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Abstract. The arithmetical functions with rational argument are inter-
preted as sums of weighted divisors:

fr) = w(d).

d|r

The logarithmic density of subsets of rational numbers is introduced. It is
proved, that if w(d) > 0, then asymptotic logarithmic density of the set
{r: f(r) > 2} exists.

1. The classes of functions

The set of natural numbers will be denoted by N. If the integers m,n € N
are coprime, we write m 1L n.

Let Q4 be the set of positive rational numbers represented always as reduced
fractions 7%, m, n € N, m L n. The notation r|t for the reduced fractions
r =11/T9,t = t1/to means that rq|tq, rafts.

Consider the set & of all functions f : Q4 — R. The sum of functions
f,g9 € F is defined as usual

(f+9)(r)=F(r)+g(r), 7eQy.
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We define the second operation in .% (the Dirichlet convolution) denoted by o:

rea(Z) = > 7(5)e(2):

aija=m
blbzz’ﬂ

Note, that the function e : Q4 — R defined by e(1) = 1,e(r) = 0,7 # 1, is the
unity element corresponding to this operation:

foe=f [feZ

Theorem 1.1. The set of functions F with the operations +,0 is a commu-
tative ring.

Proof. The commutativity and distributivity properties are obvious. The
associativity follows from identity valid for all fi, fa, f3 € .Z:

(fro(fao fa)) () = ((fro f2) o ) () =

SR O

aja2a3z=m
bl begI’I’L

Let
F°={fe7:f(1)#0},
ot ={f € F: fim/n) = fm) + F(1/m)},
o ={fedt: f(m),g(n) = f(1/n) are additive functions in N},
M® ={feF*: f(m/n) = f(m)f(1/n)},
M={feM°: f(m),g(n) = f(1/n) are multiplicative functions in N},
B=A{feF: if rlt,then f(r) < f(¢)}.

Note, that if f € &7, then for m;/ni, ma/ne € Qi, ming L mons, we have

My may oy ma
f(TT1 E)—f(n1)+f(n2)~
Correspondingly for f € M,
mi Moy g
) () (),
We call the functions f € & additive and f € M multiplicative.

Theorem 1.2. The sets of functions M C M°® C .Z° are groups in respect to
operation o.
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Proof. Recall, that the unity element in respect to o is the functione : Q. — R
defined by e(1) = L,e(r) = 0 if r # 1. Let

Qasny ={m/n € Qs : Q(mn) < N}, N>1,

where Q(k) stands for the total number of primes dividing an integer k.

For f € .#° we have to define a function g € .#°, such that fog = e.
Note, that for (f o g)(r) = e(r) as r € Qagn, we have to define g(r) only for
r € Qogn. Hence, if we take g(1) = 1/f(1), then (fog)(r) = e(r) as r € Qaxo-

Suppose ¢(r) is already defined for r € Qq<n in such a way that (fog)(r) =
= e(r) holds as r € Qagn. We show that the definition of g can be extended
to r € Qagn+1 still preserving the condition (f o g)(r) = e(r).

Indeed, we have to define g for the rationals pm/n, m/(gn), where p, q are
primes p L n,q L m and m/n € Qqgn.

Because of
on(T) = 5 () sl 2)
b1b2:’n,
a1b1>1

and g(as/bs) is already defined, we will get (f o g)(pm/n) = 0 taking
pmy _ 1 (%2
g(?) I6) lsz(bl)g(bz)

Hence, by induction there is a function g € .#° such that fog=e¢, and F° is
a group.
Let f,g € M°. It is straighforward to show that

(Fog)() = 3 flavgta) 30 (5 )o(;r):

aiaz=mn bibo=m

It follows then, that if h = f o g, then h(m/n) = h(m)h(1/n), i. e., h € M°.
Note, that arithmetical function h(n),n € N, is the Dirichlet convolution of
arithmetical functions f(n), g(n),n € N. Hence, if f(n), g(n) are multiplicative,
then h(n) is multiplicative, too. This claim is true for f(1/n),g(1/n),h(1/n)
interpreted as arithmetical functions with natural argument. It follows from
this, that M is closed in respect to operation o. This completes the proof of
proposition. |

Let us extend the Mobius function p: N — {—1,0,1} to Q4 taking

m

(%) = pm)un).

n
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Then p € M. We denote by I the function I(r) = 1,r € Q4. As the functions
of natural argument p and I are inverses to each other in respect to Dirichlet
convolution. This is true also in the domain of rational numbers, i. e.,

(noI)(r) =e(r), reQ.

