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Abstract. We present a new proof that the set of numbers expressible in

base N with coe�cients in a set A is a group, in the case where N is a real

integer and A is a set of representatives of the congruence classes modulo

N. We present results for the case where N is a Gaussian integer with a

conjecture that the set of expressible numbers is a group in that situation

as well.

1. Statement of main theorem

Most of this material applies equally to the integers Z and the Gaussian
integers Z[i], the set of all complex numbers a+bi with a and b in Z. In cases
where something is valid for both settings, both sets will be referred to as G.
The word integer will mean either real integer or Gaussian integer when both
cases are considered. If we are referring to only one case, we use the terms real
integer and complex integer. In assertions where there are di�erences among
the two cases, this will always be pointed out. The paper ends with a summary
of the main results and conjectures.

Let the set A consist of one representative from each of the congruence
classes modulo N, where the base N is an integer of modulus or absolute value
greater than 1. The size of A is |N| in the real case and ||N||2 in the complex
case. (The canonical choice for members of A in the complex case are the
complex integers in the parallelogram de�ned by the vectors N and Ni, though
here we consider all possible A.) We call (A,N) a system.
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Let B be the set A�A, that is, the set of all a - a´ where a and a´ are in
A. We call an integer expressible if it can be written in the form

∑k
j=0 bjN

j

where k in Z is nonnegative, and where each bj is in B. Let E denote the set of
all expressible integers.

Theorem 1.1. E is a group under addition.

This theorem will be proven in Section 5 of the paper for G = Z. For
G = Z[i], the theorem is only conjectured to be true but will be proven under
certain conditions to be explained later. Obviously 0 is a member of E, and if
x is in E than so is �x, since the set B = -B. To establish Theorem 1.1, we need
only show that E is closed under addition, and this is the main result proven in
this paper, for Z in general and for Z[i] under certain conditions. Much of the
forthcoming proof applies to both cases equally. The one important di�erence,
that necessitates special conditions for Z[i], comes at the very end of the proof
of Lemma 4.1 in Section 4.

This theorem was conjectured in the real setting for N = 3 by Imre Kátai [1].
The basic set up of number systems and of the maps we shall shortly discuss
are included there. Other consequences of the theorem appear in papers by
Indlekofer, Kátai, and Racskó [2], [3]. The case for N=3 was proven by the
author in 1997 [4]. A proof applicable to any real integer N of absolute value
greater than 1 was published in 2001 by the author [5]. The proof presented here
is a substantial improvement on the proof in [5], being much more illuminating,
and with some additional conjectures and results for the Z[i] case.

An important note on A: Given the original choice of A, we may replace
A by the set A-x, where x is in G. This does not change the set B or the
set E. In particular we can choose x to be in A itself so that 0 is in A-x,
and A-x is a subset of B. We will always assume this replacement has been
done so a system (A,N) will always have 0 as a member of A and A as
a subset of B. Consider the example of N=3, A1={1, -1, 3} and A2={0,
-2, 2}. Since A2=A1 - 1, the set B is the same for both A1 and A2. In
fact, B={0, -2, 2, -4, 4} and E is obviously the set of all multiples of 2. No-
tice 2=gcd(B)=gcd(A2) but 2 is not gcd(A1), which is why we would prefer
(A2,3) as the underlying system, as the gcd(B) is important in what follows in
the real case.

If Theorem 1.1 is established, the group E can be described as follows in
the next theorem:

Theorem 1.2. Assume E is a group under addition. Then E is the smallest
additive subgroup of G that contains B and that is closed under multiplication
by N. We may also say E is the smallest additive subgroup of G containing A
that is closed under multiplication by N.
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Note: In the real case, there is a much simpler way to describe this group
as seen in the next corollary. However, the description given is the one that
holds in the Z[i] case as well, again assuming E is a group.

Proof. E is assumed to be an additive subgroup of G. Since E is the set of
all integers of the form

∑k
j=0 bjN

j where k≥0, and where each bj is in B, E
obviously contains B. It is also obvious that E is closed under multiplication
by N. Any other subgroup of G with these properties would also contain E. ■

Of special interest is the case where E is the entire set G, in which case (A,N)
is called a Just Touching Covering System. This term re�ects a connection with
fractal geometry (explained in [1], [2], and [3]). This was the result of [5] which
follows from Theorems 1.1 and 1.2:

Corollary 1.1. In the case where G = Z, the set E consists of all multiples of
gcd(B), which is the same as gcd(A). In particular, (A,N) is a Just Touching
Covering System i� gcd(B) = 1.

Proof. Obviously the smallest additive subgoup of Z containing B consists of
all multiples of gcd(B). The property that that set of multiples is closed under
multiplication by N is automatically satis�ed. ■

The property of closure under multiplication by N is only essential in the
conjecture for the complex case Z[i]. In that case, the smallest additive group
containing B may not be closed under multiplication by N, and therefore may
not be E which is closed under multiplication by N.

A nonzero additive subgroup of Z[i] is a lattice. It is either a one-dimensional
lattice <x> consisting of all real integer multiples of some nonzero Gaussian
integer x, or it is a two-dimensional lattice <x,y> consisting of all ax+by where
a and b are real integers, and x and y are Gaussian integers that are linearly
independent when viewed as vectors in R2. In this situation x may be chosen
as a member of the lattice of minimal modulus. Then y can be chosen as a
nonzero member of the lattice that is not a real multiple of x and which is of
minimal modulus among all such.

The set E can be shown to be a two-dimensional lattice in Z[i] if it is
in fact a group. To see this, consider �rst the case where N = c+d i with d
nonzero. In this case it is easy to �nd two nonzero expressible numbers that
are independent as vectors in R2: consider any nonzero a in A and its multiple
Na for one example. In the case where d is 0, it is again impossible for E to
be a one-dimensional lattice <x> because then E would not contain A. This is
because Nx ≡ 0 modulo N, so <x> , the set of all real integral multiples of x,
contains representatives of at most |N| congruence classes modulo N, whereas
A has representatives of all ||N||2 = N2 classes in the complex integer setting.
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The structure of E in the Z[i] setting is discussed more fully in Section 6 of the
paper.

2. Maps and trees

We now examine the tree of an integer x and properties of such trees when
integers are added and subtracted. An illustration is provided at the end of
this section.

Given an integer x, we form its B-tree as follows. In this tree, a number x
is connected by arrows to |A| descendants. These descendants are computed
using the maps Fa where a is a member of A. That is, x connects to Fa(x) =
= (x-a+a´)/N, where a´ is the unique member of A so that the division results
in an integer. The |A| descendants are obtained by letting a range over A. If
these descendants are added together, the various a and a´ both range over
all members of A and therefore their sums cancel. The sum of the descendants
in the real case where A has |N| members is then |N|·x/N, which is x or -x
depending on whether N is positive or negative. In the complex case where A
has ||N||2 members, the sum is ||N||2· x/ N =N̄· x.

In considering the B-tree of x, we de�ne generation-0 to be the number
x itself, generation-1 to be the |A| numbers obtained by applying the maps
described above, generation-2 to be the |A|2 numbers obtained by following the
|A| branches o� the generation-1 members, and so on. Generation-k consists
of |A|k numbers (not necessarily distinct).

For any positive integer k, de�ne Ak to be the set of representatives of the
congruence classes modulo Nk consisting of the |A|k sums

∑k−1
j=0 ajN

j where
each aj is a member of A. Note that these sums are in fact from distinct

congruence classes. (If
∑k−1

j=0 ajN
j =

∑k−1
j=0 aj

′N j modulo Nk, then it easily
follows that aj = aj´ for all j.)

