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Abstract. The purpose of this article is to study the solvability of
Barbashin-type integro-differential equation and initial value problem via
the structure of well-known generalized convolutions. We give necessary
and sufficient conditions for the unique explicit solution of this class of
equations and estimate its boundedness in certain weighted L1 spaces.
The illustrative examples of the obtained results are also considered.

1. Introduction

We concerned with integro-differential equation of the form

(1.1)
∂f(x, s)

∂x
= c(x, s)f(x, s) +

b∫
a

K(x, s, ρ)f(x, s)dρ+ g(x, s).

Here c : J× [a, b] → R,K : J× [a, b]× [a, b] → R, and mapping g : J× [a, b] → R
are given functions, where J is a bounded or unbounded interval, the function
f is unknown. The equation (1.1) was first studied by E.A. Barbashin [2] and
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his pupils. For this reason, this is nowadays called integro-differential equation
of Barbashin type or simply the Barbashin equation.

The (1.1) has been applied to many fields such as mathematical physics,
radiation propagation, mathematical biology and transport problems, e.g.,
more details refer [1]. One of the characteristics of Barbashin equation is
that studying solvability of the equation is heavily dependent on the kernel
K(x, s, ρ) of the equation. In many cases, we can reduce equation (1.1) to the
form of an ordinary differential equation and use the Cauchy integral opera-
tor or evolution operator to study it when the kernel does not depend on x.
An example is the stationary integro-differential equation of Barbashin type

∂f(x, s)/∂x = c(s)f(x, s) +
b∫
a

K(s, ρ)f(x, ρ)dρ+ g(x, s), i.e. the kernel K does

not depend on x. In some other cases, we need to use the partial integral oper-
ator to study this equation (see [1]). However, in the general case of K(x, s, ρ)
as an arbitrary kernel, the problem of finding a solution for Barbashin equation
remains open. In some other cases, we need to use the partial integral operator
to study this equation (see [1]). On the other hand, if we view A as the operator
defined by A := ∂/∂x−c(x, s)I, where I is the identity operator, then Eq. (1.1)

is written in the following form Af(x, s) =
b∫
a

K(x, s, ρ)f(x, s)dρ+ g(t, s).

The goal of this work is to show the solvable of some classes of Integro-
differential equations Barbashin’s type (1.1) via the structure of convolution
and polyconvolution related to the Fourier cosine, Hartley, and Laplace trans-
forms as outlined above. Namely, if we replace Af(x, s) by the operator
Af(x, s) = D(f ∗ k)(x) where D is the second-order differential operator hav-

ing the form D =
(
I − d2

dx2

)
. Then original equation is reduced to become the

equation of Barbashin type

(1.2)

(
1− d2

dx2

)
(f ∗ k)(x) =

b∫
a

K(x, u)f(u)du+ ψi(x),

where h, ψi, i = 1, 2 are given functions, the kernel K(x, u) are correspond
to certain case and f is unknown function. To study the solvability of (1.2),
we give two approaches by reducing the original equation to the following lin-
ear integro-differential equation releated to Fouriercosine-Laplace generalized
convolutions and Hartley-Fouriercosine generalized covolutions. Based on the
structure of noted above convolutions, together with the techniques introduced
in [7, 13, 15, 17, 20]. Besides, we study the Cauchy-type initial value problem
for integro-differential equations related to Hartley convolution. Techniques
used here to check the solution of the problem satisfies the initial value theo-
rem come from [9, 19], and [24]. Namely, we follow closely the strategy of the
Wiener-Lévy theorem, Schwartz’s function classes, and the Tauberian theorem.
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The organization of this paper is presented as follows. Besides the introduc-
tion, the article has four sections. Section 2 is devoted to the presentation of
notions about the Fourier-Laplace convolution, convolution of Hartley trans-
form, and the Hartley-Fourier cosine polyconvolution. The main results of
the paper are presented in sections 3 and 4 along with illustrative numerical
examples to ensure validity and effectiveness.

2. Preliminaries

To begin with, we briefly recall the convolutions structures that will be
used later. These concepts together with related results can be easily found
in [3, 4, 5, 7, 10, 11, 13, 14, 20, 21]. Denote by (F ) is the Fourier integral
transform ([5]) of a function f defined by (Ff)(y) = 1√

2π

∫
R
e−ixyf(x)dx with

y ∈ R, where e−ixy = 1+i
2 Cas(xy) + 1−i

2 Cas(−xy). The concept of “Harley
transform” was proposed as an alternative to the Fourier transform by R. V. L.
Hartley in 1942 (see [3]). Compared to the Fourier transforms, then the Hartley
transform has the advantage of transforming real functions to real functions as
opposed to requiring complex numbers (refer [10]). The Hartley transform is
an alternate means of analyzing a given function in terms of its sinusoids. This
transform is its own inverse and an efficient computational tool where real-
value functions. The Hartley transform of a function is a spectral transform
and can be obtained from the Fourier transform by replacing the exponential
kernel exp(−ixy) by Cas(−xy). The Hartley transform of a function f can be
expressed as either

(2.1)
(
H{12}f

)
(y) :=

1√
2π

+∞∫
−∞

f(x) cas(±xy)dx, y ∈ R.

Here the function cas is understood as cas(±xy) = cos(xy) ± sin(xy). The
Fourier cosine transforms of the function f , denoted by (Fc), are defined by
the integral formulas ([14]) as follows

(2.2) (Fcf) (y) :=

√
2

π

+∞∫
0

f(x) cos(xy)dx, y > 0,

The Fourier cosine transform agrees with the Fourier transform if f(x) is an
even function. In general, the even part of the Fourier transform of f(x) equals
the even part of the Fourier cosine transform of f(x) in the specified region.
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Definition 2.1. The convolution of Fourier cosine integral transform [20] de-
fined by

(2.3)
(
f ∗

1
g
)
(x) :=

1√
2π

+∞∫
0

[
g(x+ y) + g(|x− y|)

]
f(y)dy, x > 0.