Let f € # be an arbitrary function. Then

fr)=(foe)(r)=(To(fom)(r) = wd), w=fopu,
d|r

here for d = dy/ds, T = r1/r9, as agreed, we write d|r if dy|ry, da|rs.

Let us consider this relation as injective mapping F : & — % :

f=Fr(w)=1Iow.

The injectivity property remains, if we consider restrictions of Fj to #°, M°,
M.

For r = m/n we write w(r) = w(mn), where w(k) stands for the number of
distinct prime divisors of k.
Theorem 1.3. The function f = Fr(w) is in &7, if and only if w(1) = 0 and
w(d) =0 for all d € Q4, such that d,1/d ¢ N.

The function f = Fr(w) is in &, if and only if w(d) = 0 for all d € Qy,
such that w(d) # 1.

The function f = Fr(w) is in B, if and only if w(d) = 0 for all d,d # 1.

Proof. If w(1l) = 0 and w(d;/dy) = 0 for all fractions with d; > 1,dy > 1,
then Fr(w) € &/, because

F(2) =3 wid) + Y w(t/da) = f(m) + F(1/n).

dl\’m dz"ﬂ/
Let f € &T. Obviously, w(1) = 0. We prove w(d;/d3) = 0 as di,d2 > 1 by
induction on N = Q(dyds). If N = 2, i.e., dy,ds are prime , we have

£(5E) = rta) + 11/) = wian) + () + ().

and w(d; /de) = 0 follows because of w(dy) = f(d1),w(d2) = f(1/d3). Suppose
w(bl/bz) =0 as bl,bg > 1 and Q(blbg) g N. Let Q(dldz) = N + 1, where
di,d2 > 1 and dy L dy. Then either di/de = pci/co,p L ¢o or dyi/dy =
= c1/(pca),p L c1, where ¢1 L ¢o and Q(cic2) = N. Let us consider the first

() = 3wt X () () s s (L),

b1|pca ba|c2
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hence w(E2) = 0. The equality w(

e ) = 0 follows in the same way.

€1
pc2

Introducing some minor changes we can provide the proof of the assertion
on Fr(w) € .

The same simple reasoning by induction on Q(r) gives the proof of the claim
on Fj(w) € A. |

2. The densities and multiples
For a subset A of natural numbers N and natural number x > 1 denote

ug(A):l >, u;(A):IO;x > 1

x n
n€AN[1;z] n€eAN[1;z]

The lower and upper limits as  — oo will be denoted by v"(A),7"(A) the
value of the limit, if it exists, by v"(A), respectively, r = 0, 1.

It follows from the chain of inequalities
v°(A4) <v'(A) <7'(A) <P°(4),

that the existence of v°(A) implies the existence of v!(A). If v°(A) exists, we say
that A possesses asymptotic density, and if 1 (A) exists, A possesses asymptotic
logarithmic density. Even the subsets A of apparently simple structure may
not possess asymptotic density.

For A C N the set of natural numbers divisible by some a € A will be
denoted by M(A), i.e., M(A) is the set of multiples of a € A.

A.S. Besicovitch gave an example of A such that M(A) does not possess
asymptotic density, see [1]. In 1937 H. Davenport and P. Erdés proved that
every set of multiples have logarithmic density. Their original proof in [2]
is based on Tauberian theorems, see also [6], Theorem 02. The direct and
elementary proof of this theorem was provided by the authors in [3], it can be
found also in the monograph of H. Halberstam and K.F. Roth, [5]. We will use
the Erdés—Davenport theorem in the form, which results from the arguments
in [5].

Lemma 2.1 (Erdés-Davenport). Let A C N and Ay = AN[1;N] for N € N.
Then v (M(AN)), v1(M(A)) exist, and
(2.1) VY M(A)) = lim v'(M(Ay)).
N—o0

Let 0 < A1 < A2 some fixed numbers, J = (A1; A2) and = > 1. We introduce
the sets

Qx,J:{%EQ+ZTL<$}ﬁJ.
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Let R C Q4 and r1,75 € {0,1}. Then if Q, ; # 0, we denote

Spra” (R)

St (R) = m-nT"? yiT(R) = .
JL,J( ) Z ( ) Sz?.]Q(QIJ)

m/n€Qq, ;NR

Let q1, g2 be some coprime natural numbers and
m
(2.2) Q% = {ﬁ €Q4:mgr L nqg}.

