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Abstract. The arithmetical functions with rational argument are inter-
preted as sums of weighted divisors:

f(r) =
∑
d|r

w(d).

The logarithmic density of subsets of rational numbers is introduced. It is
proved, that if w(d) ⩾ 0, then asymptotic logarithmic density of the set
{r : f(r) ⩾ z} exists.

1. The classes of functions

The set of natural numbers will be denoted by N. If the integers m,n ∈ N
are coprime, we write m ⊥ n.

LetQ+ be the set of positive rational numbers represented always as reduced
fractions m

n , m, n ∈ N, m ⊥ n. The notation r|t for the reduced fractions
r = r1/r2, t = t1/t2 means that r1|t1, r2|t2.

Consider the set F of all functions f : Q+ → R. The sum of functions
f, g ∈ F is defined as usual

(f + g)(r) = f(r) + g(r), r ∈ Q+.
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multiples, logarithmic density.
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We define the second operation in F (the Dirichlet convolution) denoted by ◦:

(f ◦ g)
(m
n

)
=

∑
a1a2=m
b1b2=n

f
(a1
b1

)
g
(a2
b2

)
.

Note, that the function e : Q+ → R defined by e(1) = 1, e(r) = 0, r ̸= 1, is the
unity element corresponding to this operation:

f ◦ e = f, f ∈ F .

Theorem 1.1. The set of functions F with the operations +, ◦ is a commu-
tative ring.

Proof. The commutativity and distributivity properties are obvious. The
associativity follows from identity valid for all f1, f2, f3 ∈ F :

(f1 ◦ (f2 ◦ f3))
(m
n

)
= ((f1 ◦ f2) ◦ f3)

(m
n

)
=

=
∑

a1a2a3=m
b1b2b3=n

f1

(a1
b1

)
f2

(a2
b2

)
f3

(a3
b3

)
. ■

Let

F ◦ = {f ∈ F : f(1) ̸= 0},
A + = {f ∈ F : f(m/n) = f(m) + f(1/n)},
A = {f ∈ A + : f(m), g(n) = f(1/n) are additive functions in N},

M◦ = {f ∈ F ◦ : f(m/n) = f(m)f(1/n)},
M = {f ∈ M◦ : f(m), g(n) = f(1/n) are multiplicative functions in N},
B = {f ∈ F : if r|t, then f(r) ⩽ f(t)}.

Note, that if f ∈ A , then for m1/n1,m2/n2 ∈ Q+,m1n1 ⊥ m2n2, we have

f
(m1

n1
· m2

n2

)
= f

(m1

n1

)
+ f

(m2

n2

)
.

Correspondingly for f ∈ M,

f
(m1

n1
· m2

n2

)
= f

(m1

n1

)
· f

(m2

n2

)
.

We call the functions f ∈ A additive and f ∈ M multiplicative.

Theorem 1.2. The sets of functions M ⊂ M◦ ⊂ F ◦ are groups in respect to
operation ◦.
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Proof. Recall, that the unity element in respect to ◦ is the function e : Q+ → R
defined by e(1) = 1, e(r) = 0 if r ̸= 1. Let

QΩ⩽N = {m/n ∈ Q+ : Ω(mn) ⩽ N}, N ⩾ 1,

where Ω(k) stands for the total number of primes dividing an integer k.

For f ∈ F ◦ we have to define a function g ∈ F ◦, such that f ◦ g = e.
Note, that for (f ◦ g)(r) = e(r) as r ∈ QΩ⩽N , we have to define g(r) only for
r ∈ QΩ⩽N . Hence, if we take g(1) = 1/f(1), then (f ◦g)(r) = e(r) as r ∈ QΩ⩽0.

Suppose g(r) is already defined for r ∈ QΩ⩽N in such a way that (f ◦g)(r) =
= e(r) holds as r ∈ QΩ⩽N . We show that the definition of g can be extended
to r ∈ QΩ⩽N+1 still preserving the condition (f ◦ g)(r) = e(r).

Indeed, we have to define g for the rationals pm/n,m/(qn), where p, q are
primes p ⊥ n, q ⊥ m and m/n ∈ QΩ⩽N .

Because of

(f ◦ g)
(pm

n

)
=

∑
a1a2=pm
b1b2=n
a1b1>1

f
(a1
b1

)
g
(a2
b2

)
+ f(1)g

(pm
n

)

and g(a2/b2) is already defined, we will get (f ◦ g)(pm/n) = 0 taking

g
(pm

n

)
= − 1

f(1)

∑
a1a2=pm
b1b2=n
a1b1>1

f
(a1
b1

)
g
(a2
b2

)
.

