
Annales Univ. Sci. Budapest., Sect. Comp. 54 (2023) 307�319

MEAN-VALUES ASSOCIATED WITH A

GENERALIZED SCHEMMEL FUNCTION

Jörn Steuding (Würzburg, Germany)

Ade Irma Suriajaya (Fukuoka, Japan)

Communicated by Imre Kátai

(Received April 12, 2023; accepted May 26, 2023)

Abstract. We prove mean-value results for Schemmel's function (gener-
alizing Euler's totient function). This function was originally de�ned to
count the number of sets of m consecutive integers each being ≤ n and
coprime to n. We generalize this to all integers m and consider its various
mean-values.

1. Introduction and motivation

For a positive integer m, Victor Schemmel [15] introduced the arithmetic
function

(1.1) n 7→ φm(n) := n
∏
p|n

(
1− m

p

)
,

which generalizes Euler's totient function φ = φ1. He observed that for m
smaller than all prime factors of n > 1, there exist φm(n)many sets ofm consec-
utive integers in the interval [1, n) each of which being relatively coprime to n.
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Moreover, for n ≥ 2, we have φm(n) = 0 if, and only if,m is a prime divisor of n.
Since φm is multiplicative, by using the inclusion�exclusion principle, we also
have

(1.2) φm(n) = n
∑
d|n

µ(d)

d
mω(d),

where ω(d) counts the number of distinct prime divisors of d and µ is the Möbius
µ-function, i.e., µ(d) = (−1)ω(d) for square-free n, and µ(d) = 0 otherwise.

It seems that not much is known about Schemmel's function and its in-
ventor. Victor Schemmel was a German mathematician of the 19th century
(1840-1897); he received his doctorate in Breslau (now Wrocªaw in Poland) in
1863. His function was used by Derrick Norman Lehmer [9] in the context of
magic squares. More recently, Schemmel's function appeared in formulas enu-
merating cliques in direct product graphs [2] by Colin Defant. He also studied
the behavior of the iterates of Schemmel's function [3]. Further references on
φm(n) can be found in the Handbook of Number Theory, vol. II [13].

In this note we prove certain asymptotic formulae for Schemmel's function
φm(n) with respect to n and m. It turns out that our reasoning also holds for
negative values of m. Indeed, writing δm with δ = ±1 and m ∈ N in place of
m above, we �nd

(1.3) φδm(n) = n
∏
p|n

(
1− δ

m

p

)
= n

∑
d|n

µ(d)

d
(δm)ω(d),

which generalizes (1.1) and (1.2). Disregarding the original de�nition we shall
also call φm with a non-positive m Schemmel's function. Without much e�ort,
quite a few of our investigations can be extended to the case where m is not
necessarily an integer.

And here come our main results.

Theorem 1.1. For arbitrary m ∈ Z\{0}, as N → ∞,∑
1≤n≤N

φm(n) = 1
2

∏
p

(
1− m

p2

)
·N2 +O

(
N

(logN)|m|

|m|!

)
.

The error term is uniform for all m from a compact interval contained in
[−R,R] \ {0, 22, 32, 52, 72, 112, . . .}, for any R > 0.

For m = 0 the exact trivial formula∑
1≤n≤N

φ0(n) =
∑

1≤n≤N

n = 1
2N(N + 1).

is valid; the right hand side matches the asymptotic formula of the theorem.
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For a square m = p2 of a prime the main term vanishes and the asymptotic
formula reduces to an error estimate. This phenomenon is illustrated in the
�gure below, where the logarithms of

∑
1≤n≤N φm(n) for m = 1, 32, 2 · 5 are

printed.
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Figure 1. The upper curve is for the classical case of Euler's totient function; the one in

the middle belongs to m = 10, and the �cloud� below is related to m = 9.

Theorem 1.2. For �xed n ∈ N, let η be the squarefree kernel of n (or radical
of n). Then we have ∑

1≤m<M

φm(n) = nP (M)

with a polynomial P ∈ Q[X] of degree ω(η) + 1 given by

P (X) = −1 +X +
∑

0≤k≤ω(η)

ckX
k+1,

where

ck =
∑
d|n

ω(d)≥max{1,k}

µ(d)

d

(
ω(d)

ω(d)− k

)
Bω(d)−k

k + 1
,

where the Bernoulli numbers Bj are implicitly de�ned by

x

exp(x)− 1
=
∑
j≥0

Bj
xj

j!
= 1− 1

2
x+

1

6
x2 − 1

30
x4 ± . . . .

For ∑
−M<m≤−1

φm(n) = nQ(M),
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the coe�cients of the polynomial Q ∈ Q[X] can be written in a similar way to
those of P (X) by replacing µ(d) with (−1)ω(d)µ(d).

