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Abstract. We investigate the problem of reconstructing polynomial-based
ternary number systems when the expansion of certain elements – the pair-
wise sums of digits – is given. We call these expansions the “addition rules”
for the system. We define a randomized process for expanding arbitrary
elements based on these addition rules. For some rules, the expansion is
not-well defined. We search for addition rules below a certain length that
yield well-defined expansion for all elements, which we call the uniqueness
property. We also give algorithms for the reconstruction of the base poly-
nomial and the digits of the numeration system from the addition rules.
Finally, we formulate some open problems for further research.

1. Introduction

The definition of positional number systems for representing positive inte-
gers has many generalizations. In matrix-based numeration systems, vectors
are represented as a sum of the powers of a base matrix multiplied by digit
vectors. In the present paper, we consider base matrices which are companion
matrices of a polynomial and digit sets with three elements. Formally, let n
be a positive integer, f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x] with

|a0| = 3. Let M be the companion matrix of f(x) and D = {0, a, b} be a digit
set with a, b ∈ Zn such that D is a complete residue system modulo M . Usual
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questions one poses about such a system are the existence of a representation
of all integer vectors in base M with digits in D, and how such a representation
can be obtained algorithmically.

Here, we focus on the inverse problem: given the representation of some
elements of the integer lattice, can we obtain the representation of other ele-
ments, and, ultimately, reconstruct f , a and b? Assume that the expansion
in base f(x) with digits in D of 2a, 2b and a + b are known. We will show
that this can be used to define a nondeterministic “dynamical system”. We
investigate which of these dynamical systems satisfy the uniqueness property,
which means that each linear combination of the digits a and b with integer
coefficients has a unique (but not necessarily finite) representation.

The paper is built up as follows: in Section 2, we give definitions and prior
results on numeration systems and define our research problems. In Section 3,
we illustrate addition rules and the associated dynamical system through ex-
amples. In Section 4, we introduce algorithms for searching, decision and val-
idation of addition rules with certain properties. In Section 5, we give the
main idea for the reconstruction of the base of systems from addition rules. In
Section 6, we summarize the results and formulate further research questions.

2. Definitions and prior results

The definition of positional number systems for representing positive inte-
gers has many generalizations. In [3], a positional representations for complex
integers were analyzed. A comprehensive survey in further generalizations can
be found in [1]. For the purposes of the present paper, we will need poly-
nomial based systems and matrix numeration systems, see e.g. [5, 4]. For a
self-contained presentation, we give the definitions and theorems that will be
used throughout the paper.

Definition 2.1. Let M ∈ Zn×n be an invertible matrix and D ⊆ Zn is a finite
set. The pair (M,D) is called a matrix numeration system, if ∀x ∈ Zn has a
unique and finite representation in form

x =

n∑
i=0

M idi,

where ∀i ∈ {0, 1, . . . , n} : di ∈ D and dn ̸= 0.

Definition 2.2. Let x, y ∈ Zn be integer vectors. x and y are congruent
modulo M if

∃v ∈ Zn : x− y = Mv

The congruence is an equivalence relation. Its classes are called congruence
classes modulo M .
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Definition 2.3. A set D is a complete residue system modulo M , if it contains
exactly one member of each residue class of Zn.

A few necessary conditions for (M,D) to be a matrix numeration system
are as follows. The digit set D needs to be a complete residue system modulo
M , thus have cardinality |det(M)|. The digit 0 ∈ D. Furthermore M needs
to be an expanding matrix (i.e. have eigenvalues with modulus strictly larger
than 1).

Definition 2.4. If M is an invertible matrix, then

D = {(i, 0, 0, . . . , 0)T : 0 ≤ i < |detM |}

is called the canonical digit set.

Definition 2.5. Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a monic

polynomial with integer coefficients. The matrix

M =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 0 1 −an−1


is called the companion matrix of f .

If the constant term a0 ̸= 0, then |det(M)| = (−1)n−1a0, so the matrix M
is invertible.

Definition 2.6. A polynomial f(x) is called a canonical number system poly-
nomial or CNS-polynomial if its companion matrix with the canonical digit set
is a generalized number system.

We note that by the above observations, necessary conditions for f to be a
CNS-polynomial, the digit set should contain exactly |a0| elements and f has
to be an expanding polynomial (all roots have modulus greater than 1).

Non-canonical digit sets can also be of interest. Examples of such non-
canonical systems can be given by base polynomial x − 3 and the digit set
D = {−1, 0, 1}. Another example is f = x + 3 with D = {0, 2, 7}. In the
latter example, we have that every integer has a unique representation in base
−3 with digits 0, 2, 7. In [6], the authors give infinite families of non-canonical
matrix numeration systems in dimension one.