Hence, by induction there is a function g ∈ F ◦ such that f ◦ g = e, and F ◦ is
a group.

Let f, g ∈ M◦. It is straighforward to show that

(f ◦ g)
(m
n

)
=

∑
a1a2=n

f(a1)g(a2)
∑

b1b2=m

f
( 1

b1

)
g
( 1

b2

)
.

It follows then, that if h = f ◦ g, then h(m/n) = h(m)h(1/n), i. e., h ∈ M◦.
Note, that arithmetical function h(n), n ∈ N, is the Dirichlet convolution of
arithmetical functions f(n), g(n), n ∈ N. Hence, if f(n), g(n) are multiplicative,
then h(n) is multiplicative, too. This claim is true for f(1/n), g(1/n), h(1/n)
interpreted as arithmetical functions with natural argument. It follows from
this, that M is closed in respect to operation ◦. This completes the proof of
proposition. ■

Let us extend the Möbius function µ : N → {−1, 0, 1} to Q+ taking

µ
(m
n

)
= µ(m)µ(n).
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Then µ ∈ M. We denote by I the function I(r) = 1, r ∈ Q+. As the functions
of natural argument µ and I are inverses to each other in respect to Dirichlet
convolution. This is true also in the domain of rational numbers, i. e.,

(µ ◦ I)(r) = e(r), r ∈ Q+.

Let f ∈ F be an arbitrary function. Then

f(r) = (f ◦ e)(r) = (I ◦ (f ◦ µ))(r) =
∑
d|r

w(d), w = f ◦ µ,

here for d = d1/d2, r = r1/r2, as agreed, we write d|r if d1|r1, d2|r2.
Let us consider this relation as injective mapping FI : F → F :

f = FI(w) = I ◦ w.

The injectivity property remains, if we consider restrictions of FI to F ◦, M◦,
M.

For r = m/n we write ω(r) = ω(mn), where ω(k) stands for the number of
distinct prime divisors of k.

Theorem 1.3. The function f = FI(w) is in A +, if and only if w(1) = 0 and
w(d) = 0 for all d ∈ Q+, such that d, 1/d ̸∈ N.

The function f = FI(w) is in A , if and only if w(d) = 0 for all d ∈ Q+,
such that ω(d) ̸= 1.

The function f = FI(w) is in B, if and only if w(d) ⩾ 0 for all d, d ̸= 1.

Proof. If w(1) = 0 and w(d1/d2) = 0 for all fractions with d1 > 1, d2 > 1,
then FI(w) ∈ A +, because

f
(m
n

)
=

∑
d1|m

w(d1) +
∑
d2|n

w(1/d2) = f(m) + f(1/n).

Let f ∈ A +. Obviously, w(1) = 0. We prove w(d1/d2) = 0 as d1, d2 > 1 by
induction on N = Ω(d1d2). If N = 2, i.e., d1, d2 are prime , we have

f
(d1
d2

)
= f(d1) + f(1/d2) = w(d1) + w

( 1

d2

)
+ w

(d1
d2

)
,

and w(d1/d2) = 0 follows because of w(d1) = f(d1), w(d2) = f(1/d2). Suppose
w(b1/b2) = 0 as b1, b2 > 1 and Ω(b1b2) ⩽ N. Let Ω(d1d2) = N + 1, where
d1, d2 > 1 and d1 ⊥ d2. Then either d1/d2 = pc1/c2, p ⊥ c2 or d1/d2 =
= c1/(pc2), p ⊥ c1, where c1 ⊥ c2 and Ω(c1c2) = N. Let us consider the first
case:

f
(pc1
c2

)
=

∑
b1|pc1

w(b1) +
∑
b2|c2

w
( 1

b2

)
+ w

(pc1
c2

)
= f(pc1) + f

( 1

c2

)
,
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hence w
(
pc1
c2

)
= 0. The equality w

(
c1
pc2

)
= 0 follows in the same way.

Introducing some minor changes we can provide the proof of the assertion
on FI(w) ∈ A .

The same simple reasoning by induction on Ω(r) gives the proof of the claim
on FI(w) ∈ B. ■

2. The densities and multiples

For a subset A of natural numbers N and natural number x > 1 denote

ν0x(A) =
1

x

∑
n∈A∩[1;x]

1, ν1x(A) =
1

log x

∑
n∈A∩[1;x]

1

n
.

