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Abstract. It is well known that in the discrete Fourier transform of a
real vector, the components are not completely independent of each other,
namely, in the case of 1 ≤ i < n, in the transformed vector the component
belonging to the index n− i is the conjugate of the i-th component. In the
following article, we generalize this fact to the case of an arbitrary field
and an arbitrary automorphism of that field.

In this article N denotes the non-negative integers, N+ the positive ones,
Fq denotes the field of q elements and e denotes the neutral element of the
multiplicative semigroup of a ring.

1. Introduction

Integral transformations are important and thoroughly studied procedures
in mathematics. One of them is the Fourier transform, which has very impor-
tant applications in physics and engineering sciences based on it, especially in
mechanical and electrical engineering. The general spread of digital technology
brought with it the widespread use of the discrete version, the discrete Fourier
transform, for example in signal processing. The discrete Fourier transform
and its inverse can be easily determined and can be quickly calculated using
the fast Fourier transform, making it an important and useful tool. In certain
aspects, if the transformation is performed with special data, the transformed
vector can also show a special property, so it is interesting to investigate such
cases.
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There is a generalization of the discrete Fourier transform that acts on finite
Abelian groups, often called a group-theoretic transform, or GTT for short.
[3] deals with the connection of the GTT and the automorphism group. This
article examines the relationship between the permutation of input signals and
the rearrangement of transformed signals. An important result of this article
is that if the signals are constant over each of the orbits of the permutations of
the input data then the same is true for the output signals.

Also another article deals with the effect of changes in the order of data
on the discrete Fourier transform. In [2] the authors study classical DFT, the
discrete Fourier transform over the field of complex numbers. For them, too,
the main question is what is the relationship between the permutation of input
signals and the permutation of transformed signals. They investigate what
permutation does not change the set of output signals or the collection of the
absolute values of the output signals. The question is important, for example,
in the encryption of speech signals.

The automorphism of a finite algebraic structure is also a permutation of
the elements of the set and this relationship is also evident in the two articles
mentioned above.

In the article below, we examine the question, what is the effect on the out-
put elements of the discrete Fourier transform if the input signals are elements
of a subfield invariant against an automorphism acting on the field containing
the data.

1.1. On the discrete Fourier transform, on the DFT

The discrete Fourier transform can be introduced and discussed in many
ways. We define and examine it below from a strongly algebraic point of
view. Although it is possible to define the discrete Fourier transform over more
general structures, in this article we only deal with questions that talk about
the transform over a field, so we will investigate DFT only over fields.

In the following the set of the elements of an algebraic structure, say A is
denoted by A.

If K = (K; +, ·) is a field and n ∈ N, then Kn by component-wise addition
and multiplication, that is, the n-th direct sum of the field and by multiplying
the elements of Kn by the elements of K as a scalar is an n-rank algebra over
K. In the following, the addition and multiplication of the elements of Kn

are denoted by the operation symbols in K. (Kn; +, ·) is a commutative ring
with a neutral element, where the neutral element is the n-tuple of which all
components are e, the neutral element of K. This ring is zero-divisor free if
and only if n = 1.
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Another algebra is obtained if the addition and the scalar multiplication
are the same as before, but the multiplication is a cyclic convolution denoted
by ∗, i.e. if u and v are two not necessarily different elements of Kn, then
w = u ∗ v is the n-tuple in Kn whose components with index n > i ∈ N are
wi =

∑n−1
j=0 ujv(i−j) mod n respectively. Also this algebra is commutative, has

a neutral element, namely the n-tuple, where the component, belonging to the
index of 0, is the identity of K and every other component of the vector is 0,
and is zero-divisor free if and only if n = 1.

Now let n be a positive integer, K be a field, z an n-th root of unity over
K, and let Az be an n-order quadratic matrix where the element associated

with the index pair n > i ∈ N, n > j ∈ N is a
(z)
i,j = (z−i)j . This matrix is

symmetric, as a
(z)
j,i = (z−j)i = z−ji = z−ij = (z−i)j = a

(z)
i,j . The determinant

of the matrix is of Van der Monde type, so the matrix has an inverse if and only
if the generator elements are different in each pair. This condition is equivalent
to z being a primitive n-th root of unity. There is a primitive n-th root of
unity over a field for a given positive integer n exactly in the case if n is not
divisible by the characteristic of the field. This is obviously true for a field
with characteristic 0, in which case n can be any positive integer, while in the
other case the characteristic is some prime number p, in which case n cannot
be a multiple of p. Easy calculation shows that if the order of z is n, then
AzAz−1 = nI(n) = (ne)I(n), where I(n) is the n-th order unit matrix over K.
Since n is not divisible by the characteristic of the field, ne ̸= 0, ne has an
inverse, so from AzAz−1 = (ne)I(n) we get that A−1

z = (ne)−1Az−1 .