Combining the above and φ0(n) = n,

∑
−M<m<M

φm(n) = n

−1 + 2M + 2
∑

0≤k≤ω(η)

dkM
k+1

 ,

where

dk =
∑
d|n,

ω(d)≥max{1,k},
ω(d): even

µ(d)

d

(
ω(d)

ω(d)− k

)
Bω(d)−k

k + 1
.

We give the proofs of these theorems in the next two sections. The fourth
section deals with mean-value results for the reciprocal of φm(n). We also
mention a few details about the Dirichlet series associated with φm(n) before
concluding our paper.

2. The average with respect to n (Proof of Theorem 1.1)

We follow the reasoning for Euler's totient function (the case m = 1) that
can be found in many textbooks (e.g. [1]). Using (1.2), we �nd∑

n≤N

φm(n) =
∑
bd≤N

bµ(d)mω(d) =
∑
d≤N

µ(d)mω(d)
∑

b≤N/d

b =

=
1

2
N2

∑
d≤N

µ(d)

d2
mω(d) +O

N
∑
d≤N

|m|ω(d)

d

 .

(2.1)

In view of 2ω(z) ≤ d(z) for z ∈ N, resp. mω(z) ≤ d(z)logm/ log 2 ≪ zϵ, where
z 7→ d(z) =

∑
d|z 1 denotes the divisor function; the error term here is of size

N1+ϵ. However, with a little more e�ort, we can achieve a slightly better error
term.

For this aim we use a result of Atle Selberg [14], namely that

(2.2) Az(x) :=
∑
d≤x

zω(d) = c(z)x(log x)z−1 +O
(
x(log x)Re z−2

)
,

where z is a complex number and c(z) is the Euler product

c(z) =
1

Γ(z)

∏
p

(
1 +

z

p− 1

)(
1− 1

p

)z

.



Schemmel's function 311

The error term in (2.2) is uniform for |z| ≤ R with any R > 0 and the Euler
product (taken over the primes) is absolutely convergent; see also the paper [4]
by Hubert Delange. For the Euler product we observe that c(1) = 1 and for
z = |m| ∈ N in general

c(|m|+ 1)

c(|m|)
=

Γ(|m|)
Γ(|m|+ 1)

∏
p

p+ |m|
p+ |m| − 1

p− 1

p
≤ 1

m
,

hence

c(|m|) ≤ 1

(|m| − 1)!
.

By partial summation we thus get

∑
d≤N

|m|ω(d)

d
= A|m|(N)N−1 +

N∫
1

A|m|(x)
dx

x2
≪ (logN)|m|

(|m|)!
.

We continue by noting that∑
d≤N

µ(d)

d2
mω(d) =

∑
d≥1

µ(d)

d2
mω(d) −

∑
d>N

µ(d)

d2
mω(d).

Applying once more partial summation in combination with (2.2) yields in a
similar fashion

∑
N<d≤M

|m|ω(d)

d2
≪ N−1 (logN)|m|−1

(|m| − 1)!
+

M∫
N

(log x)|m|−1

(|m| − 1)!

dx

x2
≪

≪ N−1 (logN)|m|−1

(|m| − 1)!
.

By letting M → ∞, we get∑
d≤N

µ(d)

d2
mω(d) =

∏
p

(
1− m

p2

)
+O

(
N−1 (logN)|m|−1

(|m| − 1)!

)
.

Substituting this in (2.1) implies the statement of Theorem 1.1. We remark
that the main term vanishes when m is a square of a prime, hence this limits
the uniformity of our estimate with respect to m.

The best error term for Euler's totient function so far had been given by a
method due to Arnold Wal�sz [17], using advanced estimates for exponential
sums: ∑

n≤N

φ(n) =
3

π2
N2 +O(N(logN)

2
3 (log logN)δ).
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Wal�sz obtained δ = 4
3 , and with further re�nement of the method, Hongquan

Liu [10] obtained δ = 1
3 . For similar estimates for a more general class of

arithmetic functions, we refer to Yuta Suzuki [16]. In the case of φm(n), an
error term O(N) is impossible since φm(N) = N −m ∼ N for prime N .

