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Abstract. We consider one absolutely convergent series ζuT (s) connected
to the Riemann zeta-function, and prove a theorem on joint approxima-
tion of analytic functions by shifts (ζuT (s + itα1

τ ), . . . , ζuT (s + itαr
τ )) as

T → ∞, where α1, . . . , αr are fixed different positive numbers, tτ is the
Gram function, and uT → ∞ and uT ≪ T 2 as T → ∞.

1. Introduction

The Riemann zeta-function ζ(s), s = σ + it, is defined, for σ > 1, by

ζ(s) =

∞∑
m=1

1

ms
=

∏
p∈P

(
1− 1

ps

)−1

,

where P is the set of all prime numbers, and has the analytic continuation to the
whole complex plane, except for a simple pole at the point s = 1 with residue
1. The function ζ(s) is an important analytic object having a sequence of inter-
esting properties and hypotheses. One property is related to the denseness of
the set of values of ζ(s), and is called universality. More precisely, universality
of ζ(s) means that a wide class of analytic functions is approximated by shifts
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ζ(s + iτ), τ ∈ R. This was discovered by S.M. Voronin in [15]. For the last
version of the Voronin universality theorem, the following notation is conve-
nient. Let D = {s ∈ C : 1/2 < σ < 1}. Denote by K the class of compact sets
of the strip D with connected complements, and by H0(K), K ∈ K, the class
of continuous non-vanishing functions on K that are analytic in the interior of
K. Moreover, let measA stand for the Lebesgue measure of a measurable set
A ⊂ R. Then the following statement is valid, see [3, 1, 8, 13, 9, 10].

Theorem 1.1. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

Denote by H(D) the space of analytic on D functions endowed with the
topology of uniform convergence on compacta. Then Theorem 1.1 shows that
the set {ζ(s + iτ) : τ ∈ R} is dense in the subspace of H(D) of non-vanishing
functions.

There are results on approximation of analytic functions by generalized
shifts ζ(s + iφ(τ)) for some classes of the function φ(τ). Using generalized
shifts allows to consider a joint approximation of a tuple of analytic functions
(f1(s), . . . , fr(s)) by shifts (ζ(s+ iφ1(τ)), . . . , ζ(s+ iφr(τ))). The first result of
such a type was obtained in [12] by using the functions φj(τ) = ταj (log τ)βj ,
αj , βj ∈ R, j = 1, . . . , r. As usual, denote by Γ(s) the Euler gamma-function.
In [7], the functions φj(τ) connected to the functional equation for ζ(s),

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s), s ∈ C,

was applied. We see that the function h(s)
def
= π−s/2Γ(s/2) is the main ingre-

dient of the above functional equation. Denote by θ(t), t > 0, the increment
of the argument of the function h(s) along the segment connecting the points
1/2 and 1/2+ it. The function θ(t) is monotonically increasing and unbounded
from above for t > t1 = 6.289 . . . . Hence, the equation

(1.1) θ(t) = (τ − 1)π, τ ⩾ 0,

for t > t1 has the unique solution tτ . The equation (1.1), for τ ∈ N, was
considered by J.-P. Gram [4] in connection with nontrivial zeros of the Riemann
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zeta-function. Let γn be the imaginary part of the nth positive nontrivial zero
of ζ(s). Then the Riemann-von Mangoldt formula for the number of nontrivial
zeros implies that tn ∼ γn as n → ∞. Gram observed [4] that each interval
[tn−1, tn] with 1 ⩽ n ⩽ 15, contains one zero of the function ζ(1/2 + it).
However, for n > 15, this turned out not true. The numbers tn are called the
Gram points, they were studied by various authors, see, for example, [5] and
[6]. We call tτ the Gram function, the theory of tτ can be found in [5].

For joint universality of ζ(s), the function tτ was used in [7].

Theorem 1.2. [7]. Suppose that α1, . . . , αr are fixed different positive numbers.
For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ itαj
τ )− fj(s)| < ε

}
> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many
ε > 0.

Our aim is to show that ζ(s+ it
αj
τ ) can be replaced by a certain absolutely

convergent Dirichlet series depending on T . Let θ > 1/2 be a fixed number,
and, for u > 0 and m ∈ N,

vu(m) = exp

{
−
(m
u

)θ
}
.

Then the Dirichlet series

ζu(s) =

∞∑
m=1

vu(m)

ms

is absolutely convergent for σ > σ0 with arbitrary σ0. We will replace the shifts
ζ(s+ it

αj
τ ) in Theorem 1.2 by ζuT

(s+ it
αj
τ ) for some uT → ∞ as T → ∞.