And suppose that f, g are functions belonging to the Lp(R+) space, then(
f ∗

1
g
)
∈ Lp(R+) with p = 1, 2 and the following factorization property holds

(readers refer prove to the detail in [20]).

(2.4) Fc

(
f ∗

1
g
)
(x) = (Fcf) (x) (Fcg) (x).

The Laplace transform is denoted by (L) and defined by the integral formula
[11, 21]

(2.5) (Lf)(y) :=
∞∫
0

e−xyf(x)dx, ℜy > 0.

Notation H(R+) is the set of all function f such that (Lf) belongs to L2(R+),
namely H(R+) = {f : (Lf) ∈ L2(R+)} which implies that L2(R+) ⊂ H(R+).

Definition 2.2. (See [13]) The Fourier-Laplace convolution is defined by

(2.6)

(
f ∗

2
k
)
(x) :=

:=
1

π

+∞∫
0

+∞∫
0

[
v

v2 + (x− u)2
+

v

v2 + (x+ u)2

]
f(u)k(v)dudv, x > 0.

Suppose that f ∈ L2(R+) and k is function belonging to the H(R+), then the
Parseval’s identity holds true

(2.7)
(
f ∗

2
k
)
(x) = Fc ((Fcf)(y)(Lk)(y)) (x).

Readers can refer to the detailed proof in [13].

Definition 2.3. The Hartley-Fourier cosine polyonvolution [22] of three func-
tions f, k1, k2 is denoted by ∗

3
(f, k1, k2) and defined

(2.8)

(
∗
3
(f, k1, k2)

)
(x) :=

1

4π

+∞∫
−∞

+∞∫
0

f(u)k1(v)
[
k2(−x+ u+ v)+

+k2(x− u− v) + k2(−x+ u− v) + k2(x− u+ v) + k2(−x− u+ v)−

−k2(x+ u− v) + k2(−x− u− v)− k2(x+ u+ v)
]
dudv.
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Let f, k2 are given functions in L2(R) and k1 ∈ L2(R+), then the following
Parseval’s identity holds

(2.9)
(
∗
3
(f, k1, k2)

)
(x) = H1

(
(H1f)(y)(Fck1)(|y|)(H2k2)(y)

)
.

To prove this, the readers must refer to detail in [22].

According to results in [7] p.364, the authors used integral transform

(T1f) (x) =
1√
π

+∞∫
−∞

cos
(
xy +

π

4

)
f(y)dy and

(T2f) (x) =
1√
π

+∞∫
−∞

sin
(
xy +

π

4

)
f(y)dy

to study the convolutions (f ∗
T1

g) and (f ∗
T2

g). It’s obvious that: cos
(
xy + π

4

)
=

=
√
2
2 cas(−xy) and sin

(
xy + π

4

)
=

√
2
2 cas(xy). Therefore, (T1f) ≡ (H2f) and

(T2f) ≡ (H1f), where H{ 1
2}

is the Hartley transform defined by formula (2.1).

Consequently, the Theorem 3.5 page 337 in [7] and the Theorem 3.14 page 378
in [7] can be rewritten in the following form.

Definition 2.4. The convolution of Hartley transform for two function f, g is
defined by
(2.10)(
f ∗

4
g
)
(x) :=

1

2
√
2π

+∞∫
−∞

f(y)
[
g(x+ y) + g(x− y) + g(−x+ y)− g(−x− y)

]
dy,

where x ∈ R. Assume that f, g are functions belonging to the L1(R), then(
f ∗

4
g
)
∈ L1(R), see detail in [7] and

(2.11) H{ 1
2}
(
f ∗

4
g
)
(y) =

(
H{ 1

2}
f
)
(y)

(
H{ 1

2}
g
)
(y), y ∈ R,

3. Integro-differential equations of Barbashin’s type

• We reduce the original equation to the following linear integro-differential
equation of Barbashin type related to the Fourier cosine (Fc), Laplace (L)
generalized convolutions. Indeed, let f, k be given functions, in Eq.(1.2) we
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choose (a, b) = (0,+∞) and using operator
(
1− d2

dx2

)(
f ∗

2
k
)
(x) in the left-

hand side. Moreover, the kernel K(x, u, v) is chosen independent on v as
K(x, u) = − 1√

2π

[
g(x + u) + g(|x − u|)

]
. Applying the formulas (2.3) then

the equation (1.2) can be rewritten in the form

(3.1)

(
1− d2

dx2

)(
f ∗

2
k
)
(x) +

(
f ∗

1
g
)
(x) = Ψ1(x).

Here, k, g,Ψ1 are given functions, f is unknown function and (. ∗
2
.), (. ∗

1
.) are

determined in the formula (2.6) and (2.3) respectively.

Theorem 3.1. Suppose that Ψ1, g are given functions belonging to L2(R+)
and k ∈ H(R+) satisfying the following conditions

(3.2) (1 + y2)|(Lk)(y)| < +∞,

and

(3.3)
(FcΨ1)(y)

(1 + y2)(Lk) + (Fcg)(y)
∈ L2(R+),

where L and Fc are defined respectively by formula (2.5), (2.2). Then equation
(3.1) has a unique solution belonging to L2(R+) and is represented as follow

f(x) =

√
2

π

+∞∫
0

(FcΨ1)(y)

(1 + y2)(Lk)(y) + (Fcg)(y)
cos(xy) dy, x > 0.

In order to prove Theorem 3.1, we need the following auxiliary lemma.

Lemma 3.1. Let f is a function belonging to L2(R+) space, such that the
condition (1 + y2)f(y) ∈ L2(R+) holds, then we have the following equality

(3.4)

(
1− d2

dx2

)
(Fcf) (x) = Fc

(
(1 + y2)f(y)

)
(x) ∈ L2(R+), y > 0,

and

(3.5)

(
1− d2

dx2

)(
H{12}f

)
(x) = H{12}

(
(1 + y2)f(y)

)
(x) ∈ L2(R), y ∈ R.