3. The average with respect to m (Proof of Theorem 1.2)

It is not di�cult to compute the mean-value of φm(n) with respect to m
explicitly. For this purpose, we deduce from (1.3) that, for �xed n,

∑
1≤m<M

φm(n) = n
∑
d|n

µ(d)

d

∑
1≤m<M

mω(d)

and ∑
−M<m≤−1

φm(n) = n
∑
d|n

µ(d)

d

∑
1≤m<M

(−m)ω(d)

Next we use a classical result due to Johann Faulhaber (which in some literature
is also addressed as (Jacob) Bernoulli's formula), resp. its modern version

(3.1)
∑

1≤m<M

mω =
∑

0≤j≤ω

(
ω

j

)
Bj

ω + 1− j
Mω+1−j ,

valid only for ω ≥ 1; a proof can be found in [6], for historical details we refer
to [7]. Hence,

∑
1≤m<M

φm(n) = n
∑
d|n

ω(d)≥1

µ(d)

d

∑
0≤j≤ω(d)

(
ω(d)

j

)
×(3.2)

× Bj

ω(d) + 1− j
Mω(d)+1−j + n(M − 1)

and ∑
−M<m≤−1

φm(n) = n
∑
d|n

ω(d)≥1

µ(d)

d

∑
0≤j≤ω(d)

(−1)ω(d)

(
ω(d)

j

)
×

× Bj

ω(d) + 1− j
Mω(d)+1−j + n(M − 1),

where the last term results from those d satisfying ω(d) = 0.
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Denoting by η be the squarefree kernel of n (or radical of n), that is
η =

∏
p|n p, we notice that ω(η) ≥ ω(d) for all divisors d of n with µ(d) ̸= 0.

Thus collecting all terms with constant di�erence k = ω(d)− j, we obtain∑
1≤m<M

φm(n) = n
∑

0≤k≤ω(η)

∑
d|n
ω(d)

≥max{1,k}

µ(d)

d

(
ω(d)

ω(d)− k

)
Bω(d)−k

k + 1
Mk+1 +

+ n(M − 1)

and similarly for negative m. Adding the two sums and incorporating the case
m = 0 yields Theorem 1.2. ■

4. Means for the reciprocal

Next we discuss the average of the reciprocal of Schemmel's function with
respect to m. We �rst observe for any prime power pα that whenever m > p,
we have

1

φm(pα)
= − 1

mpα−1 − pα
= − 1

mpα−1
· 1

1− p
m

= − 1

mpα−1

(
1 +O

(
1

m

))
.

Since φm(n) is multiplicative with respect to n, writing n = pα1
1 pα2

2 · · · pαk

k with
p1 < p2 < . . . < pk, α1, . . . , αk ≥ 1, k ∈ N, it thus follows that

∑
pk<m≤M

1

φm(n)
=

∑
pk<m≤M

k∏
i=1

1

φm(pαi
i )

=

=
∑

pk<m≤M

k∏
i=1

(
−1

mpαi−1
i

+O

(
1

m2

))
=

=
∑

pk<m≤M

(
k∏

i=1

−pi
mpαi

i

+O

(
1

m3

))
=

=
∑

pk<m≤M

(−1)kp1 · · · pk
mkn

+O

(
1

p2k

)
.

Hence for k = 1, that is when n has only one prime factor p1,∑
p1<m≤M

1

φm(n)
∼ −p1

n
logM.

For k ≥ 2, however, the mean-value cannot be presented in such a simple form.
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For the average with respect to n we again follow Landau's [8] result for
the case of Euler's totient function. Unlike the classical case, however, φm(n)
vanishes if, and only if, m is a prime factor of n. Thus for a prime number m,
we consider ∑

n≤N
m∤n

1

φm(n)
.

Meanwhile, for any non-prime m, we can consider∑
n≤N

1

φm(n)
.

Here for m > 0, we consider the sum in a more general context, that is∑
n≤N

gcd(n,m)=1

1

φm(n)

for any m ∈ N, as N → ∞.

Taking into account the multiplicativity of φm(n) with respect to n, we �nd

(4.1)
1

φm(n)
=

1

n

∏
p|n

p

p−m
=

1

n

∏
p|n

(
1 +

m

p−m

)
=

1

n

∑
d|n

µ(d)2

φm(d)
mω(d).

For coprime n and m,∑
n≤N

gcd(n,m)=1

1

φm(n)
=

∑
n≤N

gcd(n,m)=1

1

n

∑
d|n

µ(d)2

φm(d)
mω(d) =

=
∑
d≤N

gcd(d,m)=1

µ(d)2

d

mω(d)

φm(d)

∑
b≤N/d

gcd(b,m)=1

1

b
.

For the inner sum, we have∑
n≤X

gcd(n,m)=1

1

n
=

∑
a mod m

gcd(a,m)=1

∑
n≤X

n≡a mod m

1

n
∼ logX

m

∑
b mod m

gcd(b,m)=1

1 =
logX

m
φ(m),

where we have used the well known asymptotic formula∑
n≤x

1

n
= log x+O(1).
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This leads to∑
n≤N

gcd(n,m)=1

1

φm(n)
∼ φ(m)

m
(logN)

∑
d≤N

gcd(d,m)=1

µ(d)2

d

mω(d)

φm(d)
∼

∼
∏
p|m

(
1− 1

p

)∏
p∤m

(
1 +

m

p(p−m)

)
· logN

This yields

Theorem 4.1. For �xed m ∈ N, as N → ∞,∑
n≤N

gcd(n,m)=1

1

φm(n)
∼ Π logN,

where Π is a convergent Euler product

Π =
∏
p|m

(
1− 1

p

)∏
p∤m

(
1 +

m

p(p−m)

)
.