Given a member z of Ak for any positive integer k, we de�ne the map Fz

by Fz(x) = (x-z+z´)/Nk, where z´ is the unique member of Ak so that the
division results in an integer. It is easy to see that the generation-k members
of the B-tree of x are given precisely by the Fz(x) as z ranges over A

k. In the
real case, the sum of the numbers in generation-k is then x if N is positive and
(-1)kx if N is negative. In the complex case the sum is N̄kx . Also note that,

for z =
∑k−1

j=0 ajN
j , in addition to Fz(x) being a member in generation-k of

the B-tree of x, the map Fz describes a speci�c path through the B-tree to that
descendant, namely the composition of single generation maps Fa0 followed by
Fa1 , and so on up to Fak-1 . For shorthand we can refer to �the z-path� through
the tree of x. An example is in the illustration at the end of this section. Since
all the members of Ak have a unique expansion in the form z =

∑k−1
j=0 ajN

j ,
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the z-path is unambiguous. However, the Ak that we are considering z to be
a member of does need to be speci�ed. In the illustration that follows, where
N=3 and A = {0, 25, 5}, the number z =25 is both a member of A and of A2,
in which it has the form 25+0·31. Considering 25 as a member of A means
the map and path we are considering is from x to its �rst generation, given by
F25(x) = (x-25+a)/3 for some a in A. However, when considering 25 to be in
A2, the map and path is from x to a member of its second generation, namely
F25(x) = (x-25+z´)/9 where z´ is in A2. Since 25 = 25+0 ·31, the 25-path
in this case is in two steps and �rst connects x to y = (x-25+a)/3 and then
connects y to (y-0+a´ )/3 in the second generation. Here z´ = a+a´ ·31.

The main point of trees as regards E is that, if x is expressible, then
x = z1-z2 for some z1 and z2 in A

k for some k, so that Fz1(x) = (x-z1+ z2)/N
k =

0. Therefore there is a zero in generation-k of the tree of x speci�cally located
by following the z1-path through the tree. Conversely the appearance of 0 in
the tree of x shows that x is expressible, with the path to that 0 specifying the
map and hence the expression.

2.1. The interval I

It is a simple matter of checking the inequalities to show that for any integers
x and m, if |x|>|m|/(|N|-1) then |(x-m)/N|<|x|. Also, if |x|≤|m|/(|N|-1) then
|(x-m)/N|≤|m|/(|N|-1) as well. In particular this applies to the case where m
is in B, as in the Fa maps above where Fa(x) is of the form (x-m)/N. Let M
be the absolute value of the largest member of B divided by |N|-1. Then from
the inequalities, if |x|>M then |Fa(x)|<|x| and if |x|≤M then |Fa(x)|≤ M too.
(In the complex case this is still true, using modulus instead of absolute value.)
De�ne I to be the disk of radius M about 0 in the complex case, or the interval
[-M,M] in the real case. (Actually we can say I consists just of the integers
inside the interval or disk.) By the inequalities above, repeated applications of
maps of the form Fa with a in A give a sequence of descendants of x which
decrease in modulus until the result is inside I. Further descendants of members
of I all lie inside I. We will call I the �interval for B�, though technically in the
complex case it is a disk not an interval.

Notice it is possible to determine whether all integers are expressible by
simply checking whether all the integers in I are expressible, since the tree of
every x has a generation all of whose members belong to I.

2.2. Adding and subtracting trees

If w = x + y, for integers x, y, and w, the paths in the tree of x add to
the paths in the tree of y to produce paths in the tree of w. Speci�cally, with
any z in Ak and Fz(x) describing the z-path in the tree of x, there will be a
path given by Fz´(y) where z´ is also in Ak so that adding the descendants of x
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and y along those paths at each one-generation step produces the descendants
in a speci�c path in the tree of w, namely the path corresponding to Fz(w).
The same z is associated with the x path as with the w path. The path for
the y tree is from the z´ that makes Fz´(y) = (x-z+z´)/Nk integral. (There
are also other ways paths can add, but this is the one we will use going for-
wards.) This is clear because Fz(x) +Fz´(y) = (x-z+z´)/Nk + (y-z´+z´´)/Nk=
= (w-z+z´´)/Nk = Fz(w), where z´ and z´´ are chosen in the only way that
makes the results integers. Conversely, given any path in the tree of w, we can
�nd paths in the trees of x and y that add to that path: indeed just choose
the same z-path for x as you were given for w. The path in the tree of y is the
z´-path where z´ is chosen to make (x-z+z´)/Nk integral.

If w = x � y, we can subtract paths in the trees of x and y to produce paths
in the tree of w. Speci�cally if we choose any z in any Ak and then consider
the same z-path in both the x and the y trees, then subtracting those paths
produces a path in the tree of w. This is shown as follows: Fz(x) - Fz(y) =
= (x-z+z´)/Nk - (y-z+z´´)/Nk = (w-z´´+z´)/Nk = Fz´´(w). The path pro-
duced is the z´´-path in the w tree, where z´´ is the member of Ak that makes
(y-z+z´´)/Nk integral. Conversely, any path in the w tree (say the z´´ path)
can be seen as a path in the y tree subtracted from a path in the x tree by
again using the z that makes (y-z+z´´)/Nk integral and choosing the z path in
both the x and y trees.

The properties described above are illustrated in the simple example below.

2.3. Illustration 1: Properties of trees

Consider N = 3 and A = {a0, a1, a2} = {0, 25, 5}. The maps to create
the tree will be given in this order from left to right: F0(x) = (x-0+a)/3 and
F25(x) = (x-25+a´)/3 and F5(x) = (x-5+a´´)/3 where {a, a ´, a´´} are the
unique members of A that give integral descendants for x. For example, the
�rst two generations of descendants of x = 1 are shown. For clarity, only one
arrow connects a number to its �rst generation descendants. Notice the sum
of terms in any generation will equal the root number 1.
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The second generation can also be computed directly by using A2 = 3A+A
= {0, 75, 15, 25, 100, 40, 5, 80, 20}, written in the order that creates the second
generation from left to right. For example Fz with z = 40 = 3(5)+25 is the
composition F5 ◦ F25: F40(1) = (1-40+75 )/9 = 4 (which is 6th in the second
generation) and the two steps to that 4 are given as F25(1) = (1-25+0)/3 = -8
and then F5(-8) = (-8-5+25)/3 = 4. (The z-path for z = 40 is shown in red in
the tree.)

In the trees below, we again show only two generations (omitting the ar-
rows). We show an example of an expressible number with 0 in its tree, as
well as the adding and subtracting of paths in trees. Notice the following three
points about the examples below:

a) A path leading to 0 in the tree for x corresponds to an expression for x.
For example, in the tree for 5 below there is a path to 0 (shown in red). The
�rst step is an application of F25, the middle map, which takes 5 to (5-25+5)/3
= -5. This is followed by an application of F0, the left map, which takes -5
to (-5-0+5)/3 = 0. The resulting expression is 5 = 3(0-5)+(25-5). The red
numbers in this expression indicate the maps and paths used, and come from
seeing which numbers were subtracted by the application of the two maps. The
path may be described as the z-path for z in A2 given by z = 3(0)+25 = 25,
where F25(5) = (5 � 25 + 20)/9 = 0. Note the 25 that was subtracted is the
4th member in the list of A2 above, and the 0 in the tree is the 4th in its
generation. This F25 is an A2 map whereas the F25 mentioned earlier in this
paragraph was an A map, an ambiguity that was explained earlier.

b) A particular path is chosen in the tree of 1, and a path is then found in
the tree of 4 which will add to it, producing a path in the tree of 5. The path in
the tree of the sum can be chosen to be the same as for one of the summands.
In this example I chose it to match the path in the tree for 1 but it can be done
in other ways. Notice that the paths in the trees of 1 and 5 are the same: they
take the leftmost descendant in the �rst step and the center descendant in the
second. At each step the numbers on the paths add up to the number in the
path of the tree of 5. The paths are in blue.

c) Note also if the same path is chosen in the two trees for 1 and 4, and
the paths are subtracted, the result is a path in the tree of the di�erence -3.
The route of the di�erence path is not necessarily the same as for the trees
that were subtracted. The paths are in blue, and for the 1 tree and the 4 tree
connect to the rightmost descendant followed by the leftmost.
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Adding: 1+4 = 5

(We follow the same path in 1 as in the sum 1+4, and a di�erent path in
the tree of 4.)