Proof. Titchmarch’s previous results on the Fourier transform tell us that
f(y), yf(y), . . . , ynf(y) ∈ L2(R) if and only if

(Ff)(x),
d

dx
(Ff)(x), . . . ,

dn

dxn
(Ff)(x)
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belong to L2(R) (see Theorem 68, p.92, [14]), then above assertion is still true
for Fc and H{12}. On the other hand, since

d

dx
(Fcf) (x) =

√
2

π

d

dx

 +∞∫
0

f(y) cos(xy)dy

 = Fs

(
(−y)f(y)

)
(x) ∈ L2(R+),

then
(3.6)

d2

dx2
(Fcf) (x) =

d

dx

√ 2

π

+∞∫
0

(−y)f(y) sin(xy)dy

 = Fc(−y2f(y)) ∈ L2(R+).

From (3.6), we obtain
(
1− d2

dx2

)
(Fcf(y)) (x) = Fc

(
(1+y2)f(y)

)
(x) ∈ L2(R+).

Moreover

d

dx
cas(±xy) = d

dx
(cosxy ± sinxy) = ±y cas(∓xy),

then

d

dx

(
H{12}f

)
(x) =

1√
2π

d

dx

 +∞∫
−∞

f(y) cas(±xy)dy

 =

=
1√
2π

+∞∫
−∞

±yf(y) cas(∓xy)dy = H{21}(±yf(y)) ∈ L2(R),

and

d2

dx2

(
H{12}f

)
(x) =

1√
2π

d

dx

 +∞∫
−∞

±yf(y) cas(∓xy)dy

 =

=
1√
2π

+∞∫
−∞

−y2f(y) cas(±xy)dy =

= H{12}(−y
2f(y))(x) ∈ L2(R).

(3.7)

From (3.7), we deduce that
(
1− d2

dx2

)(
H{12}f(y)

)
(x) = H{12}

(
(1+y2)f(y)

)
∈

∈ L2(R), y ∈ R. ■
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Proof of Theorem 3.1. Since k is a function belonging to H(R+) then
Lk ∈ L2(R+), using the condition (3.2), (2.7) and formula (3.4) in lemma 3.1
with together unitary property of Fourier cosin transform on the L2(R), we
obtain

(3.8)

(
1− d2

dx2

)(
f ∗

2
k
)
(x) = (1 + y2)(Fcf)(y)(Lk)(y) ∈ L2(R+).

In the L2(R+) space, applying (Fc) transform on both sides of the equation
(3.1) and simultaneous use of formulas (3.8), (2.4), we obtain

(1 + y2)(Fcf)(y)(Lk)(y) + (Fcf)(y)(Fcg)(y) = (FcΨ1)(y).

Under the condition (3.3), we obtain

(Fcf)(y) =
(FcΨ1)(y)

(1 + y2)(Lk)(y) + (Fcg)(y)
∈ L2(R+).

Therefore f(x) belongs to L2(R+) space, via the inverse formula of Fourier co-
sine transform, we represent explicitly the solution in the following form f(x) =

=
√

2
π

+∞∫
0

(FcΨ1)(y)
(1+y2)(Lk)(y)+(Fcg)(y)

cos(xy) dy, x > 0. ■

If compared with the results in [16, 17], in this theorem, we use generalized
convolution associated with the Fourier cosine-Laplace transforms. Therefore,
it is difficult to show the functional space because the Laplace transform is
not an isometric (unitary) isomorphism mapping on L2(R+). The novelties is
that, we constructed the functional space H(R+) = {f : (Lf) ∈ L2(R+)} for
satisfies the conditions of the problem, which implies that L2(R+) ⊂ H(R+).
An example is given below to illustrate the above result.

Example 3.2. Let k(x) = i sinx is function belonging to H(R+). Us-
ing formula (3.2.9) in [6], we obtain (Lk)(y) = i

1+y2 ∈ L2(R), which means

(1 + y2)|(Lk)(y)| = 1 < +∞. We choose Ψ1 = g =
√

π
2 e

−x ∈ L2(R+). Then
(FcΨ1)(y)

(1+y2)(Lk)(y)+(Fcg)(y)
= 1

1+i(1+y2) belongs to L2(R+). The solution in this case

based on the formula 1, page 615 in [6] applied with a =
√
1− i is

f(x) =

√
2

π

+∞∫
0

1

1 + i(1 + y2)
cos(xy)dy =

√
(1− i)3

2

√
π

2
e−

√
1−i x ∈ L2(R+).

• The remaining approach is based on the structure of related to the Hartley
and Fourier cosine generalized covolutions. From equation (1.2), we choose
(a, b) = (−∞,+∞) and considering

(3.9)

(
1− d2

dx2

)
(f ∗ h)(x) :=

(
1− d2

dx2

)(
∗
3
(f, k1, k2)

)
(x).
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Here, the left-hand side of (3.9) is chosen to replace the right-hand side of
equation (1.2) and defined by (2.8). The kernel K(x, u) = − 1

2
√
2π

[
g(x + u) +

+g(x−u)+g(−x+u)−g(−x−u)
]
. Using formulas (3.9), (2.10) we can rewrite

the equation (1.2) in the following form

(3.10)

(
1− d2

dx2

)(
∗
3
(f, k1, k2)

)
(x) +

(
f ∗

4
g
)
(x) = ψ2(x),

here, k1, k2, g, ψ2 are known functions,
(
∗
3
(f, k1, k2)

)
(x) ∈ L2(R) defined by

(2.8) and (f ∗
4
g) ∈ L2(R) defined by formula (2.10); and f is the unknown

function needed to find.

Theorem 3.3. Suppose k1, k2, g, ψ2 are given functions such that k1 ∈
∈ L2(R+), k2, g, ψ2 belonging to L2(R) space. Furthermore, suppose that the
following conditions occur simultaneously

(1 + y2)
∣∣(Fck1)(|y|)(H2k2)(y)

∣∣ < +∞, y ∈ R,(3.11)

(H1ψ2)(y)

(1 + y2)(Fck1)(|y|)(H2k2)(y) + (H1g)(y)
∈ L2(R).(3.12)

Then the equation (3.10) has the unique solution in the L2(R) of the form

f(x) =
1√
2π

+∞∫
−∞

(H1ψ2)(y)

(1 + y2)(Fck1)(|y|)(H2k2)(y) + (H1g)(y)
cas(xy) dy x ∈ R,

where Fc, H{12} are defined respectively by (2.2), (2.1).