Denote by B(X) the Borel σ-field of the space X, and define the set

Ω =
∏
p∈P

{s ∈ C : |s| = 1}.

Moreover, let

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then Ω and Ωr are compact topological
Abelian groups, therefore, on (Ωr,B(Ωr)), the probability Haar measure mH

can be defined, and we have the probability space (Ωr,B(Ωr),mH). Denote by
ω = (ω1, . . . , ωr), ωj ∈ Ωj , ωj = (ωj(p) : p ∈ P), j = 1, . . . , r, the elements
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of Ωr. On the probability space (Ωr,B(Ωr),mH), define the Hr(D)-valued
random element

ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)),

where

ζ(s, ωj) =
∏
p∈P

(
1− ωj(p)

ps

)−1

, j = 1, . . . , r.

Note that the latter product, for almost all ωj ∈ Ωj , converges uniformly on
compact subsets of the strip D, see, for example [8]. The main result of the
paper is the following theorem.

Theorem 1.3. Suppose that α1, . . . , αr are fixed different positive numbers,
and uT → ∞ and uT ≪ T 2 as T → ∞. For j = 1, . . . , r, let Kj ∈ K and
fj(s) ∈ H0(Kj). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζuT
(s+ itαj

τ )− fj(s)| < ε

}
=

= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

Theorem 1.3 shows that, for sufficiently large T , there are infinitely many
shifts (ζuT

(s+ itα1
τ ), . . . , ζuT

(s+ itαr
τ )) of absolutely convergent Dirichlet series

ζuT
(s) that approximate simultaneously a given tuple (f1(s), . . . , fr(s)) of an-

alytic functions. Using for approximation the shifts of absolutely convergent
series is a new type of universality, and is main advantage of Theorem 1.3
against Theorem 1.2.

We will derive Theorem 1.3 from a probabilistic limit theorem in the space
Hr(D).

2. Distance between ζ(s) and ζuT (s)

Denote by ρr the metric in the space Hr(D) which induces its product
topology, i. e., for g

k
(gk1, . . . gkr) ∈ Hr(D), k = 1, 2,

ρr(g1, g2) = max
1⩽j⩽r

ρ(g1j , g2j),

where ρ is the metric in H(D) inducing the topology of uniform convergence
on compacta. For brevity, let α = (α1, . . . , αr),

ζ(s+ itατ ) = (ζ(s+ itα1
τ ), . . . , ζ(s+ itαr

τ ))
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and
ζ
uT

(s+ itατ ) = (ζuT
(s+ itα1

τ ), . . . , ζuT
(s+ itαr

τ )) .

Lemma 2.1. Suppose that uT → ∞ and uT ≪ T 2 as T → ∞. Then, for all
α,

lim
T→∞

1

T

T∫
0

ρr

(
ζ(s+ itατ ), ζuT

(s+ itατ )
)
dτ = 0.

Proof. From the definition of the metrics ρr and ρ, it follows that it suffices
to show that, for every compact set K ⊂ D,

lim
T→∞

1

T

T∫
0

sup
s∈K

|ζ(s+ itατ )− ζuT
(s+ itατ )| dτ = 0

with every positive α. Let

luT
(s) =

1

θ
Γ
(s
θ

)
us
T ,

where the number θ is from the definition of vu(m). Then, see, for example,
[8], the integral representation

(2.1) ζuT
(s) =

1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z)luT
(z) dz

is valid. Let K be an arbitrary compact set of D. Fix ε > 0 such that, for all
s = σ + it ∈ K, 1/2 + 2ε ⩽ σ ⩽ 1− ε. Take

θ1 = σ − 1

2
− ε > 0 and θ =

1

2
+ ε.

Then the integrand in (2.1) has simple poles at z = 0 and z = 1 − s lying in
the strip −θ1 ⩽ Rez ⩽ θ. Therefore, by the residue theorem,

ζuT
(s)− ζ(s) =

1

2πi

−θ1+i∞∫
−θ1−i∞

ζ(s+ z)luT
(z) dz + luT

(1− s).