Note, that taking ¢ = g2 = 1, we get Q992 = Q... We use the asymptotics for
Si172(Q92) established in [7].

Lemma 2.2. Let for the coprime integers qi,qz
Hana) = [ (1- =)
q1,q92) = p+1/)
pla1gz

Then the following asymptotics hold

e = mtemwefieo(%E)
.~ oo}
A - Sy >logx{1+o<lgx>}

The constants in O-signs depend on qi,qs and Ay, Ao.

As a Corrollary we have, that for all ¢; 1 ¢

lim /7 (Q"%) = (g1, g2).

xr—r o0
Let t = t1/ta € Q4; we define the set of multiples of ¢ by
M(t) = {T m L n,t1|m7t2|n}.
n
Note, that

SPE(M() = 12 SIVTR(QN), at =ty JF = (taha [t tade/t).
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It follows now from the Lemma 2.2, that

lim o772 (M) = —— I1 (1 - L)

T—00 t1t2
For the subset 7' C Q4 define

M(T) = [ M(t).

teT

Remark 2.1. If t = t1/ta, s = s1/s2, then either M(t) N M(s) =0, or
M) N M(s) = M([t1, s1]/[t2, s2]),

where [a, b] stands for the smallest common multiple. Hence, if T' is finite, then
due to the sieving procedure the densities

v (M(T)) = lim v "2 (M(T)), ri,7m2 € {0,1}.

r—r 00
exist and are equal.

Theorem 2.1. For arbitrary subset T' C QL the logarithmic density
vHM(T)) = lim v (M(T))

X
Tr— 00

exists.

Proof. Let N > 1 be an integer. We define
31
Ty = {* eT :tq,t SN}
to
Note, that M(Ty) is the finite union of the sets having the asymptotic densities;
moreover, the itersection of these sets also have the asymptotic densities. We

conclude, that v""2 (M (Ty)) exists due to the inclusion-exclusion identity for
the measure of finite union of sets. Hence, it is sufficient to show, that

THM(T)\M(Tn)) < e
for an arbitrary € > 0 as N > N(e). Let us define
t
T = {tl : there exists to, t—l € T}, T =T N[N, +o0),
2

t
% = {tg : there exists t1, t—l € T}, Ty =T? N[N, +00).
2
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Let us agree, that if A C N, then M(A) stands for the subset of N, i.e.

M(A) = | J{ak : k=1,2,...}.

acA

From the Erdés-Davenport theorem we have, that v!(M(T?)),i = 1,2, exist.
Moreover, v!(M(T%)) < ey , where ey — 0 as N — oo. We shall use this is
the form

1
(2.3) Z - < ey -logx, z — 0.
neM(TE )N[1;z]

Start with the observation
M(T)\M(Tx) € My(Tn) U Ma(Tn),
where
Mi(Ty) = {m/n € Qy :m e M(Ty)} N J,
Mo(Ty) = {m/n € Qy :nec M(TH)}NJ.

It is sufficient to show, that 7'*(M;(Tx)) — 0 as i = 1,2 and N — oc. Using
(2.3) we get

CHEVNE) D DI DI

n m
neM(TE)N[Liz]  Ain<m<Azn

< Y M)y

neM(TZ)N[1;z]

< log (;—j) logac(eN + )\1 ligm)'

Hence, 7' (M2 (Ty)) — 0 as N — oo follows because of asymptotics

6 A
S;}J(Q+) ~ ﬁlog (f) logz as x — oo.

For S} (M1 (Tw)) we proceed as follows:

1 1 1 1
(24) SH(MiTN) < > - 3 ~+ 3 > 3 L
m<Ag n<m/A A2 <m<Aax m/Aa<n<m/A
meM(Ty) meM(TY)
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Because As is fixed, then the first sum in (2.4) is zero for N sufficiently
large. For the second sum in (2.4) we obtain

1 1 1 Ao Ao
Yoaw X a3y He(@)et<
Az <m< g m/Aa<n<m/\ Ap<m< Aoz
meM(Ty) meM(Ty)
A
< EN(log ()\72) + 1) log(Agx).
1

This is sufficient to conclude that 7' (M;(Tx)) — 0 as N — oo. The Theorem
is proved. |

3. The class %

Recall the definition of the class % :
PB={fe€.F: if rlt,then f(r) < f(¢)}.