First, we need the following Lemma.

Lemma 3.2. Suppose that f, g are functions belonging to L2(R) space then(
f ∗

4
g
)
∈ L2(R) and we get the factorization equalities (2.11)

Proof.

+∞∫
−∞

∣∣∣(f ∗
4
g
)
(x)
∣∣∣2dx ≤

≤ 1

2
√
2π

+∞∫
−∞

( +∞∫
−∞

∣∣ f(y)[g(x+ y) + g(x− y)+

+ g(−x+ y)− g(−x− y)
]∣∣2dy)dx ≤
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≤ 4

2
√
2π

+∞∫
−∞

+∞∫
−∞

|f(y)|2
[
|g(x+ y)|2 + |g(x− y)|2+

+ |g(−x+ y)|2 + |g(−x− y)|2
]
dydx =

=
4√
2π

 +∞∫
−∞

+∞∫
−∞

|f(y)|2|g(x− y)|2 dxdy +
+∞∫

−∞

+∞∫
−∞

|f(y)|2|g(x+ y)|2 dxdy

 .

Since f, g are functions belonging to the L2(R) space, using Fubini’s Theorem
and the variable transformation formula for t = x− y; t = x+ y, we obtain

+∞∫
−∞

∣∣(f ∗
4
g)(x)

∣∣2dx ≤ 4

√
2

π

 +∞∫
−∞

|f(y)|2dy

 +∞∫
−∞

|g(t)|2dt

 < +∞,

which implies that
(
f ∗

4
g
)
(x) belong to the L2(R) space. The proof of equality

(2.11) in the L2(R) is the same as that in L1(R) space (refer [7]). ■

Proof of Theorem 3.3. Using formulas (2.9), (3.5) and condition (3.11) we
have

(3.13)

(
1− d2

dx2

)(
∗
3
(f, k1, k2)

)
(x) =

=

(
1− d2

dx2

)
H1

(
(H1f)(y)(Fck1)(|y|)(H2k2)(y)

)
(x) =

= H1

(
(1 + y2)(Fck1)(|y|)(H2k2)(y)(H1f)(y)

)
∈ L2(R).

Since the Hartley transform is unitary on L2(R). Such that, from (3.13) we
have

(3.14)
H1

(
1− d2

dx2

)(
∗
3
(f, k1, k2)

)
(x) =

= (1 + y2)(Fck1)(|y|)(H2k2)(y)(H1f)(y) ∈ L2(R).

In the L2(R) space, applying H1 transform on both sides of the equation (3.10),
we have

H1

(
1− d2

dx2

)(
∗
3
(f, k1, k2)

)
(y) +H1

(
f ∗

4
g
)
= (H1ψ2)(y).

In view of (3.14),(2.11), we deduce that

(1 + y2)(Fck1)(y)(H2k2)(y)(H1f)(y) + (H1f)(y)(H1g)(y) = (H1ψ2)(y).
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This equivalent to

(H1f)(y)
[
(1 + y2)(Fck1)(y)(H2k2)(y) + (H1g)(y)

]
= (H1ψ2)(y).

Under the condition (3.12), this yields

(H1f)(y) =
(H1ψ2)(y)

(1 + y2)(Fck1)(y)(H2k2)(y) + (H1g)(y)
∈ L2(R)

implying that f ∈ L2(R). Therefore

f(x) =
1√
2π

+∞∫
−∞

(H1ψ2)(y)

(1 + y2)(Fck1)(|y|)(H2k2)(y) + (H1g)(y)
cas(xy) dy, x ∈ R

based on the inverse formula of Hartley transform. ■

When comparing with the result in [17], in this theorem, the second-order
differential operator must be directly applied to the polyconvolution, resulting
in more complex computations through the Bessel function. The following
example is an illustration of the above result.

Example 3.4. Let ψ2 = g =
√

π
2 e

−|x| ∈ L2(R), using formula 1.4.1, page 23

in [4] then H1

(√
π
2 e

−|x|) = 1
1+y2 . Furthermore, using 1.2.17 in [4], we obtain

K0(x) =
+∞∫
0

1√
1+y2

cos(xy)dy, where K0 is Bessel function of the second kind

[12]. Choose k1(x) =
√

2
πK0(x), we deduce that

+∞∫
0

|k1(x)|2dx = π
2 , hence

k1(x) belongs to the L2(R+). We obtain

(Fck1)(|y|) = Fc

(√
2

π
K0(x)

)
(|y|) = 1√

1 + y2
.

By putting

k2(x) =

{√
π
2K0(x) if x ≥ 0,√
π
2K0(−x) if x ≤ 0.

It means k2(x) is even extension of k1(x), we have

(H2k2)(y) =
1√
2π

+∞∫
−∞

k2(x) cas(xy) dy =
2√
2π

+∞∫
0

k2(x) cos(xy) dy =

=

+∞∫
0

K0(x) cos(x|y|) dx =
1√

1 + y2
.
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Thus, chosen k1, k2,Ψ2, g satisfy (3.11), implies that

(1 + y2)(Fck1)(|y|)(H2k2)(y) = 1

is finite, and condition (3.12) becomes

(H1ψ2)(y)

(1 + y2)(Fck1)(|y|)(H2k2)(y) + (H1g)(y)
=

1

2 + y2
∈ L2(R).

The solution is of the form

f(x) =
1√
2π

+∞∫
−∞

1

2 + y2
cas(xy)dy =

2√
2π

+∞∫
0

1

2 + y2
cos(xy) dy =

=

√
π

2
e−

√
2x ∈ L2(R+).

