the Zabrejko theory is revisited. But the new majorant
functions are tighter than before leading to an at least as weak semi-local
convergence analysis for NKI. Moreover, the Pták–Potra error estimates
are replaced with tighter ones. Furthermore, the region that determines
the uniqueness of the solution is more precise. The novelty of this article
is that the aforementioned benefits are obtained under the same or even
weaker conditions. All these are also verified using numerical examples
where the conditions are verified under the new approach but not under
the earlier ones. The introduced methodology can apply analogously on
other iterations containing the inverses of linear operators.

1. Introduction

Let B1, B2 stand for Banach spaces, let U(x0, l) denote the open ball with
center x0 ∈ B1 and of radius l > 0. The ball U [x0, l] stands for the complement
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of the ball U(x0, l). Moreover the notation L (B1, B2) stands for the space of
continuous linear operators from B1 into B2.

We are concerned with the solvability of the non-linear equation

(1.1) F1(x) + F2(x) = 0,

where the operators F1 : Ω ⊂ B1 → B2, F2 : Ω → B2 and Ω = U [x0, R] for
some R > 0. The semi-local convergence of the Newton–Kantorovich Iterations
(NKI)

(1.2) x0 ∈ Ω, xk+1 = xk − F
′

1(xk)
−1(F1(xk) + F2(xk)) k = 0, 1, 2, . . .

has been established in the elegant article in [19]. The conditions employed
are:

(I) F1 is differentiable in the Fréchet-sense for each w1, w2 ∈ Ω

and

(1.3) ∥F ′
1(w2)− F ′

1(w1)∥ ≤ h1(s)∥w2 − w1∥, 0 < s < R,

where the function h1 : [0, s) → R is non-decreasing and continuous on
the interval M = [0, R];

(II) The operator F2 satisfies the condition

(1.4) ∥F2(w2)− F2(w1)∥ ≤ ϵ1(s)∥w2 − w1∥ (0 < s < R),

where the function ϵ1 : [0, s) → R is non-decreasing and continuous on
the interval M .

Moreover, the convergence analysis requires the introduction of auxiliary pa-
rameters

α = ∥F
′

1(x0)
−1(F1(x0) + F2(x0))∥,

β = ∥F
′

1(x0)
−1∥

(
provided that F

′

1(x0)
−1 ∈ L (B2, B1)

)
,

the functions

v1(s) =

1∫
0

h1(t)dt,

φ1(s) = α+ β

s∫
0

v1(t)dt− s,

ψ1(s) = β

s∫
0

ϵ1(t)dt

and q1(s) = φ1(s) + ψ1(s).
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Then, the semi-local convergence of NKI is based on the study of the solu-
tions of the equation

(1.5) q1(s) = 0.

As an example in the interesting case when the functions h1 and ϵ1 are con-
stants: h1(s) = h1, ϵ1(s) = ϵ1, we have

φ1(s) =
βh1s

2

2
− s+ α,

ψ1(s) = ϵ1s.

Then, the following conditions are needed [19]

(1.6) 2αβh1 ≤ (1− ϵ1)
2

and
(1.7)

1− ϵ1 −
√
(1− ϵ1)2 − 2αβh1 ≤ βh1R ≤ 1− ϵ1 −

√
(1− ϵ1)2 − 2αβh1.

If F2 = 0, then ϵ1 = 0, and the condition (1.6) reduces to

(1.8) 2αβh1 ≤ 1.

The inequation (1.8) is famous for its simplicity and clarity, Newton–Kantoro-
vich condition for the semi-local convergence of Newton’s method (NM)

(1.9) x0 ∈ Ω, xk+1 = xk − F
′

1(xk)
−1F1(xk) k = 0, 1, 2, . . . .

The following concerns exist with the convergence analysis presented in [19].

(1) The results are given in non-affine invariant form. The advantages of
affine versus non-affine invariant form are well explained in [6].

(2) The ball of convergence is small in general.