The lower and upper limits as x → ∞ will be denoted by νr(A), νr(A) the
value of the limit, if it exists, by νr(A), respectively, r = 0, 1.

It follows from the chain of inequalities

ν0(A) ⩽ ν1(A) ⩽ ν1(A) ⩽ ν0(A),

that the existence of ν0(A) implies the existence of ν1(A). If ν0(A) exists, we say
that A possesses asymptotic density, and if ν1(A) exists, A possesses asymptotic
logarithmic density. Even the subsets A of apparently simple structure may
not possess asymptotic density.

For A ⊂ N the set of natural numbers divisible by some a ∈ A will be
denoted by M(A), i.e., M(A) is the set of multiples of a ∈ A.

A.S. Besicovitch gave an example of A such that M(A) does not possess
asymptotic density, see [1]. In 1937 H. Davenport and P. Erdős proved that
every set of multiples have logarithmic density. Their original proof in [2]
is based on Tauberian theorems, see also [6], Theorem 02. The direct and
elementary proof of this theorem was provided by the authors in [3], it can be
found also in the monograph of H. Halberstam and K.F. Roth, [5]. We will use
the Erdős–Davenport theorem in the form, which results from the arguments
in [5].

Lemma 2.1 (Erdős–Davenport). Let A ⊂ N and AN = A ∩ [1;N ] for N ∈ N.
Then ν1(M(AN )), ν1(M(A)) exist, and

(2.1) ν1(M(A)) = lim
N→∞

ν1(M(AN )).

Let 0 < λ1 < λ2 some fixed numbers, J = (λ1;λ2) and x > 1. We introduce
the sets

Qx,J =
{m

n
∈ Q+ : n ⩽ x

}
∩ J.
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Let R ⊂ Q+ and r1, r2 ∈ {0, 1}. Then if Qx,J ̸= ∅, we denote

Sr1r2
x,J (R) =

∑
m/n∈Qx,J∩R

m−r1n−r2 , νr1r2x (R) =
Sr1r2
x,J (R)

Sr1r2
x,J (Qx,J)

.

Let q1, q2 be some coprime natural numbers and

(2.2) Qq1,q2 =
{m

n
∈ Q+ : mq1 ⊥ nq2

}
.

Note, that taking q1 = q2 = 1, we get Qq1,q2 = Q+. We use the asymptotics for
Sr1r2
x,J (Qq1,q2) established in [7].

Lemma 2.2. Let for the coprime integers q1, q2

Π(q1, q2) =
∏

p|q1q2

(
1− 1

p+ 1

)
.

Then the following asymptotics hold

S00
x,J(Qq1,q2)

Π(q1, q2)
=

3

π2
(λ2 − λ1)x

2
{
1 +O

( log x
x

)}
,

S01
x,J(Qq1,q2)

Π(q1, q2)
=

6

π2
(λ2 − λ1)x

{
1 +O

( log2 x
x

)}
,

S10
x,J(Qq1,q2)

Π(q1, q2)
=

6

π2
log

(λ2

λ1

)
x
{
1 +O

( log2 x
x

)}
,

S11
x,J(Qq1,q2)

Π(q1, q2)
=

6

π2
log

(λ2

λ1

)
log x

{
1 +O

( 1

log x

)}
.

The constants in O-signs depend on q1, q2 and λ1, λ2.

As a Corrollary we have, that for all q1 ⊥ q2

lim
x→∞

νr1r2x (Qq1,q2) = Π(q1, q2).

Let t = t1/t2 ∈ Q+; we define the set of multiples of t by

M(t) =
{m

n
: m ⊥ n, t1|m, t2|n

}
.

Note, that

Sr1r2
x,J (M(t)) = tr11 tr22 Sr1,r2

x∗,J∗(Qt2,t1), x∗ = x/t2, J∗ = (t2λ1/t1; t2λ2/t1).
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It follows now from the Lemma 2.2, that

lim
x→∞

νr1r2x (M(t)) =
1

t1t2

∏
p|t1t2

(
1− 1

p+ 1

)
.

For the subset T ⊂ Q+ define

M(T ) =
⋃
t∈T

M(t).

Remark 2.1. If t = t1/t2, s = s1/s2, then either M(t) ∩M(s) = ∅, or

M(t) ∩M(s) = M([t1, s1]/[t2, s2]),

where [a, b] stands for the smallest common multiple. Hence, if T is finite, then
due to the sieving procedure the densities

νr1r2(M(T )) = lim
x→∞

νr1r2x (M(T )), r1, r2 ∈ {0, 1}.

exist and are equal.