4. Cauchy-type initial value problem for integro–differential equa-
tions

The Theorem 4.1 in [8], Chapter 4, page 224, gives a closed-form solution of
the Cauchy-type problem.{ (

Dα
a+f

)
(x)− λf(x) = Φ(x), (a < x ≤ b; α > 0;λ ∈ R)(

Dα−k
a+ f

)
(a+) = bk, (bk ∈ R; k = 1, · · · , n = −[−α]) ,

(4.1)

where Φ(x) ∈ Cγ [a, b], (0 ≤ γ < 1) with the Riemann-Liouville fractional
derivative

(
Dα

a+f
)
(x) of order α > 0 are given by

(
Dα

a+f
)
(x) :=

1

Γ(n− α)

(
dn

dxn

){ x∫
a

f(t)

(x− t)α−n+1
dt

}
with (n = [α] + 1;x > a). In this part, we study the Cauchy-type initial value
problem based on (4.1), by choosing λ = −1 and substituting operator

(
Dα

a+f
)

by D(g ∗
4
f), where D is the second-order differential operator having the form(

I − d2

dx2

)
. Namely, the Cauchy-type initial value problem is stated as follows:

(4.2) f(x)− f ′′(x) +D
(
g ∗

4
f
)
(x) =

(
g ∗

4
φ
)
(x),

with the initial condition

(4.3) lim
x→±∞

f(x) = lim
x→±∞

f ′(x) = 0.
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Here g, φ are given functions, (.∗
4
.) is the Hartley convolution defined by (2.10)

and f is a twice-differentiable function needed to find. Following the structure
of Hartley convolution and the factorization properties, we will obtain the
unique explicit L1-solution. One of the difficulties in solving problem on L1(R)
space if compared with previous results in [16, 18] is that the transforms Fc

and H{ 1
2}

: L2(R) ↔ L2(R) is an isometric isomorphism mapping (unitary)

[5], while it is no longer true for L1(R). Moreover, on the L1(R) space, the
theorem (68, page 92, in [14]) also no longer holds. To overcome that, we used
the Wiener-Lévy theorem [9] and the denseness in L1(R) of Schwartz’s function
classes [19] simultaneously to solve.

Firstly, we need the following auxiliary lemma.

Lemma 4.1. Suppose that h, k are given functions belonging to L1(R), then

(4.4) ∥h ∗
4
k∥L1(R)≤

√
2

π
∥h∥L1(R)∥k∥L1(R).

Proof. Following [23], we know that if h, k ∈ L1(R) then h ∗
4
k ∈ L1(R).

Therefore we have

∥h ∗
4
k∥L1(R) =

1

2
√
2π

+∞∫
−∞

∣∣∣∣
+∞∫

−∞

h(y)
[
k(x+ y) + k(−x+ y)+

+ k(x− y)− k(−x− y)
]
dy

∣∣∣∣dx ≤

≤ 1

2
√
2π

+∞∫
−∞

{ +∞∫
−∞

|h(y)|
[
|k(x+ y)|+ |k(−x+ y)|+

+ |k(x− y)| − |k(−x− y)|
]
dy

}
dx.

Applying the Fubini’s Theorem and change of variables formula, we obtain

∥h ∗
4
k∥L1(R) ≤

√
2

π

 +∞∫
−∞

|h(y)|dy

  +∞∫
−∞

|k(t)|dt

 =

=

√
2

π
∥h∥L1(R)∥k∥L1(R). ■

Theorem 4.1. Let g, φ are functions belonging to L1(R) space and satisfy the
condition

(4.5) 1 +
(
H{ 1

2}
g
)
(y) ̸= 0, y ∈ R,
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then the equation (4.2) has a unique solution in C2(R)∩L1(R) and represented

by f(x) =
(√

π
2 e

−|t| ∗
4

(
l ∗
4
φ
))

(x). Moreover, we have

∥f∥L1(R)≤ 4

√
2

π
∥l∥L1(R)∥φ∥L1(R),

where l is a function belonging to L1(R) space and determined by

(
H{ 1

2}
l
)
(y) =

(
H{ 1

2}
g
)
(y)

1 +
(
H{ 1

2}
g
)
(y)

.

Proof. For y ∈ R we have

(
H{ 1

2}
f ′′(x)

)
(y) =

1√
2π

+∞∫
−∞

f ′′(x) cas(±xy) dx =

=
1√
2π

{
f ′(x) cas(±xy)

∣∣∣∣+∞

−∞
+

+y(sinxy ∓ cosxy)f(x)

∣∣∣∣+∞

−∞
−y2

+∞∫
−∞

f(x) cas(±xy)dx
}
.

By using the condition (4.3), we obtain

(4.6)
(
H{ 1

2}
f ′′(x)

)
(y) = −y2

(
H{ 1

2}
f(x)

)
(y).

Thus f, g are functions belonging to the L1(R), then
(
g ∗

4
f
)
∈ L1(R) (see [7]).

On the other hand, according to the assumption f ′, f ′′ ∈ L1(R), then
(
g ∗

4
f ′
)

and
(
g ∗

4
f ′′
)
also belong to the L1(R) space. Following the formula (2.10) for

x ∈ R we have

(4.7)

(
g ∗

4
f
)
(x) =

=
1

2
√
2π

+∞∫
−∞

g(y)

{
f(x+ y) + f(−x+ y) + f(x− y)− f(−x− y)

}
dy.

Notation S is the space of functions f(x) ∈ C∞(R) and whose derivative de-
creases rapidly when |x| tends to ∞, it is also known as Schwartz space. Then,
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the closure of S = L1(R), which means that S is the dense set in the L1(R)
space. Thus, for any f, f ′, f ′′ belong to the L1(R) then there exists a sequence
of functions {fn} ∈ S such that {fn} → f, {f ′n} → f ′ and {f ′′n} → f ′′ when
n tends to ∞. With the above function classes, together with the assumption
that g is a function belonging to the L1(R) space, then the integral in the for-
mula (4.7) is convergent. We continue to change order of the integration and
the differentiation as follow

(4.8)
d2

dx2

(
g ∗

4
fn

)
(x) =

1

2
√
2π

×

×
+∞∫

−∞

g(y)
d2

dx2

{
fn(x+ y) + fn(−x+ y) + fn(x− y)− fn(−x− y)

}
dy =

=
1

2
√
2π

+∞∫
−∞

g(y)

{
f ′′n (x+ y) + f ′′n (−x+ y) + f ′′n (x− y)− f ′′n (−x− y)

}
dy =

=
(
g ∗

4
f ′′n

)
(x) ∈ L1(R).