(3) The estimates on the error distances ∥xk+1 − xk∥, ∥x∗ − xk∥ are pes-
simistic, where x∗ ∈ Ω denotes a solution of the equation (1.1).

(4) The uniqueness of the solution ball is small in general.

In this article, we address all the concerns (1)-(4). The main idea is the intro-
duction of the center Lipschitz condition (to be precised in (2.1)). This way a
more precise location Ω0 ⊆ Ω, where the iterates belong than in [19] is obtained.
Then, in Ω0, the new functions h and ϵ (to be precised in (2.3) and (2.30)) are
at least as tight as h1 and ϵ1, respectively. Hence, they can replace h1 and ϵ1 in
the convergence analysis for NKI. It is important to notice that no additional
conditions are needed, since the computation of the major functions h1 and ϵ1
involves that of h0, h and ϵ as special cases. This is how we improve on all
concerns (1)-(4). The new idea can also apply to other single and multi-step
methods with inverses of linear operators analogously [1–5,7, 9, 10,12–17].
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2. Majorant functions and sequences

Some real functions and sequences are developed since they play a role in
the study of the semi-local convergence of NM.

Suppose that there exists an initial point x0 ∈ Ω such that F
′

1(x0)
−1 ∈

∈ L (B2, B1).

Definition 2.1. The operator F
′

1 satisfies the center-Lipschitz condition on
the set Ω if for each w ∈ Ω

(2.1) ∥F
′

1(x0)
−1(F

′

1(w)− F
′

1(x0))∥ ≤ h0(s)∥w − x0∥,

where the function h0 is non-decreasing on the interval M .

Suppose that the function

(2.2)

s∫
0

h0(t)dt− 1

has a unique zero in the interval (0, R]. Denote such a zero by s̄. SetM0 = [0, s̄]
and Ω0 = U(x0, s̄).

Definition 2.2. The operator F
′

1 satisfies the restricted-Lipschitz condition
on the set Ω0 if for each w1, w2 ∈ Ω0

(2.3) ∥F
′

1(x0)
−1(F ′

1(w2)− F
′

1(w1))∥ ≤ h(s)∥w2 − w1∥,

where the function h is non-decreasing on the interval M0.

Definition 2.3. The operator F
′

1 satisfies the Lipschitz condition on the set
Ω if for each w1, w2 ∈ Ω

(2.4) ∥F
′

1(x0)
−1(F

′

1(w2)− F
′

1(w1))∥ ≤ h1(s)∥w2 − w1∥,

where the function h1 is non-decreasing on the interval M .

Remark 2.1. The preceding definitions imply for each t ∈M0

(2.5) h0(t) ≤ h1(t)

and

(2.6) h(t) ≤ h1(t),

since

(2.7) M0 ⊆M and Ω0 ⊆ Ω.
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Define the constants

α = ∥F
′

1(x0)
−1(F1(x0) + F2(x0))∥, β = ∥F

′

1(x0)
−1∥,

and the functions

(2.8) v0(s) =

s∫
0

h0(t)dt,

(2.9) v(s) =

s∫
0

h(t)dt,

(2.10) φ0(s) = α+

s∫
0

h0(t)dt− s,

(2.11) φ(s) = α+

s∫
0

h(t)dt− s.

It follows by these definitions and (2.5)–(2.11) that for each s ∈M0

(2.12) v0(s) ≤ v(s)

and

(2.13) φ0(s) ≤ φ(s).

Moreover, from the estimate

∥F
′

1(x0)
−1(F

′

1(w2)− F
′

1(w1))∥ ≤ ∥F
′

1(x0)
−1∥∥F

′

1(w2)− F
′

1(w1)∥ ≤

≤ β∥F
′

1(w2)− F
′

1(w1)∥
(2.14)

we get that for each s ∈M0

(2.15) v0(s) ≤ βv1(s),

(2.16) v(s) ≤ βv1(s),

(2.17) h0(s) ≤ βh1(s),



82 I. K. Argyros et al.

(2.18) h(s) ≤ βh1(s),

(2.19) φ0(s) ≤ φ1(s)

and

(2.20) φ(s) ≤ φ1(s).