Hence, for s ∈ K,

ζuT
(s+ itατ )− ζ(s+ itατ ) ≪

≪
∞∫

−∞

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣ sup
s∈K

∣∣∣∣luT

(
1

2
+ ε− s+ iu

)∣∣∣∣ du+
+ sup

s∈K
|luT

(1− s− itατ )| .
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This gives

(2.2)
1

T

T∫
0

sup
s∈K

|ζ(s+ itατ )− ζuT
(s+ itατ )| dτ ≪ I1 + I2,

where

I1 =

∞∫
−∞

 1

T

T∫
0

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣ dτ
 sup

s∈K

∣∣∣∣luT

(
1

2
+ ε− s+ iu

)∣∣∣∣ du
and

I2 =
1

T

T∫
0

sup
s∈K

|luT
(1− s− itατ )| dτ.

By the definition of luT
(s), using the estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0,

we find that, for s ∈ K,

luT

(
1

2
+ ε− s+ iu

)
≪ε u

1/2+ε−σ
T exp

{
− c

θ
|u− t|

}
≪ε,K

≪ε,K u−ε
T exp{−c1|u|}, c1 > 0.(2.3)

Moreover, Lemma 2.2 of [7] yields the estimate

1

T

T∫
0

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣ dτ ⩽

 1

T

T∫
0

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣2 dτ

1/2

≪ε,α

≪ε,α (1 + |u|)1/2.

This and (2.3) show that

I1 ≪ε,K,α u−ε
T

∞∫
−∞

(1 + |u|)1/2 exp{−c1|u|}du ≪ε,K,α u−ε
T .

Similarly as above, we obtain that, for all s ∈ K,

luT
(1− s− itατ ) ≪ε u

1−σ
T exp{−c2|t+ tατ |} ≪ε,K u

1/2−2ε
T exp{−c3t

α
τ }

with positive c2 and c3. Thus, since, by [5],

tτ =
2πτ

log τ
(1 + o(1)), τ → ∞,
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I2 ≪ε,K,α
u
1/2−2ε
T uε

T

T
+ u

1/2−2ε
T exp{−c4t

α
uε
T
} ≪ε,K,α u−ε

T , c4 > 0.(2.4)

The estimates (2.2) – (2.4) prove the lemma. ■

3. Limit theorem

In this section, we prove a limit theorem for ζ
uT

(s). For A ∈ B(Hr(D)),

define

PT,α(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

uT
(s+ itατ ) ∈ A

}
.

Denote by Pζ the distribution of the random element ζ(s, ω), i. e.,

Pζ(A) = mH {ω ∈ Ωr : ζ(s, ω) ∈ A} , A ∈ B(Hr(D)).

Theorem 3.1. Suppose that α1, . . . , αr are fixed different positive numbers,
and uT → ∞ and uT ≪ T 2 as T → ∞. Then, PT,α converges weakly to the
measure Pζ as T → ∞.

The proof of Theorem 3.1 is based on a limit lemma for

P̂T,α(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ itατ ) ∈ A

}
, A ∈ B(Hr(D)),

obtained in [7], Theorem 5.4.

Lemma 3.1. Suppose that α1, . . . , αr are fixed different positive numbers.
Then, P̂T,α converges weakly to the measure Pζ as T → ∞.

Proof of Theorem 3.1. On a certain probability space (T,A, µ) define the
random variable ξT uniformly distributed on [0, T ], and introduce two Hr(D)-
valued random elements

X̂T,α = X̂T,α(s) = ζ(s+ it
α
ξT
)

and

XT,α = XT,α(s) = ζ
uT

(s+ it
α
ξT
).

Since the function tτ is differentiable [5], it is continuous, hence, it is measur-
able. Therefore tξT is a random variable. In view of Lemma 3.1, the random
element converges in distribution to Pζ as T → ∞. We apply the equiva-
lent of weak convergence of probability measures in terms of closed sets, see,
for example, Theorem 2.1 of [2]. Let F ⊂ Hr(D) be an arbitrary closed set,
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ρr(g, F ) the distance between g ∈ Hr(D) and F , and ε > 0. Then the set
Fε = {g ∈ Hr(D) : ρr(g, F ) ⩽ r} is closed as well. Thus, by Lemma 3.1,

(3.1) lim sup
T→∞

P̂T,α(Fε) ⩽ Pζ(Fε).

Observe that

{XT,α ∈ F} ⊂ {X̂T,α ∈ Fε} ∪ {ρr(XT,α, X̂T,α) ⩾ ε}.

Therefore,

(3.2) µ{XT,α ∈ F} ⩽ µ{X̂T,α ∈ Fε}+ µ{ρr(XT,α, X̂T,α) ⩾ ε}.