Letting (4.8) through the limit sign, we obtain

lim
n→∞

d2

dx2

(
g ∗

4
fn

)
(x) = lim

n→∞

(
g ∗

4
f ′′n

)
(x),

this is equivalent to

(4.9)
d2

dx2

(
g ∗

4
f
)
(x) =

(
g ∗

4
f ′′
)
(x).

By using the formulas (2.11), (4.6) and (4.9), we obtain

(4.10)

H{ 1
2}

(
d2

dx2

(
g ∗

4
f
)
(x)

)
(y) = H{ 1

2}
(
g ∗

4
f ′′
)
(y) =

=
(
H{ 1

2}
g
)
(y)
(
H{ 1

2}
f ′′
)
(y) =

= −y2
(
H{ 1

2}
g
)
(y)
(
H{ 1

2}
f
)
(y) = −y2H{ 1

2}
(
g ∗

4
f
)
(y).

Form (4.10), we deduce that

(4.11) H{ 1
2}

((
1− d2

dx2

)(
g ∗

4
f
)
(x)

)
(y) = (1 + y2)H{ 1

2}
(
g ∗

4
f
)
(y).
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Applying the Hartley H{ 1
2}

transformation on both sides of the equation (4.2)

and concurrent using consecutively the formulas (4.6), (4.11), (2.11), we obtain(
H{ 1

2}
f
)
(y)−

(
H{ 1

2}
f ′′
)
(y) +H{ 1

2}

((
1− d2

dx2

)(
g ∗

4
f
)
(x)

)
(y) =

= H{ 1
2}
(
g ∗

4
φ
)
(y),

equivalently

(1 + y2)
(
H{ 1

2}
f
)
(y) + (1 + y2)

(
H{ 1

2}
g
)
(y)
(
H{ 1

2}
f
)
(y) =

=
(
H{ 1

2}
g
)
(y)
(
H{ 1

2}
φ
)
(y).

Under the condition (4.5), we obtain(
H{ 1

2}
f
)
(y)

{
(1 + y2)

[
1 +

(
H{ 1

2}
g
)
(y)

]}
=
(
H{ 1

2}
g
)
(y)
(
H{ 1

2}
φ
)
(y),

which implies that

(4.12)
(
H{ 1

2}
f
)
(y) =

1

1 + y2

[ (
H{ 1

2}
g
)
(y)

1 +
(
H{ 1

2}
g
)
(y)

](
H{ 1

2}
φ
)
(y).

The Wiener-Levy theorem (refer [9]) for the Fourier transform said that if
g ∈ L1(R), then 1 + (Fξ)(y) ̸= 0 for any y ∈ R is a necessary and suf-
ficient condition for the existence of a function k belonging to the L1(R)
such that (Fk)(y) = (Fξ)(y)

1+(Fξ)(y) , where ξ ∈ L1(R). This theorem still holds

true for Hartley transform, by putting g(x) := 1+i
2 ξ(x) + 1−i

2 ξ(−x), then

(Fξ)(y) =
(
H{ 1

2}
g
)
(y). If g belongs to the L1(R), then 1 +

(
H{ 1

2}
g
)
(y) ̸= 0

for any y ∈ R is a necessary and sufficient condition for the existence of a func-

tion l ∈ L1(R) such that
(
H{ 1

2}
l
)
(y) =

(
H{ 1

2}
g

)
(y)

1+

(
H{ 1

2}
g

)
(y)

. On the other hand

H{ 1
2}
(√

π
2 e

−|t|) = 1
1+y2 , then the formula (4.12) can be rewritten as follows

(
H{ 1

2}
f
)
(y) = H{ 1

2}

(√
π

2
e−|t|

)
(y)
(
H{ 1

2}
l
)
(y)
(
H{ 1

2}
φ
)
(y),

by using the formula (2.11), we deduce that(
H{ 1

2}
f
)
(y) = H{ 1

2}

(√
π

2
e−|t| ∗

4

(
l ∗
4
φ
))

(y)
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and the solution f(x) =
(√

π
2 e

−|t| ∗
4

(
l ∗
4
φ
))

(x) for all x almost everywhere

on R (refer[5, 19]). Thus
√

π
2 e

−|t| ∈ L1(R) and l, φ are functions belonging to
L1(R) then (.∗

4
.) ∈ L1(R), which implies that f(x) also belongs to L1(R) space.

Now, we prove solution f(x) of problem actually satisfies the initial condition

(4.3). Indeed, by setting G(x) =
(
l ∗
4
φ
)
(x) belongs to C1

0 (R) ∩ L1(R) space,

then for x ∈ R we have

f(x) =

(√
π

2
e−|y| ∗

4
G

)
(x) =

=
1

2
√
2π

+∞∫
−∞

√
π

2
e−|y|

[
G(x+ y) +G(−x+ y) +G(x− y)−G(−x− y)

]
dy =

=
1

4

{ +∞∫
−∞

e−|y|G(x+ y)dy +

+∞∫
−∞

e−|y|G(−x− y)dy +

∫ +∞

−∞
e−|y|G(x− y)dy−

−
+∞∫

−∞

e−|y|G(−x− y)dy

}
=

1

4
{I1 + I2 + I3 − I4},

where I1, I2, I3 and I4 be the respective integrals in above expression. It’s
obvious that we have

I1 =

+∞∫
−∞

e−|y|G(x+ y)dy =

0∫
−∞

e−|y|G(x+ y)dy

+∞∫
0

e−|y|G(x+ y)dy =

= I−1 + I+1 .