Subtracting: 1-4 = -3

(We follow the same path in both 1 and 4, a di�erent path in 1-4.)

Note: The �rst step in the tree for 1 is to (1-5+25)/3 and in the tree
of 4 to (4-5+25)/3. In subtracting 1-4 this corresponds to 1-4 connecting to
(1-5+25)/3 - (4-5+25)/3 = (-3 -25 +25)/3 = -1. This is F25(-3) which is why
the middle -1 is in blue in the �rst generation of the tree of -3.
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3. Omniexpressible numbers

A key part of the proof of Theorem 1.1 is the existence of omniexpressible
numbers, that is, integers x for which every descendant of x is expressible.
There are an in�nite number of ways to express such x in the form z1 � z2
with z1 and z2 in some Ak, since the initial path through the tree of x can
be arbitrary and still one would be able to extend the path to a descendant
0. That means you can �start expressing� an integer x with any expression
of the form

∑k
j=0 bjN

j where k≥0, provided x is congruent to this expression

modulo Nk+1. You can then add on higher power terms to make the completed
expression equal to x.

Let K be the set of omniexpressible integers. It is unclear at �rst that such
numbers exist (apart from 0, for which all descendants are equal to 0). In fact,
�nding nonzero omniexpressible integers is the key to the proof of Theorem 1.1.
That omniexpressibility is important to the proof is not surprising. From the
proof we will present in Section 5, it becomes clear that all expressible integers
are in fact omniexpressible in the real case. (In the complex case, if one or two
expressible numbers are omniexpressible then they all are.)

This is especially easy to see in the real case because Corollary 1.1 asserts
that the set of expressible numbers E is the set of all multiples of d = gcd(B).
The multiples of d are all omniexpressible due to the fact that all descendants
of a multiple of d are also multiples of d. See for example the tree of 5 in the
illustration in Section 2 above. A short proof of this is presented here as a
corollary of Theorems 1.1 and 1.2:

Corollary 3.1. In the Z case, every expressible number is also omniexpressible.

Note: This is also conjectured in the Z[i] case.
Proof. Let gcd(B) = gcd(A) = d. Let a be the member of A that is congruent
to 1 modulo N, and write a = sd for some integer s. Then sd+rN =1 for some
integer r, so that d and N are relatively prime.

Then if x is a multiple of d, any descendant of x is of the form (x-z1+z2)/N
k

where z1 and z2 are in some Ak, the members of which are all multiples of d.
Then a descendant of x is a multiple of d divided by Nk which is still a multiple
of d. ■

That any expressible number in the real setting is omniexpressible will also
be seen to be a direct result of the proof of Theorem 1.1 that we will present
in Section 5, so Corollary 3.1 above is only presented here to show that in the
real setting that fact is quite directly seen to be true.

Most important though are the following results, true in both the Z and
the Z[i] setting. We refer to both sets Z and Z[i] simultaneously as G, which is
in either case a group under addition.
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Lemma 3.1. The set K is a subgroup of G.

Proof. Obviously 0 is a member of K since all its descendants are 0.

If x and y are omniexpressible, then so is w = x+y: Any descendant of w
can be expressed as x´+y´ where x´ and y´ are descendants of x and y, and
where the path from x to x´ in the tree of x adds to the path from y to y´ in
the tree of y to produce the path from w to x´+y´. Since x´ is expressible,
there is a path from x´ to 0 in the x tree, and a path from y´ to some y´´ in
the y tree that will add to it, extending the path in the w tree from x´+y´
to 0+y´´. Since y´´ is expressible, there is a path connecting 0+y´´ to 0+0
in the w tree. Therefore the arbitrary descendant x´+y´ in the tree of w is
expressible, and w is omniexpressible.

Finally, since B = �B, if a number is expressible so is its opposite. Since
the members of the tree of �x consist of the opposites of the members of the
tree of x, for any integer x, if x is omniexpressible so is -x. In other words, K
= �K. This establishes that K is a subgroup of G under addition. ■

There is an obvious corollary to Lemma 3.1:

Corollary 3.2. A system (A,N) for Z is a Just Touching Covering System i�
the number 1 is omniexpressible. A system (A,N) for Z[i] is a Just Touching
Covering System i� the numbers 1 and i are omniexpressible.

The importance of this concept of omniexpressibility is made clear by the
following:

Theorem 3.1. E is a subgroup of G if and only if K = E. That is, E is a
group if and only if every expressible number is omniexpressible.

Proof. Obviously if K= E, then E is a group by Lemma 3.1. On the other
hand, say E is a group under addition. Let x be in E. Then we need to show
that x is in K, i.e. that x is omniexpressible. It su�ces to show that all the
�rst-generation descendants of x are expressible, since x is an arbitrary member
of E. These descendants are of the form Fa(x) = (x-a+a´)/N where a and a´
are in A. Since E is a group and x, a and a´ are in E, it follows that w = x-a+a´
is expressible. But w is a multiple of N, and its entire �rst generation consists
of the same repeated number w/N: Fa´´(w) = (w-a´´+a´´)/N = w/N for any
a´´. Since w is expressible, it must mean w/N = (x-a+a´)/N is expressible as
well. ■
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4. The existence of a nonzero omniexpressible number in the real
case

We show that, for the real case Z, E contains a nonzero omniexpressible
number, which will be the key fact in proving Theorem 1.1 in Section 5. We
record this as:

Lemma 4.1. For any system (A,N) for Z, there exists a nonzero omniexpress-
ible number.

We also mention at this point a conjecture for the complex Z[i] case, that
if true will provide a proof for Theorem 1.1 in that situation as well, also
presented in Section 5.

Conjecture 1. Given any system (A,N) for Z[i]:
a) Assume Im(N) ̸= 0. Then there exists a nonzero omniexpressible integer.

b) Assume Im(N) = 0. Then there are two omniexpressible integers, inde-
pendent as vectors in R2.

Note: As we shall see in Section 5, if these conditions are met then E is a
group, in fact a two-dimensional lattice, and all expressible numbers are omni-
expressible. This conjecture was tested in numerous computer examples, albeit
for relatively small N. In all examples, the conjectured one or two omniexpress-
ible numbers were found. A computer program was also used to generate and
plot all the members of E in the disk I and in all cases the plot was consistent
with E being a two-dimensional lattice.

Before proceeding with the proof of Lemma 4.1, we need the following
de�nition of nonemerging sets.