Remark. This result is contained in a more general theorem due to Kent
Wooldridge [18].

When m ≤ 0, again using (4.1),∑
n≤N

1

φm(n)
=

∑
n≤N

1

n

∑
d|n

µ(d)2

φm(d)
mω(d) =

∑
d≤N

1

d

µ(d)2

φm(d)
mω(d)

∑
b≤N/d

1

b
=

=
∑
d≤N

1

d

µ(d)2

φm(d)
mω(d)

(
log

N

d
+O(1)

)
.

We continue by extending the sum of the main term to an in�nite series and
using multiplicativity; this gives

∑
n≤N

1

φm(n)
=

( ∞∑
d=1

1

d

µ(d)2

φm(d)
mω(d)

)
logN +O

(∑
d>N

1

d

|m|ω(d)

|φm(d)|
logN

)
+

+ O

∑
d≤N

log d

d

|m|ω(d)

|φm(d)|

 ∼

∼
∏
p

(
1 +

m

p(p−m)

)
· logN.
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5. Concluding remarks

We begin with a brief discussion of the Dirichlet series associated with
Schemmel's function. In the case of Euler's totient function φ(n), we have

∞∑
n=1

φ(n)

ns
= ζ(s− 1)

∏
p

(
1− 1

ps

)
=

ζ(s− 1)

ζ(s)
.

for Re(s) > 2.

For m ∈ Z in general, by multiplicativity, one can easily show

∞∑
n=1

φm(n)

ns
=

∏
p

(
1 +

∞∑
α=1

φm(pα)p−αs

)
=(5.1)

=
∏
p

(
1 +

∞∑
α=1

(
1− m

p

)
pα(1−s)

)
=

= ζ(s− 1)
∏
p

(
1− m

ps

)
,

which again holds if Re (s) > 2. Note that in this region, the product∏
p

(
1− m

ps

)
is absolutely convergent for any �xed m.

Further we note that s = 2 gives rise to the pole of ζ(s − 1) and applying
Perron's formula, the residue of this term would yield the main term in The-
orem 1.1. This may explain why we have the prime squares dominating the
estimate in Theorem 1.1 as the main term of our asymptotic formula.

We continue our observation in the region Re(s) > 2. When m = 0, we
have

∞∑
n=1

φ0(n)

ns
= ζ(s− 1),

which is a single Riemann zeta function shifted by one to the right. However
this is trivial since φ0(n) = n.

When m = −1, we have
∞∑

n=1

φ−1(n)

ns
= ζ(s− 1)

∏
p

(
1 +

1

ps

)
= ζ(s− 1)

ζ(s)

ζ(2s)
=

= ζ(s− 1)

( ∞∑
n=1

λ(n)

ns

)−1

,

where λ(n) is the Liouville function.
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Next we consider the size of φm(n). First of all, for positive m,

|φm(n)| = n
∏
p|n

∣∣∣∣1− m

p

∣∣∣∣ ≤ n
∏
p|n
p<m

m

p
≤ n ·mπ(m),

where π(m) counts the number of primes p ≤ m; in view of well-known facts
about the distribution of primes we deduce

|φm(n)| ≤ n · exp((1 + ϵ)m)

for every positive ϵ. If m is negative, however, then

φm(n) = n
∏
p|n

(
1 +

|m|
p

)
≤ n

(
1 +

|m||
2

)ω(n)

.

From [11, Theorem 2.10], we have

1 ≤ ω(n) ≤ log n

log logn

(
1 +O

(
1

log log n

))
, n ≥ 3.

We note that ω(1) = 0 and ω(2) = 1. Thus we arrive at

|φm(n)| ≤ n
1+O

(
log(1+ |m|

2 )
log log n

)
.

The above bounds for |φm(n)| show that the error term we obtained is
probably close to optimal.

Finally, we remark that another generalization of the Euler's totient func-
tion φ(n) has been considered by Pieter Moree et al. [12] by taking the k-th
power of n and p with m = 1 in the de�nition (1.1), that is

nk
∏
p|n

(
1− 1

pk

)
.

This quantitiy counts the number of k-tuples chosen from a complete residue
system modulo n such that the greatest common divisor of each set is coprime
to n. It is usually called the k-th Jordan totient function Jk(n). Some of their
results are pretty close to ours (Theorem 1.1); in particular in those cases where
the Selberg�Delange method is in the background.

Acknowledgment. The authors are grateful to the anonymous referee of a
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particular importance with respect to the means for the reciprocal of Schem-
mel's function (Section 4).
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