A change of variable t = x+y for the integrals I−1 and I+1 , we obtain I−1 +I+1 =

=
x∫

−∞
e−x+tG(t)dt +

+∞∫
x

ex−tG(t)dt. When x → +∞ then I−1 tends to 0, and

when x→ −∞ then I+1 also tends to 0. Furthermore

|I−1 | ⩽
x∫

−∞

|e−(x−t)G(t)|dt ⩽
x∫

−∞

|G(t)|dt→ 0,

when x tends to −∞. The same goes for integrals

|I+1 | ⩽
+∞∫
x

|e−(t−x)G(t)|dt ⩽
+∞∫
x

|G(t)|dt→ 0,
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when x→ +∞. Thus, the integral I1 is converges to 0 when x tends to ±∞. Do
exactly the same as above for the integrals I2, I3 and I4 then also converge to
0 when x tends to ±∞, which implies that lim

x→±∞
f(x) = 0 and f ∈ C0(R). On

the other hand, I1 = I−1 +I+1 = e−x
x∫

−∞
etG(t)dt+ex

+∞∫
x

e−tG(t)dt, considering

the derivative of the integral, we obtain

I ′1 = −e−x

x∫
−∞

etG(t)dt+ ex
+∞∫
x

e−tG(t)dt =

= −
+∞∫

−∞

e−x+tG(t)dt+

+∞∫
x

ex−tG(t)dt

= −I−1 + I+1 → 0 when x tends to ±∞.

The same is still true for derivatives of the integrals I2, I3, and I4, which means
(I ′2 + I ′3 - I ′4) → 0 when x tends to ±∞. So, we conclude that lim

x→±∞
f ′(x) = 0

and f ∈ C2(R). By using inequality (4.4), we have L1-norm estimation solution
as follows

∥f∥L1(R) ≤ 2

√
2

π

∥∥∥∥√π

2
e−|t|

∥∥∥∥
L1(R)

∥l ∗
4
φ∥L1(R)

≤ 8

π

∥∥∥∥√π

2
e−|t|

∥∥∥∥
L1(R)

∥l∥L1(R)∥φ∥L1(R)= 4

√
2

π
∥l∥L1(R)∥φ∥L1(R).■

Remark 4.1. The integrals I1, I2, I3, and I4 in the solution of the problem
(4.2) can be represented via Fourier convolutions, so we can also check the
initial condition (4.3) through Wiener-Tauberian theorem [24].

(Refer [23]) Assume that h ∈ L1(R+) and l ∈ L1(R) then
(
h ∗

5
l
)
belongs to

the L1(R) space. Moreover, we get the factorization equality

(4.13) H{ 1
2}
(
h ∗

5
l
)
(y) = (Fch) (|y|)

(
H{ 1

2}
l
)
(y),

and we have L1-norm estimation as follows

(4.14) ∥h ∗
5
l∥L1(R)≤

√
2

π
∥h∥L1(R+)∥l∥L1(R)

Here, the convolution (h ∗
5
l)(x) is defined

(4.15)
(
h ∗

5
l
)
(x) :=

1√
2π

∫ +∞

0

[
h(x+ y) + h(x− y)

]
l(y) dy, x ∈ R.

and (Fch)(y) is defined by the formula (2.2).
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Remark 4.2. If we choose h =
√

π
2 e

−t belongs to L1(R+), then

Fc

(√
π

2
e−t

)
=

(
H{ 1

2}

√
π

2
e|t|
)
(x) =

1

1 + y2
.

Thus, we can be rewritten formula (4.12) as follows(
H{ 1

2}
f
)
(x) = Fc

(√
π

2
e−t

)
(|y|)

(
H{ 1

2}
l
)
(y)
(
H{ 1

2}
φ
)
(y).

By using the formulas (4.13) and (2.10), we obtain(
H{ 1

2}
f
)
(x) = H{ 1

2}

(√
π

2
e−t ∗

5

(
l ∗
4
φ
))

(y) ∈ L1(R).

Thus, f(x) =
(√

π
2 e

−t ∗
5
(l ∗

4
φ)
)
(x) for all x almost everywhere on R (refer

[5, 19]) and f(x) ∈ C2(R) ∩ L1(R). By using (4.14), (4.4), we also get the
boundedness of solution as in the Theorem 4.1.

To check that the above solution satisfies the initial condition (4.3) in prob-
lem (4.2), we do the same as in the proof that the solution satisfies the initial
conditions of the Theorem 4.1, by using (4.15) we rewrite the solution in the

following form f(x) = 1√
2π

+∞∫
0

√
π
2 e

−y
[
G(x + y) + G(x − y)

]
dy with x ∈ R,

where G(x) =
(
l ∗
4
φ
)
(x) ∈ C1

0 (R) ∩ L1(R).

We will end the article with an example illustrating the above result.

Example 4.2. Now, we choose g(x) =
√

π
2 e

−|x| ∈ L1(R) space, then

H{ 1
2}

(√
π

2
e−|x|

)
=

1

1 + y2
.

Under the condition (4.5), we obtain 1+
(
H{ 1

2}
g
)
(y) = 1+ 1

1+y2 ̸= 0 with y ∈ R

and

(
H{ 1

2}
g

)
(y)

1+

(
H{ 1

2}
f

)
(y)

= 1
2+y2 ∈ L1(R), so there exists a function l ∈ L1(R+) such

that

l(x) = H{ 1
2}

(
1

2 + y2

)
=

1√
2π

+∞∫
−∞

1

2 + y2
cas(±xy) dy =

√
π

2
e−

√
2|x| ∈ L1(R).
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On the other hand, according to the formula (3, p.615, see [6]) then

φ(x) = H{ 1
2}

(
1√
2
e−

y2

4

)
= =

1√
2π

+∞∫
−∞

1√
2
e−

y2

4 cas(xy) dy

=

√
2

π

+∞∫
0

1√
2
e−

y2

4 cos(xy) dy = e−x2

∈ L1(R).