Note, that an additive function f belongs to £, if and only if it satisfies the
condition: for all primes p

0< f(p) <fP?) <, 0<f(/p) < FO/pP)<---.

Correspondingly, a multiplicative function g belongs to £, if and only if it
satisfies the condition: for all primes p

1<gp) <gp®) <, 1<g(1/p) <g(1/p?) <---.
Theorem 3.1. For every f € % and z € R the density

vi(re Qs f(r) 2 2)

ex1sts.
Let 0 < § < 1. There exist functions f € B such that
(3.1) P0reQr:f(r)=2)—vP0reQy:f(r)=2) >0

for all z > zy.

We will use in the proof the following result of Erdss.

Lemma 3.1 (see, [4]). Let [T;2T] denotes the set of integers satisfying the
inequalities T < m < 2T. Then

W(M([T;2T)) -0, T — cc.
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Note, that the existence of v°(M([T;2T]) follows from the representation
of M([T;2T]) as finite union of arithmetical progressions.

Proof. Let f € £,z € R and A(f,z) = {r € Qq : f(r) > z}. If r €
€ A(f, z), then M(r) C A(f,z). Hence, M(A(f, z)) = A(f, z) and the existence
of v (A(f, 2)) follows from the Theorem 3.1.

We construct now a function f € A, f = I o w, satisfying (3.1). We have
to define w(d) > 0 for all d € Q4. Let us take w(u/v) = 0if w > 1,4 L v and
define w(1/v) for v € N.

The construction is based on the result of Erdés given in Lemma 3.1.

Let £ > 1 be an integer to be specified later. Consider the sequence T, of
integers and introduce the sets of integers

I, = [T,,; 2T, ] NN,  where 2*T,, < T}, 1.

Let € > 0 be an arbitrary number. Due to Lemma 3.1 it is possible to
choose the sequence T;, such that

vo(M( U In) <2 Z VO (M(I,,)) <26 asx =T

m<n m<n

Take an arbitrary sequence 0 < z; < 2o < --- and define w(1/v) = 2, if v € I,
and w(l/v) =0, if v & I, for all n > 1. Denote for brevity M = M(U,1,).

Then for the function f = I o w we have
#{r:r=u/v,u<e, f(r)ZzatNJd) < (A= A1) -x-#{v:v <z, ve M}
If z = Tn+1

#uv:v<z,ve My =#{v:v <2, v € MUpgnln)} < 2ez.

Hence,

#{r:r=u/v,o <2, f(r) = 211N J) < e(Ag — A\p)a?,
and
(3.2) vO>reQp: f(r) 2 2) <e

For z > 21 let 2,1 < 2 < z,,,. Then

VOreQy:f(r)=22)2v20recQy: f(r)=2m) >
> v20ufvufv € Qy,v € [Tm; 28T0)).
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If @ > 2kT,

0 _
Vv ufv € Qp,v € [T 28T,] = ——m ™2

Obviously due to (3.2) and (3.3) the choice of k and € can be combined to get
the inequality (3.1). The proof is complete. ]

Remark 3.1. If f € 2 and the set of d € Q, such that w(d) > 0, is finite,
then {r € Q1 : f(r) > 2z} = M(T) for some finite set T. Then due to the
Remark 2.1 all densities v "2 (r € Q4 : f(r) > z),7m1,72 = 0,1, exist and are
equal.

Let @ C Q4. Define w : Q4 — {0, 1} taking w(r) = 1ifr € Q and w(r) =0
otherwise.

Then fg = I o w is the counting function of divisors, i.e.,

fo(r) =#{d:d e Q. d|r},

where the notation d|r for rational numbers has the same meaning as above.
Then it follows from the Theorem 3.1, that for every @ C Q4 and m > 0 the
density

vH(reQy: folr) =m)

exists.
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