Theorem 2.1. For arbitrary subset T ⊂ Q+ the logarithmic density

ν11(M(T )) = lim
x→∞

ν11x (M(T ))

exists.

Proof. Let N > 1 be an integer. We define

TN =
{ t1
t2

∈ T : t1, t2 ⩽ N
}
.

Note, thatM(TN ) is the finite union of the sets having the asymptotic densities;
moreover, the itersection of these sets also have the asymptotic densities. We
conclude, that νr1r2(M(TN )) exists due to the inclusion-exclusion identity for
the measure of finite union of sets. Hence, it is sufficient to show, that

ν11(M(T )\M(TN )) ⩽ ϵ

for an arbitrary ϵ > 0 as N > N(ϵ). Let us define

T 1 =
{
t1 : there exists t2,

t1
t2

∈ T
}
, T 1

N = T 1 ∩ [N,+∞),

T 2 =
{
t2 : there exists t1,

t1
t2

∈ T
}
, T 2

N = T 2 ∩ [N,+∞).
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Let us agree, that if A ⊂ N, then M(A) stands for the subset of N, i.e.

M(A) =
⋃
a∈A

{ak : k = 1, 2, . . .}.

From the Erdős–Davenport theorem we have, that ν1(M(T i)), i = 1, 2, exist.
Moreover, ν1(M(T i

N )) ⩽ ϵN , where ϵN → 0 as N → ∞. We shall use this is
the form

(2.3)
∑

n∈M(T i
N )∩[1;x]

1

n
≪ ϵN · log x, x → ∞.

Start with the observation

M(T )\M(TN ) ⊂ M1(TN ) ∪M2(TN ),

where

M1(TN ) = {m/n ∈ Q+ : m ∈ M(T 1
N )} ∩ J,

M2(TN ) = {m/n ∈ Q+ : n ∈ M(T 2
N )} ∩ J.

It is sufficient to show, that ν11(Mi(TN )) → 0 as i = 1, 2 and N → ∞. Using
(2.3) we get

S11
x,J

(
M2(TN )

)
⩽

∑
n∈M(T 2

N )∩[1;x]

1

n

∑
λ1n<m<λ2n

1

m
≪

≪
∑

n∈M(T 2
N )∩[1;x]

1

n

{
log

(λ2

λ1

)
+

1

λ1n

}
≪

≪ log
(λ2

λ1

)
log x

(
ϵN +

1

λ1 log x

)
.

Hence, ν11(M2(TN )) → 0 as N → ∞ follows because of asymptotics

S11
x,J(Q+) ∼

6

π2
log

(λ2

λ1

)
log x as x → ∞.

For S11
x,J

(
M1(TN )

)
we proceed as follows:

(2.4) S11
x,I

(
M1(TN )

)
⩽

∑
m⩽λ2

m∈M(T 1
N )

1

m

∑
n<m/λ1

1

n
+

∑
λ2<m<λ2x
m∈M(T 1

N )

1

m

∑
m/λ2<n<m/λ1

1

n
.
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Because λ2 is fixed, then the first sum in (2.4) is zero for N sufficiently
large. For the second sum in (2.4) we obtain∑

λ2<m<λ2x
m∈M(T 1

N )

1

m

∑
m/λ2<n<m/λ1

1

n
≪

∑
λ2<m<λ2x
m∈M(T 1

N )

1

m

{
log

(λ2

λ1

)
+

λ2

m

}
≪

≪ ϵN

(
log

(λ2

λ1

)
+ 1

)
log(λ2x).

This is sufficient to conclude that ν11(M1(TN )) → 0 as N → ∞. The Theorem
is proved. ■

3. The class B

Recall the definition of the class B :

B = {f ∈ F : if r|t, then f(r) ⩽ f(t)}.

Note, that an additive function f belongs to B, if and only if it satisfies the
condition: for all primes p

0 ⩽ f(p) ⩽ f(p2) ⩽ · · · , 0 ⩽ f(1/p) ⩽ f(1/p2) ⩽ · · · .

Correspondingly, a multiplicative function g belongs to B, if and only if it
satisfies the condition: for all primes p

1 ⩽ g(p) ⩽ g(p2) ⩽ · · · , 1 ⩽ g(1/p) ⩽ g(1/p2) ⩽ · · · .

Theorem 3.1. For every f ∈ B and z ∈ R the density

ν11(r ∈ Q+ : f(r) ⩾ z)

exists.