The following estimate was given in [8] using (2.4) and the Banach Lemma on
linear invertible operators for each x ∈ Ω.

(2.21) ∥F
′

1(x)
−1∥ ≤ β

1− βh1∥x− x0∥
,

since

(2.22) ∥F
′

1(x0)
−1∥∥F

′

1(x)− F
′

1(x0)∥ ≤ βh1∥x− x0∥ ≤ βh1(s) < 1

was used.

But (2.1) is actually needed which is weaker to obtain instead for each x ∈ Ω0

(2.23) ∥F
′

1(x0)
−1(F

′

1(x)− F
′

1(x0))∥ ≤ h0(∥x− x0∥) ≤ h0(s̄) < 1,

thus

(2.24) ∥F
′

1(x)
−1F

′

1(x0)∥ ≤ 1

1− h0(∥x− x0∥)
.

In view of (2.17) the estimate (2.24) is tighter than (2.21).

From now on we assume that for each s ∈M0

(2.25) h0(s) ≤ h(s).

Notice that if this is not true, then we can use the function h̄ which is defined
to be the largest of h0, h in the interval M0.

Then, the estimate (2.24) can be rewritten as

(2.26) ∥F
′

1(x)
−1F

′

1(x0)∥ ≤ 1

1− h0(∥x− x0∥)
≤ 1

1− h(∥x− x0∥)

if (2.25) holds and

(2.27) ∥F
′

1(x)
−1F

′

1(x0)∥ ≤ 1

1− h0(∥x− x0∥)
≤ 1

1− h̄(∥x− x0∥)
.

In either case, estimates are less tight than (2.24) but tighter than (2.21), since
for each s ∈M0

(2.28) h̄(s) ≤ h1(s).
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Definition 2.4. The operator F2 is restricted-Lipschitz on the set Ω0 if for
each w1, w2 ∈ Ω0

(2.29) ∥F
′

1(x0)
−1(F2(w2)− F2(w1))∥ ≤ ϵ(s)∥w2 − w1∥,

where the function ϵ is non-decreasing on the interval M0.

Definition 2.5. The operator F2 is Lipschitz on the set Ω if for each w1, w2 ∈ Ω

(2.30) ∥F2(w2)− F2(w1)∥ ≤ ϵ1(s)∥w2 − w1∥,

where the function ϵ1 is non-decreasing on the interval M .

Remark 2.2. It follows by (2.29), (2.30) that for each s ∈M0

(2.31) ϵ(s) ≤ βϵ1(s).

Define the function ψ2 on the interval M0 by

(2.32) ψ2(s) =

s∫
0

ϵ(t)dt.

Then, we have

(2.33) ψ2(s) ≤ βψ1(s).

Consequently, in view of the discussion in the last two remarks h or h̄ can
replace h1 in all the results in [19]. However, there are other benefits involving
the uniqueness ball and the error estimates.

3. Semi-local convergence

The following result is the extension of the Theorem 1 in [19]. Define the
function q on the interval M0 by

(3.1) q(s) = φ(s) + ψ2(s).

Theorem 3.1. Suppose:

(i) The conditions (2.1) and (2.3) hold on Ω and Ω0 respectively.

(ii) The function q has a unique zero ρ in the interval M0 and

(3.2) q(s̄) ≤ 0,

where s̄ is given by (2.2).
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Set M1 = [0, ρ) and Ω1 = U(x0, ρ).

Then, the following assertions hold:

(1) The equation (1.1) has a solution x∗ ∈ Ω1. This solution is unique in Ω.

(2) The iterates xk are well defined in Ω1 and satisfy for each k = 0, 1, . . .

(3.3) ∥xk+1 − xk∥ ≤ ρk+1 − ρk

and

(3.4) ∥x∗ − xk∥ ≤ ρ− ρk.