Now we are looking for a relationship between the two rings previously
constructed over Kn using Az. But first, let’s see what the set {Azu|u ∈ Kn}
will be. From now on if u is an element of Kn, then Azu is denoted by
U, and if Az has inverse, then A−1

z U is denoted by u. Let first u be such
that all of the components are 0, except for one with index 0, which is equal
to an arbitrary element c of K. Then Ui =

∑n−1
j=0 (z−i)juj = u0 = c, so

K ⊆ {(Azu)i |u ∈ Kn} for any nonnegative integer i less than n. Secondly,
let’s look at the vector whose components are again 0, except for the last one,
the one belonging to the index n−1, which this time should be the unity of the
field, that is, e. In this case, Ui =

∑n−1
j=0 (z−i)juj = (z−i)n−1un−1 = zie = zi,

which in turn shows that zi ∈ {(Azu)i|u ∈ Kn}, so a field that contains the
i-index components of image vectors must contain K(zi). However, for any

u ∈ Kn in such a field, the field contains
∑(n−1)

j=0 (z−i)juj , too, so K(zi) is the
narrowest field containing the i-index elements of the image vectors. This is
also true for i = 1, and since for any integer i, K(zi) ⊆ K(z), then any L field
with which {Azu|u ∈ Kn} ⊆ Ln, is an extension of K(z), which can also be
K(z).
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By a small calculation, it can be seen that if K and L are fields, n is
a positive integer, z is an n-th root of unity over K, and K(z) ⊆ L, then
the correspondence u 7→ Azu mapping Kn into Ln is surjective only if and
injective exactly in the case if z is a primitive n-th root of unity.

Theorem 1.1. Let n ∈ N+, K be a field, z an n-th root of unity over K,
and L|K(z). Then u 7→ Azu is a φ : (Kn; +, ∗) → (Ln; +, ·) algebra homo-
morphism, which is an isomorphism exactly if the order of z is equal to n and
L ⊆ K.

Proof. Even before the theorem was stated, we saw that Im(φ) ⊆ (K(z))n,
and it is certainly true that for every element of Kn, Azu is clearly defined,
so φ is indeed a mapping of Kn into Ln. Let’s look at operation preserving
first. Az(au + bv) = a(Azu) + b(Azv), where a and b are elements of K, u
and v are in Kn, thus φ is a modulus homomorphism. As a special case, φ is
sum-preserving, and

(Az(u ∗ v))i =

n−1∑
j=0

(z−i)j(u ∗ v)j =

=

n−1∑
j=0

((z−i)j
n−1∑
k=0

ukv(j−k) mod n) =

=

n−1∑
k=0

n−1∑
j=0

((z−i)kuk)((z
−i)(j−k) mod nv(j−k) mod n) =(1.1)

=

(
n−1∑
k=0

(
z−i
)k

uk

)n−1∑
j=0

(
z−i
)j

vj

 =

= (Azu)i (Azv)i = ((Azu) · (Azv))i

thus, φ is also product preserving, so the mapping φ is indeed an algebra
homomorphism.

Let m be the order of z. Bijection is required for isomorphism, so L cannot
be larger than K (z). If m < n, then we saw that the mapping is not surjective,
and thus not an isomorphism. Let m = n henceforth. Then there is an inverse
of Az, and Azu1 = Azu2 is only possible if u1 = u2, i.e. the mapping must
be injective. If in U ∈ K(n)n, Ul = δi,(l+1) mod n (ne), then

(
A−1

z U
)
i
= zi,

and if the mapping is surjective, then the former U is also an element of the
image set, which is only possible if z ∈ K. This shows that isomorphism
requires the condition L ⊆ K (z) ⊆ K. Finally, let w be an element of the

space over K. Then A−1
z w = (ne)