Let 0 < δ < 1. There exist functions f ∈ B such that

(3.1) ν00(r ∈ Q+ : f(r) ⩾ z)− ν00(r ∈ Q+ : f(r) ⩾ z) > δ

for all z ⩾ z0.

We will use in the proof the following result of Erdős.

Lemma 3.1 (see, [4]). Let [T ; 2T ] denotes the set of integers satisfying the
inequalities T ⩽ m ⩽ 2T. Then

ν0(M([T ; 2T ]) → 0, T → ∞.
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Note, that the existence of ν0(M([T ; 2T ]) follows from the representation
of M([T ; 2T ]) as finite union of arithmetical progressions.

Proof. Let f ∈ B, z ∈ R and A(f, z) = {r ∈ Q+ : f(r) ⩾ z}. If r ∈
∈ A(f, z), thenM(r) ⊂ A(f, z). Hence, M(A(f, z)) = A(f, z) and the existence
of ν11(A(f, z)) follows from the Theorem 3.1.

We construct now a function f ∈ B, f = I ◦ w, satisfying (3.1). We have
to define w(d) ⩾ 0 for all d ∈ Q+. Let us take w(u/v) = 0 if u > 1, u ⊥ v and
define w(1/v) for v ∈ N.

The construction is based on the result of Erdős given in Lemma 3.1.

Let k ⩾ 1 be an integer to be specified later. Consider the sequence Tn of
integers and introduce the sets of integers

In = [Tn; 2
kTn] ∩ N, where 2kTn < Tn+1.

Let ϵ > 0 be an arbitrary number. Due to Lemma 3.1 it is possible to
choose the sequence Tn such that∑

n⩾1

ν0(M(In)) < ϵ,

ν0x(M
( ⋃
m⩽n

Im
)
< 2

∑
m⩽n

ν0(M(Im)) < 2ϵ as x ⩾ Tn+1.

Take an arbitrary sequence 0 < z1 < z2 < · · · and define w(1/v) = zn if v ∈ In
and w(1/v) = 0, if v ̸∈ In for all n ⩾ 1. Denote for brevity M = M(∪nIn).

Then for the function f = I ◦ w we have

#({r : r = u/v, v ⩽ x, f(r) ⩾ z1} ∩ J) ⩽ (λ2 − λ1) · x ·#{v : v ⩽ x, v ∈ M}.

If x = Tn+1

#{v : v ⩽ x, v ∈ M} = #{v : v ⩽ x, v ∈ M(∪m⩽nIm)} ⩽ 2ϵx.

Hence,
#({r : r = u/v, v ⩽ x, f(r) ⩾ z1} ∩ J) ≪ ϵ(λ2 − λ1)x

2,

and

(3.2) ν00(r ∈ Q+ : f(r) ⩾ z) ≪ ϵ.

For z ⩾ z1 let zm−1 ⩽ z < zm. Then

ν00x (r ∈ Q+ : f(r) ⩾ z) ⩾ ν00x (r ∈ Q+ : f(r) ⩾ zm) ⩾

⩾ ν00x (u/v : u/v ∈ Q+, v ∈ [Tm; 2kTm]).
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If x ⩾ 2kTm

ν00x (u/v : u/v ∈ Q+, v ∈ [Tm; 2kTm] =
S00
2kTm,J − S00

Tm,J

S00
x,J

.

Taking x = 2kTm and using asymptotics from Lemma 2.2 we get

(3.3) ν00x (r ∈ Q+ : f(r) ⩾ z) ⩾ 1−
S00
Tm,J

S00
2kTm,J

= 1− 2−2k(1 + o(1)).

Obviously due to (3.2) and (3.3) the choice of k and ϵ can be combined to get
the inequality (3.1). The proof is complete. ■

Remark 3.1. If f ∈ B and the set of d ∈ Q+, such that w(d) > 0, is finite,
then {r ∈ Q+ : f(r) ⩾ z} = M(T ) for some finite set T. Then due to the
Remark 2.1 all densities νr1r2(r ∈ Q+ : f(r) ⩾ z), r1, r2 = 0, 1, exist and are
equal.

Let Q ⊂ Q+. Define w : Q+ → {0, 1} taking w(r) = 1 if r ∈ Q and w(r) = 0
otherwise.

Then fQ = I ◦ w is the counting function of divisors, i.e.,

fQ(r) = #{d : d ∈ Q, d|r},

where the notation d|r for rational numbers has the same meaning as above.
Then it follows from the Theorem 3.1, that for every Q ⊂ Q+ and m ⩾ 0 the
density

ν11(r ∈ Q+ : fQ(r) = m)

exists.
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