Here, the sequence {ρk} is monotonically increasing with

(3.5) ρk+1 = ρk − q(ρk)

φ′(ρk)

and

(3.6) lim
k→+∞

ρk = ρ.

The proofs of specializations of this theorem when F2 = 0 were provided
in [18]. But the convergence criteria considered were rather challenging to
verify. That is why this theorem was shown in [19, Theorem 1] but with h1
replacing h in the above extended version of our Theorem 3.1.

Concerning the uniqueness ball, we present:

Proposition 3.2. Suppose:

(1) The conditions (2.1) and (2.3) hold on Ω and Ω0, respectively.

(2) The function q has a unique zero in the interval [0, s̄] and q(s̄) ≤ 0.

Then, the following assertions hold:

(i) The equation F1(x) = 0 has a unique solution in Ω0 with x∗ ∈ Ω1.

(ii) The modified Newton’s method defined for each k = 0, 1, 2, . . . by

yk+1 = yk − F
′

1(y0)
−1F1(yk), y0 = x0

converges to x∗ with
∥yk+1 − yk∥ ≤ ρ0k+1 − ρ0k

and
∥x∗ − yk∥ ≤ ρ− ρ0k,
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where
ρ0k+1 = d0(ρ0k), ρ00 = 0

and
d0(s) = s+ q(s).

Proof. Simply replace h1 by h in the proof of Proposition 2 in [19]. ■

Remark 3.1. Define the functions on the interval M by

φ1(s) = α+ β

s∫
0

h1(t)dt− s,

ψ1(s) = β

1∫
0

ϵ1(t)dt,

q1(s) = φ1(s) + ψ1(s),

d1(s) = s+ q1(s)

and the sequence
ρ1k+1 = d1(ρ1k), ρ10 = 0.

The hypotheses in Proposition 2 are: Suppose that the function q1 has a unique
zero ρ1 in the interval M and

q1(R) ≤ 0.

Then, the solution is unique in Ω2 = U(x0, ρ
1).

But, we have that for each s ∈M

q(s) ≤ q1(s).

In particular, we get
q(ρ1) ≤ q1(ρ

1) = 0

by the definition of ρ1. Consequently, we conclude that

ρ ≤ ρ1.

Therefore, the Proposition 3.2 gives a smaller ball where the solution x∗ is
unique, since

Ω1 ⊆ Ω2.

Moreover, a simple induction argument shows that

0 ≤ ρ0k+1 − ρ0k ≤ ρ1k+1 − ρ1k.

Hence, the new error estimates are tighter.
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We conclude advantages hold for the modified Newton method (see also the
numerical examples) and under weaker conditions, where

(3.7) ρ1k+1 = ρ1k − q1(ρ
1
k)

φ1
1(ρ

1
k)
.

In order to study the convergence of the sequence {ρk} given by the formula
(3.5), let

y(s) = − q(s)

φ′(s)
.

Then, (3.5) can be rewritten as

(3.8) ρk+1 = ρk + y(s).

Some properties of this sequence are provided in the next result.

Proposition 3.3. Suppose that the conditions of Theorem 3.1 hold. Then,
the sequence {ρk} given by (3.5) (or (3.8)) is monotonically increasing and
converges to ρ.

Proof. Simply exchange (3.5), h by (3.7), h1 in the proof of Proposition 3
in [19]. ■

Proof of Theorem 3.1. Notice that in view of (2.21) and (2.26) the function
h1 can be exchanged by h in the proof of Theorem 1 (see also Proposition 4)
in [19]. ■

Remark 3.2. We have as in Remark 3.1 that for each k = 0, 1, 2, . . .

0 ≤ ρk+1 − ρk ≤ ρ1k+1 − ρ1k.

Hence, the aforementioned advantages hold for NM.

The rest of the improvements involve Pták–Potra estimates.

Suppose that the function y(s) is strictly monotonically increasing on the in-
terval M1. Then, for α = y(0), the function y(s) has an inverse function
z(s) = y(s)−1 on the interval M2 = [0, α]. As in [19] define the function

T (s) = y(s+ z(s)).