−1
Az−1w is also included in Kn, and thus

w = Az

(
A−1

z w
)
, the assignment is also surjective, and then φ is bijective, and

with operation preserving it is an isomorphism ■
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Corollary 1.1. If z ∈ K is a primitive n-th root of unity, then A−1
z (U ·V) =

=
(
A−1

z U
)
∗
(
A−1

z V
)

Proof. If z is a primitive n-th root of unity, then there exists A−1
z , and

the mapping given in the theorem is bijective and operation preserving, so
the uniquely determined preimage of the product of the image elements is the
convolution of the similarly uniquely determined preimages. ■

If u is considered as a serial of coefficients of a polynomial u =
∑n−1

i=0 uix
i,

then the theorem states that Ui is the substitution value of the polynomial at
the point of z−i of the field K, while the corollary gives the uniquely determined
polynomial of degree at most n − 1 whose value in z−i is Ui. The result is
essentially the same as for complex numbers.

1.2. Automorphism of a field

A. Let L be an arbitrary field and σ be an arbitrary automorphism of L.
Then there is always a subfield of L on which σ is the identitic mapping.
An example of such a subfield is the prime field of the field, that is a
prime field: a prime field has no automorphism other than the identitic
mapping to itself. If L is an extension of K, and K is invariant with
respect to σ, then σ is a relative automorphism of L for K.

B. Definition 1.1. If L is an extension of the field K, then the relative au-
tomorphism of L over K is an automorphism of L that leaves the elements
of K in place.

It is easy to check that the relative automorphisms of the field L for the
subfield of K form a group.

On a qm-element field the mapping u 7→ uqn into itself is an automor-
phism, that is a relative automorphism, for example, with respect to the
subfield Fq. As a special case, in any extension L of a q-element field K
for any k ∈ N the mapping a 7→ aq

k

is its relative automorphism over
K, and for finite L there is no other possibility, as shown in the theorem
below.

Theorem 1.2. Let the finite field L be an extension of degree t of the
q-element field K, and let σ : a 7→ aq for the elements of L. Then the
relative automorphisms of L over K form a t-order cyclic group with the
generator element σ.
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2. New results

Notation. Let n ∈ N+, k ∈ N and u ∈ Kn. Then u(k) ∈ Kn denotes the

vector whose n > i ∈ N-index component u
(k)
i =

(
u(k)

)
i
= u(ki) mod n.

The correspondence u 7→ u(k) applied to the elements of Kn is sum-
preserving and product-preserving if the multiplication is done component by
component, and its scalar product image is the scalar product of the image, so
the former mapping is an endomorphism of the ring (Kn; +, ·). If k and n are
relative primes, then k 7→ ki mod n is a permutation of the set of nonnegative
integers less than n, and thus in this case u 7→ u(k) is an automorphism of the
former ring.

In the case of complex numbers, it seems natural to carry out the discrete
Fourier transformation with the one belonging to the angle 2π/n among the
n distinct n-th roots of unity, but in the case of an abstract field there is no
such, in some respects primary, n-th root of unity among the primitive n-th
roots of unity, so it is an interesting and important question what happens if
we perform the transformation with one n-th root of unity instead of another.

Theorem 2.1. For any integer k Azku = (Azu)
(k), and if z is a primitive

n-th root of unity, then for any n-th root of unity y there exists a k ∈ N such
that Ayu = (Azu)

(k).

Proof. Applying the definition of the transform

(Azku)i =

n−1∑
j=0

((zk)−i)juj =

n−1∑
j=0

(z(−ki))juj =(2.1)

=

n−1∑
j=0

(z(−ki) mod n)juj =

= (Azu)ki mod n = ((Azu)
(k))i

If the order of z is n then every n-th root of unity is a power of z with an
exponent of a nonnegative integer less than n, so with some integer k y = zk,
and the second statement follows from the above. ■

Theorem 2.2. Let n ∈ N+ and L be a field such that the n-th cyclotomic field
over L is contained in L, let σ be an automorphism of L, and let K be the
largest subfield of L, on which σ is the identical mapping. Let σ denote the
componentwise extension of σ onto Ln , and let z be a primitive n-th root of
unity. Then there is an n > k ∈ N coprime to n such that

1. for u ∈ Ln σ(Azu) = Azkσ(u)
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2. u ∈ K(n) if and only if σ(U) = U(k)

3. for u ∈ Kn, U is in Kn if and only if u = u(k′) where kk′ ≡ 1 (n) with
k mentioned above, and then U = U(k)

Proof.