By the definition of XT,α and X̂T,α,

µ{ρr(XT,α, X̂T,α) ⩾ ε} ⩽
1

Tε

T∫
0

ρr(XT,α, X̂T,α) dτ = o(1)

as T → ∞ in view of Lemma 2.1. Since

µ{X̂T,α ∈ Fε} = P̂T,α(Fε)

and
µ{XT,α ∈ F} = PT,α(F ),

this and (3.2) show that

PT,α(F ) ⩽ P̂T,α(Fε) + o(1), T → ∞.

Thus, by (3.1),

lim sup
T→∞

PT,α(F ) ⩽ lim sup
T→∞

P̂T,α(Fε) = Pζ(Fε)

Now let ε → +0. Then Fε → F , and we have, by the last inequality,

lim sup
T→∞

PT,α(F ) ⩽ Pζ(F ),

i. e.,PT,α converges weakly to Pζ as T → ∞. ■

For A ∈ B(R)), define

QT,α(A) =
1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζuT
(s+ itαj

τ )− fj(s)| ∈ A

}
.
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Lemma 3.2. Suppose that α1, . . . , αr are fixed different positive numbers, and
uT → ∞ and uT ≪ T 2 as T → ∞. For j = 1, . . . , r, let Kj ∈ K and
fj(s) ∈ H0(Kj). Then QT,α converges weakly to

mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| ∈ A

}
, A ∈ B(R),

as T → ∞.

Proof. The mapping v : Hr(D) → R given by

v(g1, . . . , gr) = sup
1⩽j⩽r

sup
s∈Kj

|gj(s)− fj(s)|, (g1, . . . , gr) ∈ Hr(D),

is continuous, and, for every A ∈ B(R),

QT,α(A) = PT,α(v
−1A).

This means that QT,α = PT,αv
−1. Therefore, Theorem 5.1 of [2] and The-

orem 3.1 imply that QT,α converges weakly to Pζv
−1 as T → ∞, and the

definition of the mapping v gives the assertion of the lemma. ■

For the proof of Theorem 1.3, we will use the language of distribution
functions. Therefore, we rewrite Lemma 3.2 in terms of distribution functions.
We recall that the weak convergence of probability measures on (R,B(R)) is
equivalent to that of corresponding distribution functions, and the distribution
function Fn(x) converges weakly to a distribution function F (x) as n → ∞ if

lim
n→∞

Fn(x) = F (x)

for every continuity point x of the function F (x).

The corresponding distribution functions of the measures PT,α and Pζ are

FT,α(ε)
def
=

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζuT
(s+ itαj

τ )− fj(s)| < ε

}

and

Fζ(ε)
def
= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε

}
,

respectively. Therefore from Lemma 3.2, we have

Lemma 3.3. Suppose that the hypotheses of Lemma 3.2 are satisfied. Then
FT,α(ε) converges weakly to Fζ(ε) as T → ∞.
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4. Proof of Theorem 1.3

We will use the explicit form of the support of the measure Pζ . We recall
that the support of Pζ is a minimal closed set Sζ ⊂ B(Hr(D)) such that
Pζ(Sζ) = 1. Set

S = {g ∈ H(D) : either g(s) ̸= 0, or g(s) ≡ 0}.

Lemma 4.1. The support Sζ coincides with Sr.

Proof. The lemma is Lemma 6.8 of [7]. ■

Proof of Theorem 1.3. By the Mergelyan theorem on approximation of
analytic functions by polynomials [11], there exist polynomials p1(s), . . . , pr(s)
such that

(4.1) sup
1⩽j⩽r

sup
s∈Kj

∣∣∣fj(s)− epj(s)
∣∣∣ < ε

2

The requirements on the sets Kj and fj(s) come from using of the Mergelyan
theorem. Clearly, (ep1(s), . . . , epr(s)) ∈ Sζ in view of Lemma 4.1. Hence, by the
support property,

(4.2) mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

∣∣∣ζ(s, ωj)− epj(s)
∣∣∣ < ε

2

}
> 0.

Inequality (4.1) shows that{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε

}
⊃

⊃

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

∣∣∣ζ(s, ωj)− epj(s)
∣∣∣ < ε

2

}
.

Hence, by (4.2),

(4.3) mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε

}
> 0.

It is well known that the set of discontinuity points of distribution functions is
at most countable. This, Lemma 3.3 and (4.3) prove that the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζuT
(s+ itαj

τ )− fj(s)| < ε

}
=

= mH

{
ω ∈ Ωr : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s, ωj)− fj(s)| < ε

}
exists and is positive for all but at most countably many ε > 0. ■
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