Then, we can write for each k = 1, 2, . . .

ρk+1 − ρk = T (ρk − ρk−1).
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Moreover, define the iterates of the function T (s) for k = 0, 1, 2, . . . as

T (0)(s) = s, T (k+1)(s) = T (T (k)(s))

and the function

Q(s) =

∞∑
k=0

T (k)(s).

Then, we have the corresponding results to the ones in [19].

Proposition 3.4. Suppose that the function y(s) is strictly monotonically de-
creasing on the interval M0. Then, the following error estimates hold for each
k = 0, 1, 2, . . .

ρk+1 − ρk = T (k)(α)

and
ρ− ρk = Q(T (k)(α)).

Theorem 3.5. Suppose that the conditions of the Theorem 3.1 hold. Then,
the conclusions of it also hold for each k = 0, 1, 2, . . .

∥xk+1 − xk∥ ≤ T (k)(α)

and
∥x∗ − xk∥ ≤ Q(T (k)(α)).

Proposition 3.6. Suppose that the conditions of the Theorem 3.1 hold. Then,
the function y(s) is strictly monotonically decreasing on the interval [0, ρ].
Hence, this function is a bijection from [0, ρ] to [0, α].

It follows by the last two Propositions that the Theorem 3.1 can be rewritten
as

Theorem 3.7. Suppose:

(i) The function q(s) has a unique zero ρ in the interval [0, s̄];
and

(ii) q(s̄) ≤ 0.

Then, the following assertions hold:

The equation F1(x) = 0 has a solution x∗ ∈ Ω1, which is unique in Ω0 and
the iterates xk ∈ Ω1;

For k = 0, 1, 2, . . .
∥xk+1 − xk∥ ≤ T (k)(α)

and
∥x∗ − xk∥ ≤ Q(T (k)(α)).
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Remark 3.3. The proofs of the last four results is given from the corresponding
ones in [19] if the functions y(s) replaces the function y1(s) defined by

y1(s) = − q1(s)

φ
′
1(s)

.

Denote by T1, Q1 the corresponding operators to T and Q respectively. Then,
from the preceding relationships between the functions q, φ, q1, ψ1 we conclude
that

T (k)(α) ≤ T
(k)
1 (α)

and

Q(T (k)(α)) ≤ Q1(T
(k)
1 (α)).

Consequently, the new error bounds are at least as tight as the ones in [19].

4. Special cases

Let us suppose that the functions h0, h and ϵ are constants and set
h0(s) = h0, h(s) = h and ϵ(s) = ϵ. Then, the functions φ,ψ2 and q1 reduce to

φ(s) = α+
hs2

2
− s, ψ2(s) = ϵs

and

q(s) = α+
hs2

2
− (1− ϵ)s.

Therefore, the conditions of the two theorems are fulfilled if

(4.1) 2αh ≤ (1− ϵ)2

and

(4.2) 1− ϵ−
√
(1− ϵ)2 − 2αh ≤ hs̄ ≤ 1− ϵ+

√
(1− ϵ)2 − 2αh,

where

(4.3) ρ =
1− ϵ−

√
(1− ϵ)2 − 2αh

h
.

The right inequality in (4.1) and (4.2) are both strict or both equalities. Then,
we connect these conditions to the function T (s) and Q(s).
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Proposition 4.1. Suppose that the functions h0, h and ϵ are constants and the
conditions (4.1) and (4.2) hold. Then, the following assertions hold for

γ =
1

h
ϵ, δ =

1

h
(1− 2ϵ− 2αh),

T (s) =
s2 + 2γs

2(γ +
√
(s+ γ)2 + δ)

and

Q(s) = s+
√
(s+ γ)2 + δ −

√
γ2 + δ.