Then f belongs to the C2(R) ∩ L1(R) space and has formula for the solution

as follow f(x) =
(√

π
2 e

−|t| ∗
4

(√
π
2 e

−
√
2|t| ∗

4
e−t2

))
(x), or we can completely

represent the solution formula in the following form

f(x) =

(√
π

2
e−t ∗

5

(√
π

2
e−

√
2|t| ∗

4
e−t2

))
(x) ∈ C2(R) ∩ L1(R).

And get L1-norm estimation ∥f∥L1(R)≤ 4
√

2
π∥

√
π
2 e

−
√
2|t|∥L1(R)∥e−t2∥L1(R)≤ 8.

References

[1] Appell, J., A. Kalitvin and P. Zabrejko, Partial Integral Operators
and Integro-Differential Equations: pure and applied mathematics. Marcel
Dekker, New York (2000).

[2] Barbashin, E.A., Conditions for invariance of stability of solutions of
integro-differential equations. (in Russian). Izvestiya Vysshikh Uchebnykh
Zavedenii. Matematika, 1 (1957), 25–34.

[3] Bracewell, R.N., The Hartley Transform, The Clarendon Press, Oxford
University Press, New York (1986).

[4] Bateman, H., Tables of Integral Transforms, volume 1. New York (NY),
London, McGraw-Hill Book Company, Inc (1954).

[5] Christopher, D. Sogge, Fourier Integrals in Classical Analysis, Cam-
bridge University Press, Cambridge (1993).

[6] Debnath, L. and D. Bhatta, Integral Transforms and Their Applica-
tions, 2nd edition, Chapman & Hall/CRC Press, New York (2007).

[7] Giang, B.T, N.V. Mau, and N.M. Tuan, Operational properties of
two integral transforms of Fourier type and their convolutions, Integral
Equations and Operator Theory, 65(3) (2009), 363–386.



On Barbashin’s type equations 361

[8] Kilbas, A., H.M. Srivastava and J.J. Trujillo, Theory and Appli-
cations of Fractional Differential Equations, North-Holland Mathematics
Studies, vol. 204, Elsevier Science, Amsterdam (2006).

[9] Naimark, M.A., Normed Algebras, Wolters-Noordhoff Publishing, Gro-
ningen (1972).

[10] Poularikas, A.D. and A.M. Grigoryan. The Transform and Applica-
tions Handbook, 3rd edition. The Electrical Engineering Handbook Series,
CRC Press & IEEE Press, Boca Raton, Florida (2010).
https://doi.org/10.1201/9781315218915

[11] Sneddon, I.N., The Use of Integral Transform, McGraw-Hill Book Com-
pany, Inc, New York (NY), London (1972).

[12] Srivastava, H.M. and R.G. Buschman, Theory and Applications of
Convolution Integral Equations, Kluwer Series on Mathematics and Its
Applications, Vol. 79. Kluwer Academic Publishers, Dordrecht, Boston,
and London (1992).

[13] Thao, N.X., V.K. Tuan, L.X. Huy and N.T. Hong, On the Fourier–
Laplace convolution transforms. Integral Transforms and Special Func-
tions. 26(4) (2015), 303–313.

[14] Titchmarsh, E.C., Introduction to the Theory of Fourier Integrals, 3rd
edition, Chelsea Publishing Co. New York (1986).

[15] Tuan, T., On the Fourier-sine and Kontorovich–Lebedev generalized con-
volution transforms and their applications, Ukrainian Math. J., 72(2)
(2020), 302–316. https://doi.org/10.1007/s11253-020-01782-1

[16] Tuan, T., Some classes of integral equations of convolutions–pair gener-
ated by the Kontorovich–Lebedev, Laplace and Fourier transforms, Com-
munications of the Korean Mathematical Society, 36(3), (2021), 485–494.
https://doi.org/10.4134/CKMS.C200183

[17] Tuan, T., Operational Properties of the Hartley Convolution and Its Ap-
plications, Mediterranean Journal of Mathematics, 19 (2022), 266. (2022).
https://doi.org/10.1007/s00009-022-02173-5

[18] Tuan, T., Some results of Watson and Plancherel–type integral trans-
forms related to the Hartley, Fourier convolutions and applications, Math-
ematical Methods in the Applied Sciences, 45(17) (2022), 11158–11180.
https://doi.org/10.1002/mma.8442

[19] Rudin, W., Real and Complex Analysis, 3rd edition, McGraw-Hill Book
Company, New York (1987).

[20] Tuan, V.K., Integral transforms of Fourier cosine convolution type, Jour-
nal of Mathematical Analysis and Applications, 229(2) (1999), 519–529.
https://doi.org/10.1006/jmaa.1998.6177

[21] Tuan, V.K. and T. Tuan, A real-variable inverse formula for the Laplace
transform, Integral Transforms and Special Functions, 23(8) (2012),
551–555. https://doi.org/10.1080/10652469.2011.609817

https://doi.org/10.1201/9781315218915
https://doi.org/10.1007/s11253-020-01782-1
https://doi.org/10.4134/CKMS.C200183
https://doi.org/10.1007/s00009-022-02173-5
https://doi.org/10.1002/mma.8442
https://doi.org/10.1006/jmaa.1998.6177
https://doi.org/10.1080/10652469.2011.609817


362 T. Tuan

[22] VanAnh, P.T. and N.X. Thao, Integral transforms of Hartley–
Fourier cosine polyconvolution type, Applicable Analysis, 94(9) (2015),
1749–1765.

[23] VanAnh, H.T. and N.X. Thao, Hartley–Fourier cosine generalized
convolution inequalities, Mathematical Inequalities & Applications, 18(4)
(2015), 1393–1408.

[24] Wiener, N., Tauberian theorems, Annals of Mathematics, 33(2) (1932),
1–100.

T. Tuan
Department of Mathematics,
Electric Power University
235-Hoang Quoc Viet Rd, Hanoi
Vietnam
tuantrinhpsac@yahoo.com


	Introduction
	Preliminaries
	Integro-differential equations of Barbashin's type
	Cauchy-type initial value problem for integro–differential equations