1. In the case of an automorphism, the image of an n-th root of unity is an
n-th root of unity and the image of a primitive n-th root of unity is a primitive
n-th root of unity, so there is an n > k ∈ N so that σ(z) = zk and (k, n) = 1.
Then

(σ(Azu))i = σ((Azu)i) =(2.2)

= σ(

n−1∑
j=0

(z−i)juj) =

n−1∑
j=0

(σ(z)−i)jσ(uj) =

=

n−1∑
j=0

((zk)−i)jσ(uj) = (Azkσ(u))i

and from the previous theorem we get the first statement.

2. u ∈ Kn is fulfilled if and only if σ(u) = u. Now on the one hand
U(k) = (Azu)

(k) = Azku, on the other hand σ(U) = σ(Azu) = Azkσ(u) ,
hence U(k) = σ(U) will be exactly when Azku = Azkσ(u). zk is a primitive
n-th root of unity, so Azk is invertible, and then the above equality is true
exactly if u = σ(u), i.e. u ∈ Kn and σ(U) = U(k) equivalent conditions.

3. U ∈ Kn is fulfilled if and only if σ(U) = U so with a u contained in
Kn exactly then if Azu = (Azu)

(k) = Azu
k′

that is if u = u(k′) and then
U = Azu = (Azu)

(k) = U(k). ■

First, let L = C that is L is the field of the complex numbers and σ : a 7→ a
the complex conjugation (u, as usual, denotes the conjugate of u). Then K = R,
so now K is the field of the real numbers, and for the condition that u ∈ Rn is
necessary and sufficiant the eqality σ(U) = U(−1). Indeed, z 7→ z is bijective
and operation-preserving on C, so, the complex conjugation is an automorphism
of C, and R is the largest subfield of C, in which conjugation is the identical
mapping. z is now a complex n-th root of unity, so z = z−1 = zn−1, that is
k = n− 1, and (Azu)

(n−1) = (Azu)
(−1).

As a second case, let L be Fqm . wherem is a positive integer, let σ : a 7→ aq
l

,

l ∈ N+ and let d = (m, l). Let q̃, m̃ and l̃ be qd, m
d and l

d respectively. Then

L = Fq̃m̃ , σ : a 7→ aq̃
l̃

and (m̃, l̃) = d̃ = 1, thus, in the following, we assume
that m and l are relatively primes.
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Then K = Fq, and u ∈ Kn is satisfied if and only if σ(Azu) = (Azu)
(ql) =

= U(ql). This is true because on any extension of a q-element field, a 7→ aq
l

is

automorphizm, and this takes z to zq
l

, and this mapping moves into themselves
exactly the elements of K on the set of the elements of L (because for 0 ̸= u ∈ L

uqm−1 = e, u = uql is true exactly if uql−1 = e, and the two equalities together

are satisfied if and only if e = u(qm−1,ql−1) = uq(m,l)−1 = uq−1, i.e. if uq = u),
that is, K is the maximal subfield in L on which the constraint of the transform
is the identical mapping.

3. Special cases

In this section, we take a closer look at the meaning of the special cases
mentioned above.

3.1. DFT over the field of complex numbers

If u is a real vector, then (Azu)k = (Azu)(−k) mod n. It follows that (Azu)0

is real, and for any integer i greater than 0 but less than n, (Azu)i = (Azu)n−i

(so if n is even, say n = 2m, then the m-th component is also real), and this
means that only ⌈(n + 1)/2⌉ components can be independent (or even fewer).
This is also true backwards, i.e. if the conjugate of the transform U of the
complex vector u is identical to U(−1), then u is real. If k = −1, then k′ is
−1, too, i.e. u = u(k′) now, as before U, means ui = u(n−i) mod n. For real
u, if this is true, and only then, all components of U are real, and for each
component of the vector, Ui = U(n−i) mod n.