Consider an ordered set of integers, say D = {s1, s2,..., sk}, of size k greater
than 0, where it is possible that numbers may be repeated. One may form
a tree for the entire set D by applying the various maps Fa to the individual
members of the set. An example is shown in the illustration below. The set
D is called a merging set if it has a descendent set which contains duplicate
numbers. If all descendent sets of D feature k distinct numbers, we say D is
a nonmerging set. A set of size one is an example of a nonmerging set. As
remarked earlier, applying the same Fz to two members of a set corresponds
to a path on the tree of the di�erence of those two numbers. Thus another
way of de�ning a nonmerging set D is as a set where all the di�erences of pairs
{si, sj} of members of the set are inexpressible: if such a di�erence did map to
0, then si and sj would have the same image under some map Fz.

Notice that any set containing more than |I| members will be a merging set.
Repeatedly applying F0, where F0(x) = (x-0+a)/N with a in A, will eventually
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lead to a set with at most |I| distinct members, because eventually all the images
of the members of the set will be in I. It then makes sense to de�ne a Maximal
Nonmerging Set (MNM Set) to be a nonmerging set of maximal cardinality.
Note that any descendant in the tree of a MNM Set is also a MNM Set, since
it is obviously the same size.

4.1. Illustration 2

As earlier consider N = 3 and A = {a0, a1, a2} = {0, 25, 5}. The maps
to create the tree are in this order from left to right: F0(x) = (x-0+a)/3 and
F25(x) = (x-25+a´)/3 and F5(x) = (x-5+a´´)/3 where {a, a´, a´´} are the
unique members of A that give integral descendants for x. For example, the
�rst two generations of descendants of x = 1 was shown earlier in Illustration 1.

We can form the tree of a set of numbers in the same way, as we do below for
D = {0, 3, 1, 4, -3}. With these same F maps in the order given above, we have
the �rst generation of the tree of D shown below. Recall as a computational
check that the sum of the sets in any generation, when treated as vectors, will
equal D, since this is the real case with N positive.

The set D is clearly a nonmerging set since the di�erences of distinct mem-
bers of {0, 3, 1, 4, -3} are not multiples of 5, and in fact D is a MNM Set, as
are all its descendent sets.

4.2. Proof of Lemma 4.1

To prove Lemma 4.1 we need:

Lemma 4.2. Let M = {m1, m2, ..., mk} and M´= {m1´, m2´, ..., mk´} be
MNM Sets. If mi = mi´ for all i > 1, and m1 ̸= m1´ , then m1 - m1´ is a
nonzero omniexpressible number.

Proof. Consider the set M∪{m1´} = { m1, m2, ..., mk, m1´ }. Consider any
descendent set in its tree. Write this set as D = {n1, n2, ..., nk, n1´} where
each ni is the image of mi, and n1´ is the image of m1´. Note that n1 - n1´ is
an arbitrary descendant of m1 - m1´ since D is an arbitrary descendant in the
tree. The proof is by contradiction. Assume n1 - n1´ is not expressible. Then
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the images of n1 and n1´ will be di�erent in any further application of maps
to the set D. Moreover, the image of ni for i > 1 will not equal the images of
n1 and n1´ since M and M´ are nonmerging sets. Then D is a nonmerging set
of k+1 members, contradicting the maximality of M and M´. ■

The proof of Lemma 4.1 is then as follows:

Proof. For the proof of Lemma 4.1, we need to �nd two MNM Sets which
di�er in exactly one of their members. If T is a MNM Set of size 1, say
T = {x}, then we are done: for y unequal to x, the set T´ = {y} is also a
MNM Set, so x-y is a nonzero omniexpressible number. We may thus assume
T is a MNM Set of size greater than 1. Notice that if an integer x is added to
each member of T, the result, denoted T+x, is a MNM Set. This is clear since
the di�erences between members of T are the same as the di�erences between
members of T+x. By choosing x to be the opposite of the largest member of
T, we see there exists an MNM Set M = T+x that contains 0 with all other
members being negative integers. Write M = {0, m2,..., mk} and assume the
numbers are listed in descending order with mk being the smallest number in
the set.

Let S be the set of integers in the interval [mk, |mk|]. If this interval lies
inside I, the interval for B, then let S be the integers in I instead. Then any
Fz is a map from S to S. Any map Fz creates a directed graph on S connecting
each s in S to its image Fz(s). There are at most |S||S| possible graphs. Choose
k so that the size of Ak is larger than |S||S|. Consider the maps Fz with z
in Ak. Since there are more maps than there are graphs on S, there are two
di�erent z and z´ in Ak where the maps Fz and Fz´ have the same graph on S.
In particular, Fz(M) = Fz´(M). It is impossible that these two maps have the
same images on all members of Z+:

Lemma 4.3. If z and z´ are in Ak and Fz(x) = Fz´(x) for all x in Z+, then
z = z´.

Proof. Assume Fz(x) = Fz´(x) for all x in Z+. For any given x in Z+ we have
(x-z+z2)/N

k = (x-z´+z3)/N
k, where z2 and z3 are in Ak . Then z2�z = z3�z´

so that z�z´ = z2�z3. Then Fz2 (z-z´) = (z-z´-z2+z3)/N
k = 0. As x ranges

over the members of Z+, the numbers z2 (which are congruent to z�x modulo
Nk) range through all congruence classes modulo Nk. That is, Fz´´(z-z´) = 0
for all z´´ in Ak. Then generation-k of the tree for z�z´ consists entirely of
zeroes. Since the sum of the numbers in generation-k is z�z´ (or possibly its
opposite if N is negative), we get z�z´ = 0, proving Lemma 4.3. ■

We can now complete the proof of Lemma 4.1.

By Lemma 4.3, there is some smallest positive integer r greater than |mk|
where Fz and Fz´ have di�erent images on r. Consider the MNM Set r+M with
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M above: r+M = {r, r+m2,.., r+mk}. All numbers in r+M are positive, with
r being the largest. If we look at the images of r+M under Fz and Fz´ we get
two MNM Sets which agree in all their members apart from Fz(r) and Fz´(r).
Thus by Lemma 4.2 we have proven Lemma 4.1, the existence of a nonzero
omniexpressible number for the real case. ■

Note: In the complex case, the proofs of Lemmas 4.2 and 4.3 work as well.
We would replace intervals by disks in that setting but things work in basically
the same way. In the last step of the proof of Lemma 4.3 in the complex
case the sum of the members of generation-k of the tree of z�z´ is N̄k· (z�z´),
so again if N̄k· (z�z´) = 0 then z = z´. This same proof nearly works to
establish Conjecture 1 for the complex case as recorded above, at least in the
case for N with nonzero imaginary part where we need �nd only one nonzero
omniexpressible number. The only problem that comes up (a signi�cant one)
is that Z is nicely ordered by size, whereas Z[i] is not, so that the �nal step
of translating M by r does not work. I have other techniques for proving the
existence of a nonzero omniexpressible in the real case, but they all rely at
some point on the ordering of Z.

5. The proof of Theorem 1.1 if some nonzero omniexpressible num-
bers exist

By Lemma 4.1, in the real case, K will always contain a nonzero integer.
As remarked earlier, the existence of nonzero omniexpressible integers is the
key to the proof of Theorem 1.1. The analogous requirements for the proof in
the complex setting are only conjectured (Conjecture 1 above) and not proven.
Nevertheless, the theorem is still very useful if we can �nd one or two nonzero
omniexpressibles in the Z[i] setting in speci�c examples (Section 6). We rewrite
Theorem 1.1 from Section 1 of this paper in ways appropriate to the two set-
tings, and in addition will incorporate the facts about omniexpressible numbers
that emerge from the proof. As part of the proof it will turn out that all express-
ible numbers are omniexpressible, but we saw in Section 3 that this condition
is equivalent to E being a group, so it is not surprising that this emerges in the
proof we are about to present. The proofs for the real and the complex cases
are quite similar, but in Section 5.1 we present an alternate version of the proof
that is even more uni�ed. Each proof has its merits.