Proposition 4.2. Under the conditions of the Proposition 4.1, the following
assertions hold for

λ(s) =

√
s2 + δ −

√
δ

s
,

T (k)(s) =
2
√
δλ2

k

(s)

1− λ2k+1

and

Q(T (k)(s)) =
2
√
δλ2

k+1

(s)

1− λ2k(s)
.

Remark 4.1. (1) The proofs of the last two Propositions are obtained from
the corresponding ones in [19] by exchanging T1, Q1 by T and Q, respec-
tively.

(2) As in [19], we recognize two special choices of the function ϵ.
Case 1: ϵ = 0. Then, the sequence {ρk} generated by the formula (3.5)
converges faster than any geometric progression of any denominator to ρ.
Case 2: ϵ > 0. Then, the sequence {ρk} converges to zero not faster than
a geometric progression with denominator

µ1 = min

{
γ

γ +
√
γ2 + δ

,
α+ 2γ

2(γ +
√
(α+ γ)2 + δ)

}
µ0

and not slower than a geometric progression with denominator with

µ2 = maxµ0,

with µ1, µ2 ∈ [0, 12 ] if δ ≥ 0 and [12 , 1] if δ < 0, where

µ0 =

{
γ

γ +
√
γ2 + δ

,
α+ 2γ

2(γ +
√
(α+ γ)2 + δ)

}
.
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Moreover, the following holds

lim
n→+∞

ρ− ρk+1

ρ− ρk
=

γ

γ +
√
γ2 + δ

.

That is, the sequence {ρk} converges to ρ asymptotically as a geometric
progression with denominator

γ

γ +
√
γ2 + δ

.

(3) As in Pták [11], the estimates ∥x∗ − xk∥ can be further improved if one
works with the ball U(xk, s̄ − ∥xk − x0∥) ⊂ Ω instead of Ω. The corre-
sponding functions to h(s) and ϵ(s) functions should be

hk(s) = h(∥xk − x0∥+ s),

ϵk(s) = ϵ(∥xk − x0∥+ s)

the numbers
αk = ∥xk+1 − xk∥

and ∥x∗ − xk∥ is determined by the zero sk of the equation

αk +

s∫
0

(s− t)hk(t)dt+

s∫
0

ϵk(t)dt− s = 0.

5. Numerical examples

The convergence conditions are tested on some examples in the interesting
case when the functions h0, h and ϵ are constants.

Example 5.1. Let b ∈ (0, 12 ), R = 1 − b and x0 = 1. Then, the set Ω =
= U(1, 1− b). Define the functions F1 and F2 on the ball Ω by

F1(x) = x3 − b,

F2(x) =
1

100π
sinπx.

Case F2(x) = 0: Then, the definitions (2.1), (2.3), (2.4) hold if β = 1
3 ,

h0 = 3 − b, h1 = 2(2 − b) and since Ω ∩ U(x0, s̄) = U(x0, s̄) for s̄ = 1
3−b ,

we get h = 2(1 + 1
3−b ).
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Notice that
h0 < h < h1

hold. We also have that α = 1−b
3 . Then, the condition (1.8) is not fulfilled since

2h1α = 2(2(2− b))
1− b

3
> 1 for each b ∈ (0,

1

2
).

But, the new condition (4.1) is fulfilled, since

(5.1) 2hα = 2

(
2

[
1 +

1

3− b

])
1− b

3
< 1

for each b ∈ (0.461983, 12 ).
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GraphofF1(x) +F2(x)

Figure 1. F2(x) = 0

Case F2(x) ̸= 0: Then, we have ϵ = 1
100 . Clearly, again the condition (1.6)

does not hold. But the condition (4.1) becomes

(5.2) 2

(
2

[
1 +

1

3− b

])
1− b

3
≤

(
1− 1

100

)2

is fulfilled for each b ∈ (0.47336, 12 ).
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Figure 2. F2(x) ̸= 0

Remark 5.1. It is worth noticing that the iterations {ρk} and {ρ1k} become
for ρ0 = ρ10 = 0, ρ1 = ρ11 = α

ρk+1 − ρk =
h(ρk − ρk−1)

2

2(1− hρk)

and

ρ1k+1 − ρ1k =
h1(ρk − ρk−1)

2

2(1− h1ρk)
.