3.2. DFT over finite fields

The case for a finite field says that if the components of the vector are
from the q-element field, then the component belonging to the index of qli
mod n of the transformed vector is the ql-th power of the component of the
original vector belonging to the index of i. Let ri be the smallest positive
integer such that i(ql)ri ≡ i (mod n). q and n are coprimes, because the
characteristic of the field does not divides n, so there is such an ri exponent,

namely ri = oo+n (i)

(
ql
)
=

o
o
+
n (i)

(q)(
o
o
+
n (i)

(q),l
) = o+o

o
+
n (i)

(q) (l), and if l = 1, then, more

simply, ri = oo+n (i) (q) (om(a) denotes the (multiplicative) order of a by mod-

ulo m and o+m(a) denotes the additive order of a by modulo m). Now for
ri > t ∈ N Ui determines the components of U belonging to the indices of
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ql
)t
i
)

mod n =
(
qlti
)
mod n. Then

U((ql)ri i) mod n = U
(ql)

ri

i =

n−1∑
j=0

(
z−i
)j

uj

(ql)
ri

=

=

n−1∑
j=0

((
z−i
)j)(ql)ri

uj =

n−1∑
j=0

(
z−i(ql)

ri
)j

uj =(3.1)

=

n−1∑
j=0

(
z−i
)j

uj = Ui,

as it should be, since
(
ql
)ri

i mod n = i. U
(ql)

ri

i = Ui means that Ui is an

element of the
(
ql
)ri

-element field, and as it is an element of the field of qm

elements, so it is an element of the intersection of that two fields, too. The size
of that field is qs, where s = (m, lri) = (m, ri) (as (m, l) = 1).

Conversely, if in U for every n > i ∈ N it is fulfilled, that the component
belonging to the index of

(
qli
)
mod n is equal to the ql-th power of Ui, then u

is the vector belonging to the n-th direct sum of the q-element field K.

Finally, let u be again a vector over Fq. Now U is in Fn
q if and only

if ui = uql′ i mod n, where l′ is the opposite of l modulo on (q), that is l′ =
= (−l) mod on (q), and in that case Ui = Uqli mod n.

4. Example

Let’s see an example. Let q = 3, m = 3, l = 2 and n = 13. Then qm = 27
and (m, l) = (3, 2) = 1, that is, K = F3 and L = F27. n = 13 |26 = 27 − 1, so
it also holds that L(n) ⊆ L where L(n) denotes the n-th cyclotomic field over
L. Now ql = 32 = 9, i.e. σ (v) = v9 for the elements of L, and if v ∈ K, then
σ (v) = v9 = v. Let’s look at

(
qli
)
mod n = (9i) mod 13 for 13 > i ∈ N :

i 0 1 2 3 4 5 6 7 8 9 10 11 12
(9i) mod 13 0 9 5 1 10 6 2 11 7 3 12 8 4

Based on the table, there are five disjoint cycles:

0 → 0
1 → 9 → 3 → 1
2 → 5 → 6 → 2
4 → 10 → 12 → 4
7 → 11 → 8 → 7
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and accordingly we get – omitting the one-element class – the components of
the transformed vector:

U1 → U9 = U9
1 → U3 = U9

9 = U81
1 = U3

1 → U1 = U9
3 = U27

1 = U1

U2 → U5 = U9
2 → U6 = U9

5 = U81
2 = U3

2 → U2 = U9
6 = U27

2 = U2

U4 → U10 = U9
4 → U12 = U9

10 = U81
4 = U3

4 → U4 = U9
12 = U27

4 = U4

U7 → U11 = U9
7 → U8 = U9

11 = U81
7 = U3

7 → U7 = U9
8 = U27

7 = U7

The table shows that ri = 3 for all i except 0. Indeed: o+n (i) = o+13 (i) =
= 13

(13,i) = 13 for every i, since 13 is a prime number. In this case, the value of

ri is the same for each i, it is sufficient to define for i = 1. o13 (9) is a divisor of
φ (13) = 12, so the order can only be 1, 2, 3, 4, 6, and 12. 1 is only the order
of 1. 92 = 81 ≡ 3 (mod 13), and 3 is not congruent to 1 modulo 13, so even 2
is not the desired order, but 93 ≡ 9 · 3 = 27 ≡ 1 (mod 13), so we got r1 = 3,
and then ri = 3 for every other positive integer i less than 13. This also means
that, with the exception of U0, each element of the transformed vector can be
any element of the 27-element field (while U0 necessarily belongs to K). The
fact that every cycle (except for the one containing 0) has the same length, and
every element of the transformed vector can be any element of the entire field,
is not generally true, it is just a feature of this example.

Now l′ = (−l) mod on (q) = (−2) mod 3 = 1, so if u(3i) mod 13 = ui ∈ F3

for 13 > i ∈ N , then U(9i) mod 13 = U9
i = Ui ∈ F3.
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