Theorem 5.1. If (A,N) is a system for Z, then E is a group under addition.
Consequently E has the description given in Theorem 1.2, that E is the smallest
subgroup of Z containing A that is closed under multiplication by N. In addition,
every expressible number is omniexpressible.
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Theorem 5.2. Assume (A,N) is a system for Z[i] that satis�es these condi-
tions:

(1) If Im(N) ̸= 0, there exists an omniexpressible integer other than 0,

(2) If Im(N) = 0, there are two omniexpressible integers, independent as R2

vectors.

Then it follows that E is a group under addition. Consequently E has the
description given in Theorem 1.2, that E is the smallest subgroup of Z[i] con-
taining A that is closed under multiplication by N. In addition, every expressible
number is omniexpressible.

We �rst prove Theorem 5.1 (the Real case):

Proof. By Lemma 4.1, we know a nonzero omniexpressible integer exists.
Let x be the smallest positive member of K. Since K = -K, -x is the largest
negative omniexpressible. Consider the set D = {0, x, ..., (|N|-2)x, (|N|-1)x}.
These numbers are all omniexpressible because K is a group under addition. If
two members of D were equivalent modulo N, then subtracting would yield
a nonzero integer k where kx is omniexpressible and divisible by N, with
0< k< |N|. Then kx/N is also a positive omniexpressible (being a descen-
dant of kx) and is smaller than x, which is a contradiction. Thus each member
of the set D is congruent to a di�erent member of A and in fact D contains one
member from each congruence class modulo N.

If jx is the member of D congruent to a modulo N for a in A, then jx has
descendant Fa(jx) = (jx - a+0)/N, which is omniexpressible. Hence jx-a is
also omniexpressible: its �rst-generation descendants are all the same number,
(jx-a)/N. Therefore a is omniexpressible, since a = (jx) - (jx-a) which is a
di�erence of omniexpressible numbers. This is true for any a in A. Then A is
a subset of K which means d = gcd(A) is also a member of K. It follows that
<d>, the set of all real integer multiples of d, is a subset of K.

On the other hand, any expressible number is a sum with coe�cients in B =
= A�A and is therefore divisible by d, so we have E ⊆ <d> ⊆ K ⊆ E. Therefore
E = K = <d> proving the theorem. ■

We now prove Theorem 5.2 (the Complex case):

Proof. In this proof the members of Z[i] are referred to interchangeably as
numbers or integers, or as vectors depending on how they are being viewed.

Case 1: Im(N) ̸= 0

Here we assume there exists an omniexpressible integer x other than 0. The
set K is a subgroup of Z[i] under addition (Lemma 3.1) and hence contains this
number x and all its real integral multiples. Then Nx is also in K, since all
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its �rst-generation descendants equal x. If N = r+si, for real integers r and
s, then Nx=rx+isx. Since rx is in K, it follows that isx = Nx-rx is as well.
Then K contains both nonzero sx and isx. Let z be a smallest nonzero integer
for which z and iz are both in K. Then K contains the ideal <z>, the set of all
complex integer multiples of z.

We show z and N are relatively prime: Assume z = mn and N = mt where
m, n, and t are complex integers with ||m|| > 1. Consider y = mnt. Then
y = tz is in <z> and is thus in K. On the other hand, y/N = n is then also in
K, being a descendant of y. Also, iy = imnt = itz is in K as it is a multiple
of z. Then iy/N = in is also in K. Since n and in are both in K and n has
norm less than the norm of z, we have a contradiction. Therefore z and N are
relatively prime.

Since z and N are relatively prime, there is a complex integer w such that
wz ≡ 1 modulo N. If a is any member of A, we have awz ≡ a modulo N, where
awz is in K. Then the descendant (awz-a)/N is also in K. Again this implies
awz-a is also omniexpressible, as its �rst-generation descendants all equal the
omniexpressible (awz-a)/N. Then a = awz - (awz-a) is omniexpressible too,
for any a in A.

We then have that A is contained in K. Since B = A�A, we have that
B is also a subset of K. Since K is an additive group that is closed under
multiplication by N, and since K contains B, it is clear that K contains E, the
set of all numbers in the form

∑k
j=0 bjN

j where k≥0, and where each bj is in
B. We have E ⊆ K ⊆ E , and so E = K, proving Theorem 5.2 in Case 1.

Case 2: Im(N) = 0

Here we assume there are two omniexpressible integers independent as R2

vectors. Denote these numbers as X = x1+ix2 and Y = y1+iy2, where x1,
x2, y1, and y2 are real integers. Since K is an additive group, it follows that
y1X-x1Y is a nonzero vector in K with real part zero. (Nonzero since X and
Y are independent and clearly y1 and x1 cannot both be zero, and in K since
y1 and x1 are real integers). Write this vector as ir where r is a nonzero real
integer. Similarly, s = y2X-x2Y is a nonzero vector in K with imaginary part
zero. Then z = rs is a nonzero real integer, in K since r is a real integer and s
is in K. Also iz is in K since iz = s·ir where ir is in K and s is a real integer.
The proof given in Case 1 follows as before, since K contains both z and iz for
some nonzero z, which is what was needed subsequent to the �rst paragraph
of that proof. ■

Note that both cases of the proof are essentially the same but the proof
clari�es why in Case 1 we only needed the existence of the one omniexpressible
number.
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5.1. An alternative proof of Theorem 1.1 if nonzero omniexpressible
numbers exist

We present an alternative proof for Theorems 5.1 and 5.2 with an interesting
method that works basically the same way in either Z or Z[i]. We combine the
two settings into one proof, though the requirements about the existence of
omniexpressibles in the complex cases are still the same as above. As before
denote the setting as G to cover both cases, where G can be either the group
(Z,+) or the group (Z[i],+).

Proof. By Lemma 3.1, K is an additive subgroup of G. We �rst establish that
G/K is a �nite group.

In the real case, K is a subgroup of Z and K is not {0}, so K is the set <a>
consisting of all multiples of some nonzero integer a. Therefore Z/K = G/K is
a �nite group.

In the complex case, the additive subgroup K of Z[i] is a lattice. If we have
an omniexpressible nonzero integer x, then we have a second omniexpressible
integer Nx that is independent of x (considered as vectors in R2) if Im(N) is
nonzero. If Im(N) = 0, we are already assuming that we have two independent
omniexpressible numbers. In either case, since K contains two linearly inde-
pendent complex integers, we have that K is a two-dimensional lattice, namely
a set <x,y> consisting of all ax+by where a and b are real integers, and x and
y are Gaussian integers that are linearly independent when viewed as vectors
in R2. Again we have that Z[i]/K = G/K is a �nite group. For the remainder
of the proof we consider the real and complex cases at the same time.

In any coset g+K, members of the coset are either all expressible or are all
inexpressible. If g is expressible, then so is g+k for any k in K: Take any path
from g to 0. There is a complementary path from k to some k´ such that 0+ k´
is a descendant of g+k. Since k´ is expressible, because k is omniexpressible,
we then have 0 is a descendant of g+k. Thus if g is expressible, so is any
member of g+K. On the other hand, if g is inexpressible, so is any member of
g+K: Assume g+k connects to 0. Then g+k connects to g´+k´ = 0 , where g´
is a descendant of g and k´ is a descendant of k. Then g´ = -k´ is expressible,
and then so is g, which is a contradiction. We may thus speak of `expressible
cosets' and `inexpressible cosets'.