It follows by a inductive argument that

ρk ≤ ρ1k,

0 ≤ ρk+1 − ρk ≤ ρ1k+1 − ρ1k

and
ρ = lim

n→+∞
ρk ≤ ρ1 = lim

n→+∞
ρ1k.

In view of the proof of Theorem 3.1, it follows that the actual majorizing
sequence is defined (for F2 = 0) by

r0 = 0, r1 = α,

rk+1 = rk +
h(rk − rk−1)

2

2(1− h0rk)
for k = 0, 1, 2, . . . .
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The sequence {rk} is tighter than {ρk}, i.e., certainly converges under the
conditions of Theorem 3.1. But it also converges under weaker conditions [19].
One such condition is given by

(5.3) 2Lα ≤ 1,

where L = 1
8 (4h0 +

√
hh0 + 8h20 +

√
hh0).

k 0 1 2 3 4

ρk 0 0.173333 0.254701 0.286762 0.293981
rk 0 0.173333 0.247848 0.273063 0.276807

k 5 6 7

ρk 0.294388 0.294389 0.294389
rk 0.276893 0.276893 0.276893

Table 1. Estimates for Example (5.1)

The sequence {rk} is tighter than {ρk}, as can be seen from the preceding
table.

Let S denote the space of continuous operators on [0, 1] with max-norm.

Example 5.2. Let B1 = B2 = S and Ω∗ = U [0, d] for some d > 1. Define the
non-linear integral operator on the ball Ω∗ as

F1(v)(r) = −z(r)+v(r)−c
1∫

0

Λ(r1, r2)v
3(r2)dr2 for each v ∈ S and r1 ∈ [0, 1]

provided that z ∈ S, c ∈ R and Λ is the Green’s function given as

Λ(r1, r2) =

{
(1− r1)r2, for r2 ≤ r1
r2(1− r1), for r1 ≤ r2.

It follows by the definition of the operator F1 that the derivative is

F
′

1(x)(v̄)(r) = v̄(r)− 3c

1∫
0

Λ(r1, r2)x
2(r2)z(r2)dr2

for each v̄ ∈ S with r2 ∈ [0, 1]. Pick z(r) = x0(r) = 1 and |c| < 8
3 . We need

the calculations

∥I − F
′

1(x0(r))∥ ≤ 8

3
|c|, F

′

1(x0)
−1 ∈ L (B2, B1),
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∥F ′
1(x0)

−1∥ ≤ 8

8− 3|c|
, α =

|c|
8− 3|c|

,

h0 =
12|c|

8− 3|c|
, h = h1 =

6d|c|
8− 3|c|

.

Choose d = 3.

Case F2(x) = 0: Then, the condition (1.8) of Theorem 1 in [19] gives

2βh1α > 1.102065600

but the condition (5.3) gives

2hα = .9715205068 = c0.

Hence, the new Theorem 3.1 can apply to solve (1.1) and guarantees a solution
x∗ ∈ Ω∗ of the equation F1(x(r)) = 0.

Case F2(x) ̸= 0: Set F2(x) = 1
m (1 − |x(r)|) for some m > 1

1−√
c0
. Then, we

have that ϵ = 1
m and

2hα ≤ (1− ϵ)2.

That is the condition (1.8) is satisfied. Hence, the new Theorem 3.1 asserts the
existence of a solution x∗ of the equation F1(x(r)) + F2(x(r)) = 0.

6. Conclusion

In this paper, we investigate the potential of extending the NKI to non-
linear Banach space valued operator equations with a non-differentiable term.
The proposed methodology results in a semi-local convergence analysis for NKI
that is at least as weak as the previous one because the new majorant functions
are tighter than the previous ones. Furthermore, stricter error estimates replace
the Pták–Potra estimates. The region that determines the solution’s uniqueness
is also more precisely defined.
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