If F is any map of the type described earlier, say Fz with z in At for some
t, then F(g+K) = F(g) + K. In other words, any F maps cosets to cosets.
The proof is as follows: For any k in K, F(g+k) = F(g)+F´(k) for some map
F´= Fz´ where z´ is also in At by the additive property in trees. Since F´(k)
is in K, we have F(g+K) ⊆ F(g)+K.

On the other hand, any F(g)+k can be written as F(g+Ntk), since F(g+Ntk)
= F(g)+F´(Ntk) for some map F´= Fz´ with z´ in At. Then F´(Ntk) =
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= (Ntk-z´+z´)/Nt = k no matter what z´ is. This also shows Ntk is omniex-
pressible since k is the only number in generation-t of its tree. Thus F(g)+K
⊆ F(g+K) and we conclude that F(g+K) = F(g) + K.

Furthermore, F is a bijection from G/K to G/K. That F is onto follows
from the fact that, for any g in G, g+K = F (Ntg+K). That F is one-to-one
then follows from the fact that G/K is a �nite group.

If g is inexpressible, so is its descendant F(g). Therefore F will map the
inexpressible cosets to inexpressible cosets. Since there are a �nite number of
cosets, it follows that the expressible cosets must map to the expressible cosets.
Thus if g is expressible, so is F(g) for the arbitrary map F. Thus g is in fact
omniexpressible if it is expressible. (Note also that the only expressible coset
is K itself.) All expressible integers are therefore in K, so we have E ⊆ K ⊆ E,
proving Theorems 5.1 and 5.2 that E = K is a group, and that all expressible
numbers are omniexpressible. ■

6. The application of Theorem 5.2 for the complex case

In this section we discuss the use of Theorem 5.2 in �nding the group E in the
complex setting in examples of (A,N) where the assumptions of Theorem 5.2 are
satis�ed. First, to verify that the assumptions of Theorem 5.2 are satis�ed, we
would need to �nd nonzero omniexpressible numbers. The approach discussed
below explains how to tell if E is a group, and importantly if it is not, and
then describes how to determine what that group is. We are using this revised
version of Theorem 5.2 that incorporates the comments on the structure of E
when it is a group, covered in Section 1:

Theorem 6.1. Let N be a Gaussian integer of modulus greater than 1, and A
a set of representatives of the congruence classes modulo N containing 0. Let
E be the set of all Gaussian integers expressible in the form

∑k
j=0 bjN

j where
k≥0, and where each bj is in B = A�A. If there is a nonzero Gaussian integer
that is omniexpressible or, in the case where Im(N) = 0, if there are two such
omniexpressible numbers that are independent as vectors in R2, then E is a
group. In addition, all expressible numbers are omniexpressible. Speci�cally, E
is the smallest additive subgroup of Z[i] that contains A which is closed under
multiplication by N. E is a two-dimensional lattice generated by a member of E
of minimal modulus, and a second member of E that is independent of the �rst
and that has minimal modulus among all such.

In an example, the �rst task is to establish that E is a group by �nding
the requisite omniexpressible numbers. If E is a group then all expressible
numbers are omniexpressible by Theorem 3.1, including of course the members
of A. So the obvious approach would be to take a smallest nonzero member x
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of A (or of B if it contains smaller numbers than A) and write out its tree for
enough generations to check for omniexpressibility. This is possible because
the distinct members of any tree are �nite in number and some generation
will contain exclusively members of I. After examining the tree of x we see
that either some descendant of x is not expressible, in which case E is not a
group, or all descendants of x do connect to 0, in which case we have found one
nonzero omniexpressible. We have then established E is a group by Theorem
6.1 if Im(N) ̸= 0. In the case where Im(N) = 0, we would need to �nd a second
omniexpressible number which is independent of x as a vector in R2. We may
be lucky and have already found the needed second omniexpressible number
as a descendant of x. If we are not lucky, in Section 1 we showed that, when
Im(N) = 0, it is not possible that all members of A lie on the same line through
the origin in R2. So we can look for a second omniexpressible by examining any
member of A that is independent of x. There is no luck involved in the choice,
other than that for some numbers you may need to examine fewer generations
of the tree. If E is a group, then all members of A are omniexpressible. If
this second member of A is also omniexpressible then we know E is a group by
Theorem 6.1, and if it is not omniexpressible, then E is not a group. Therefore,
in total, to determine if E is a group requires checking at most two members
of A for omniexpressibility.

A drawback here is that nonzero members of A could all be quite large. In
reality one need only examine the trees of the integers in I, for each nonzero x
in A has a generation contained entirely in I and these descendants cannot all
be 0. Thus there is a nonzero member of E in I if E is a group. If Im(N) = 0,
there are two independent members of E in I: If x and y are independent in A,
with their kth generations in I, it is not possible that all those descendants lie
on the same line through the origin, since the sum of the generation-k members
are Nkx and Nky. So a possible shorter approach would take two independent
members of A, and then �nd two independent descendants of them in I to check
for omniexpressibilty. E is a group if and only if they are both omniexpressible.

Assuming you have found the one or two omniexpressible numbers needed
to establish that E is a group, the next task would be to identify the group.
As discussed in Section 1 of the paper, E is a two-dimensional lattice <x,y>
consisting of all ax+by where a and b are real integers and x and y are Gaussian
integers that are independent as vectors in R2. We need to �nd a pair of
generators x and y of E where x is a nonzero member of E of minimal modulus
and y is a member of E that is independent of x and that has minimal modulus
among all such members of E. We can �rst easily identify x as it must be
a member of I. The tree-examination is much simpler now: we only need to
establish x is expressible, as omniexpressibility is guaranteed since E is a group.
In general there will therefore be fewer generations in the tree of x to check.
We would examine the di�erent members of I in order of increasing modulus,
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and x would be the �rst expressible number we �nd. There is no guarantee that
y will be found within I. If Im(N) ̸= 0, Nx will be expressible and independent
of x, so Nx is a possible candidate for y (and a bound on how big y could be).
In the case where Im(N) = 0 we have less guidance, but in this case we can
fall back on the fact that A contains vectors independent of x as pointed out
in Section 1. So there is a member of A that is expressible and independent of
x, which gives a candidate for y (and a bound on how big y could be). It may
still take a bit of work to �nd the smallest expressible number independent of
x. A computer is recommended. The following rather simple examples were
done using just a spreadsheet that displays the �rst generation of a number x.

Example 6.2. N = 1+2i and A = {0, -2+2i, -1, -3+2i, 4i}

Note: The canonical A is in the quadrilateral de�ned by the vectors N and
iN and consists of {0, i, 2i, -1+i, -1+2i}. The other possible A are shifts of the
canonical members by adding aN +biN where a and b are any real integers.

The radius of the disk I is
√
17/(

√
5 � 1) where

√
17 is the modulus of a

largest member of B = A�A, namely 1+4i, and where
√
5 is the modulus of N.

This is less than
√
12 so a biggest member of I is 1+3i, to give some idea of

how large a set may be involved as the descendants of a number x in I.

We need only �nd one nonzero omniexpressible and we will check the small-
est member of A which is x = -1. (There is no smaller member of B, which is
important to check in general. However there is no real reason to assume you
would have to look less deeply into the tree of -1 to con�rm omniexpressibility
than you would in testing any other member of I in A.)

In the tree of -1 you need only check the �rst generation of each new mem-
ber of the tree you encounter, to see if there are any new numbers encountered.
Since -x is omniexpressible if x is, you can skip checking the opposites of num-
bers you have previously checked. We see that generation-1 of -1 contains 0
(twice), 1, -2 and 2i. The 1 will have a 0 in its �rst generation since -1 does.
The numbers -2 and 2i have -1 as a descendant so they are expressible. In
generation-2 of the tree of -1, the only new encounter is with 1+2i (apart from
opposites of previously encountered numbers). The �rst generation of 1+2i
features only the number 1 which is expressible. Thus all members of the tree
are expressible and we have determined E is a group. We now look for small
numbers as generators for E = <x,y>. Obviously -1 is a smallest nonzero mem-
ber of E so we can choose x to be -1. Within the tree of -1, 2i is expressible
and is a candidate for y, being independent of -1. But there may be a smaller
number as well. Examining the tree of the number i up to generation-3 shows
it is not expressible. Similarly neither 1+i nor 1-i are expressible. Therefore 2i
is a smallest member of E independent of -1 and E = <-1, 2i>.

Example 6.3. N= 2 and A = {0, 1+2i, 2+i, 3+i}. The largest member of B
is 3+i so the disk I has radius

√
10 / (2-1) =

√
10 . So a largest member of
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I is 3+i. The set B contains (3+i) � (2+i) = 1, so we examine the tree of 1.
Its �rst generation includes 0 obviously as it is in B. The other generation-1
members are 1, -i, and 1+i. The �rst generations of both -i and 1+i include 1
so they are expressible. The second generation of 1 contains only 2+i and 1-i as
unchecked numbers (ignoring repeated numbers or their opposites). Both have
0 as a �rst-generation descendant so they are expressible. The only unchecked
number in the third generation of the 1-tree is the number 2, which has 1 as
its only �rst-generation descendant, and is therefore expressible. Therefore 1
is omniexpressible. For an omniexpressible number independent of 1 we saw
already that -i is omniexpressible. Therefore E is a group and is obviously
<1,-i> = Z[i]. In this example (A,N) is a Just Touching Covering System.

Example 6.4. Again with N = 2 and A = {0, 5+2i, 2+i, 3-3i}. A largest
member of B is 5+2i so I has radius

√
29 / (2-1) =

√
29 with a largest member

of I being 5+2i. I chose to examine the tree of 2+i which is in A. It required
going through to generation-6 until no new numbers were encountered, but
there were not many distinct descendants and they all were expressible. Since
1 featured in the tree of 2+i, we already have found the second independent
omniexpressible, so E is a group. Since i was also in the tree, we see E =
= <1,i> = Z[i] and (A,N) is again a Just Touching Covering System.

7. Programmable computation of an expression: replacing a Just
Touching Covering System by an equivalent Number System

We make an observation about the computation of an expression for an
expressible number in either any real case example, or in complex case exam-
ples where the conditions of Theorem 5.2 are met. This is a consequence of
Theorem 3.1, that expressible numbers are omniexpressible. Choose a map
F of the type described above, so that F(I) is minimal in size. If F(I) con-
tains any expressible nonzero number x, then you can pick a map F´ so that
F´(x) = 0. Then (F´◦ F)(I) will be strictly smaller than F(I) which was
assumed impossible. Therefore F maps every expressible number in I to 0.
(Theorem 3.1 matters here since we need to know an expressible number can-
not map to an inexpressible number.) Then repeated application of F will map
any expressible number to 0, since eventually the image will lie in I and will be
expressible by Theorem 3.1. Then at most one more application of F will result
in a connection to 0.

Note: In �nding an F that makes F(I) of minimal size there is more guidance
in the real case. One can keep composing various maps until the image of I
contains 0 as the only multiple of d = gcd(A). In fact one could stop here
without making F(I) minimal and that would be su�cient. (If you wanted to
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make F(I) minimal you would keep applying maps until the image contains at
most one representative of each congruence class modulo d). In the complex
case there is less guidance but �nding out what the lattice E is would be a �rst
step, as in the examples of Section 6. As we see below, we need F(I) to have 0
as the only member of E.

Say the map chosen to minimize the size of F(I) is F = Fz with z in At.

Then any expressible x can be written as
∑k

j=0(z−zj
′)N tj for some nonnegative

integer k, with the same z as in the de�nition of F and with various zj´ in At.
We have a speci�c expression for an expressible number that can be computed
using F, by keeping track of which numbers are subtracted in each application
of F. Notice also that the same path through the trees of any two expressible
numbers x and y will connect to 0. (It may be that the path for x connects
to 0 earlier, but continuing to follow the z-path from 0 connects back to 0, so
the paths in the trees of x and y can be chosen to be the same length). We
call the expression obtained from this map F the canonical expression de�ned
by z. (There are others of course, for other z also work). An example of this is
provided below. Importantly, this gives us a simple programmable way to �nd
an expression for an expressible number.

[Note: This is certainly not the only way to de�ne such a programmable
method. For example it is also possible to apply F0 repeatedly to an expressible
number until the result is in I and then follow with one �nal application of the
map F discussed above. That this works is also due to Theorem 3.1.]

To get more perspective on what we are doing here, we review the initial
set up of the problem. The set G is either Z (the real integers case) or Z[i]
(the complex integers case). Consider the system (A,N) where N of modulus
greater than 1 is in G and A is a set of representatives of the classes modulo
N. Let B = A�A. Let E be the set of all integers that are expressible using B,
i.e. all integers that can be written in the form

∑k−1
j=0 bjN

j with bj in B and k
some positive integer. We will consider E to be not only the set of expressible
numbers x, but also all the di�erent expressions those x may have. Note for
convenience we may replace A by A-a with a in A. Of course (A-a )�(A-a ) =
B is unchanged, as is E, both in its members and their expressions. We do this
so we can assume the new A contains 0 and is thus a subset of B.

If all numbers are expressible, i.e. E = G, we say (A,N) is a Just Touching
Covering System. But if each member of G has an expression (necessarily
unique) using only coe�cients in A, we say (A,N) is a Number System. In
expressing numbers using just A there is no tree, and there is only one map to
consider: FA, mapping x to (x-a)/N for the appropriate a in A. A number x
is expressible in A-coe�cients if FA

k(x) = 0 for some positive integer k.

For t a positive integer, let At be the set of all
∑t−1

j=0 ajN
j with aj in A. This

At is a set of representatives of all the congruence classes modulo Nt. Then
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we can consider the system (At,Nt) and B̃ = At � At. The same set E for
(A,N), including all its expressions, can also be seen as the set of all numbers

in the form
∑k−1

j=0 bj(N
t)j with bj in B̃ and k any positive integer. (We are just

grouping the expressions into strings of length t, but the expressions are not
changing, only the way they are viewed. If you replace members of At � At by
their original strings of length t with coe�cients in A�A, the expressions are
identical to those for the original system (A,N).) For any z in At, we can also

consider the system (Ã, Ñ) where Ã = z - At and Ñ = Nt. Here Ã is still a

set of representatives of the classes modulo Ñ , Ã � Ã is the same B̃, and the
set E is unchanged, both in its members and their expressions. Since 0 is still
a member of Ã , we have that Ã is a subset of B̃. If we de�ne Ã = z - At

using the z that came from the choice of Fz for the canonical expression de�ned
above, then each member of E has, as one of its expressions, an expression in
the form

∑k−1
j=0 ajÑ

j for some positive integer k with aj in Ã. This is the
canonical expression for a member of E given by z. Consider the map FÃ given

by FÃ (x) = (x-a)/ Ñ where a is the unique member of Ã for which the result
is integral. Note FÃ is the same map as Fz for the original system (A,N) and
the special z as chosen above. The canonical expression for a member of E can
be found simply by applying the map FÃ repeatedly until the result is 0, and

observing which members of Ã were subtracted along the way.

In the case where E is the entire set of integers, as mentioned above, we
have a nice vocabulary for what we are doing. If E is the set of expressible
numbers using coe�cients in B for a system (A,N), then, since E contains all
integers, we say (A,N) is a Just Touching Covering System. This result says

that there is another system (Ã, Ñ) for which it is also true that all integers are

in the E for this system (i.e. expressible using Ã � Ã coe�cients) and such that

all the expressions using Ã � Ã coe�cients are identical to those of the original
system using A�A (though terms of the expression are grouped together in

strings of length t). But importantly the latter system (Ã, Ñ) is also a Number

System: one of the expressions for each x uses only coe�cients in Ã. Thus every
Just Touching Covering System provides a Number System by an appropriate
replacement of A by Ã = z-At. Again, that this works is due to the fact that
all expressible numbers are omniexpressible. We can say the Number System
is an equivalent replacement for the original Just Touching Covering System in
that it produces all the same expressions including the canonical one given by
FÃ. We summarize these observations as a theorem:

Theorem 7.1. Let G be either the set of integers Z or the set of Gaussian
integers Z[i]. Consider a system (A,N) for G. In the Gaussian integer setting
assume also there exists an omniexpressible number other than 0, or in the case
of N having imaginary part equal to 0, assume there are two omniexpressible
numbers, independent as vectors in R2. Let B = A�A. Let E be the set of
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all integers that are expressible using B, i.e. all integers that can be written
in the form

∑k−1
j=0 bjN

j with bj in B and k any positive integer. Consider E
to be not just the expressible numbers but all the expressions those numbers
have in this form. Then there is a system (Ã, Ñ) for which the associated E is
identical in that the same numbers are expressible, and all the expressions using
Ã � Ã are essentially the same as those using A�A coe�cients. However, any
expressible number in E has one expression where the coe�cients all lie in Ã.
(Whereas it may not be true that there is such an expression with all coe�cients
in A.) In the special case where E = G, i.e. all numbers are expressible, then
we can say that while (A,N) is a Just Touching Covering System, there is a

Number System (Ã, Ñ) for which all Ã � Ã coe�cient expressions of a number
are essentially the same as the A�A coe�cient expressions that come from the
system (A,N).

7.1. Illustration 3

Here is a simple illustration of this idea. Consider the real case of N= 3
and A = {0, 4, 2}. Here B= {-4, -2, 0, 2, 4} and it is obvious E consists of all
the even integers. The interval I = [-2,2] ∩ Z. If you consider z in A2 where z
= 6 = 0 + 2(31) and the map F= Fz, then F({-2, -1, 0, 1, 2}) = {0, 1} which
is obviously minimal since 1 is inexpressible.

[The computations are as follows:

A2 = 3A+A ={0, 2, 4, 6, 8, 10, 12, 14, 16} and F(-2) = (-2 - 6 + 8)/9 =
0, F(-1) = (-1 - 6+16)/9 = 1, F(0) = (0 � 6 +6)/9 = 0, F(1) = (1 - 6+14)/9
= 1, F(2) = (2 - 6 + 4 )/9 = 0.]

Then choosing Ã to be z-A2 = {6, 4, 2, 0, -2, -4, -6, -8, -1} for Ñ =9, we have
every even integer expressible as a sum of powers of 9 with unique coe�cients
in Ã. These are the repeated applications of FÃ to �nd an expression for 100,

where FÃ(x) = (x-a)/9 with a the unique member of Ã that results in an
integer:

100 � (100 � -8)/9 = 12� (12 � -6)/9 = 2 � (2 � 2)/9 = 0

Or the same map viewed as F6 for the original (A,3) system using A2:

100 � (100 � 6+14)/9 = 12� (12 � 6+12)/9 = 2 � (2 � 6+4)/9 = 0

Tracking which numbers were subtracted, this gives the expression in Ã to
be 100 = -8 + (-6)9 + (2)92 or, in the F6 version, 100 =(6-14)+(6-12)9+(6-4)9

2.

The latter expresssion can be expanded to see the expression it corresponds
to in the original B= A�A. Subtracting the expansions of the A2 terms involved
(6 = 0 + 2(31), 14 = 2 + 4(31), 12 = 0 + 4(31), and 4 = 4 + 0(31) ) we get:

100 = (0-2)+(2-4)31+(0-0)32+(2-4)33+(0-4)34+(2-0)35.
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This is the canonical expression for z with z = 6 = 0 + 2(31). The repeated
F0 and F2 steps are highlighted above in red.

Secondly, to illustrate that the same z-paths lead to 0 in the trees of any
two expressible numbers, we compare the expression for 1000 to the expression
for 100 above. The expression for 1000 using the F6 map repeatedly is:

1000 �(1000 � 6+14)/9 =112�(112 � 6+2)/9 =12 � (12 � 6+12)/9 =2�
(2 � 6+4 )/9 =0.

By observing which numbers were subtracted at each stage, we see that
1000 has expression:

1000 = (6-14)+(6-2)9+(6-12)92+(6-4)93

Compare this to the following, where F6 has been applied a fourth time in
the computation for 100 above to make the expressions the same length:

100 = (6-14)+(6-12)9+(6-4)92+(6-6)93

These expressions represent the same paths in the tree of 100 and 1000:
Still with N = 3 and A = {a0, a1, a2} = {0, 4, 2}, the maps to create the tree
will be given in this order from left to right: F0(x) = (x-0+a)/3 and F4(x)
= (x-4+a´)/3 and F2(x) = (x-2+a´´)/3 where {a, a´, a´´} are the unique
members of A that give integral descendants for x. Since 6 = 0+2·31, F6 is
given as F2 ◦ F0 , namely, of the three paths from a number x, this says follow
the leftmost path (F0) to the �rst generation, then the rightmost path (F2) to
the next generation in the original B-tree. Repeating this two-step route leads
to 0 as a descendant in all trees of expressible numbers. For example, below
we show the relevant parts of the trees for 100 and 1000 where a number is
connected to its three �rst-generation descendants by a single arrow to prevent
overcrowding. We alternate choosing the leftmost of the three descendants
with the rightmost, giving the expressions above in the original B. The route
is shown in red.
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To recap the results in this paper we have shown:

Theorem 7.2. Let the additive group G be either Z or Z[i]. Let E be the
set of all numbers expressible in B = A � A. In the real case, E is the small-
est subgroup of G containing B that is closed under multiplication by N, and
all members of E are omniexpressible. In the complex case, if there exists a
nonzero omniexpressible number or, in a case with Im(N) = 0, if there exist
two independent omniexpressible numbers, then the same conclusion holds: E
is the smallest subgroup of G containing B that is closed under multiplication
by N, and all members of E are omniexpressible.

Notes: In the complex case, it is conjectured that the required omniexpress-
ible numbers always exist and E is always as described. In examples above we
used the theorem to �nd E in cases where the conjectured conditions were
shown to hold. In both cases, if A is shifted to contain 0 so that A is a subset
of B, we can also say E is the smallest subgroup of G containing A that is
closed under multiplication by N. In the real case the group E is speci�cally
the set of all multiples of gcd(B) = gcd(A). Finally, the fact that all express-
ible numbers are omniexpressible leads to a speci�c programmable way to �nd
an expression for an expressible number. If E is equal to the entire set G,
this is essentially a way of replacing the Just Touching Covering System by an
�equivalent� Number System.
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