An important algorithmic problem of numeration systems is the following:
given a matrix M and digit set D as inputs, decide if they constitute a ma-
trix numerations system. In [5, 4], methods have been presented to reduce
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the problem to an exhaustive search over a finite region of vectors. In [2]
and independently, in [7], a different approach is introduced. In these papers,
the existence of representation using base and digits (M,D) is reduced to the
problem of addition in base M representation. This, in turn can be analyzed
by understanding the “set of carries” or the “carry automaton” when per-
forming addition on representations. In traditional positional number systems
where the carry of 1 is the only possibility when adding two numbers using
“paper-and-pencil” addition. In generalized systems, several different carries
can occur, influencing digits that are several positions ahead and interacting
with each other. How addition is performed is uniquely determined by M
and D, and this contains the necessary information to analyze the existence of
representations and the numeration system property.

In the present paper we set out to investigate the inverse problem: given
the rules how addition works on representations in base M with digits D, can
we recover M and D? As it is easy to see, this can only be possible up to a
basis change, so instead we try to recover polynomial-based systems and the
digits. We investigate ternary systems: the digit set is D = {0, a, b}, M is
unknown (even the dimension is unknown), and we are given the expansion of
a+ a, b+ b and a+ b as inputs.

3. Reconstruction from addition rules – an example

From now on, a and b will stand for the two nonzero digits of a ternary
system. More perecisely, Let M be a base matrix with determinant ±3, D =
{0, a, b}, and suppose we are given the expansion of a+a, b+b and a+b as inputs.
We will use the following notation. Instead of writing Mkek + Mk−1ek−1 +
+ · · · + Me1 + e0, we will write the (k + 1) -tuple (ek, ek−1, . . . , e1, e0). If M
is the companion matrix of a polynomial, the same tuple is used to represent
xkek + xk−1ek−1 + · · ·+ xe1 + e0

Below, we give two example instances of the problem. The inputs are the
addition rules, the goal is to recover M and D.

Example 3.1. Let the expansion of pairwise sums of digits be given as follows:

2a ∼ (b, 0, 0, b),

2b ∼ (0, b, a),

a+ b ∼ (a, b, 0).

How can we compute 3a + 2b? We do not have this in the list, but we
can break it down into sums of sums, e.g. as (a + b) + (a + b) + a. Now,
in the latter sum, the expansion of the summands is known, so we have that
3a + 2b = (2a, 2b, a) = M2(2a) +M(2b) + a. This is not a finished expansion
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because M2 and M are not multiplied by digits. Nonetheless, the final digit is
obtained. After removing the final digit, we may the proceed by finding how
(2a, 2b) can be expanded. This “removal of the final digit” step is visualized
in the figure below by a horizontal line.

Let us break down the computation of 3a+ 2b. In each step of the calculation
we choose a linear combination of 2a, 2b, a+ b, a and b as follows:

3a+ 2b = c2a · 2a+ c2b · 2b+ ca+b · (a+ b) + ca · a+ cb · b,
where ca, cb ∈ {0, 1} and c2a, c2b, ca+b ∈ Z

and with the addition rules we get:

0 0 0 0 3a+2b | 3a+2b=(a+b)+(a+b)+a
0 0 a b 0
0 0 a b 0

+ 0 0 0 0 a
0 0 2a 2b a | 2b=2b

+ 0 0 b a
0 0 2a+b a | 2a+b=(a+b)+a
a b 0

+ 0 0 a
a b a a a

The process stops at this point and we obtain that the expansion of 3a+2b
is equal to (a, b, a, a, a). Now let see what happens if the linear combinations
in steps of the addition are chosen differently.

0 0 0 0 0 0 3a+2b | 3a+2b=2a+2b+a
0 0 0 b 0 0 b
0 0 0 0 0 b a

+ 0 0 0 0 0 0 a
0 0 0 b 0 b 2a+b | 2a+b=(a+b)+a
0 0 0 0 a b 0

+ 0 0 0 0 0 0 a
0 0 0 b a 2b a | 2b=2b

+ 0 0 0 0 b a
0 0 0 b a+b a | a+b=a+b

+ 0 0 a b 0
0 0 a 2b 0 | 2b=2b

+ 0 0 b a
0 0 a+b a

+ a b 0
a b 0 a 0 a a
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With these steps the expansion of 3a + 2b is equal to (a, b, 0, a, 0, a, a), so
these rules do not satisfy the uniqueness property of expansions.

Example 3.2. Let f(x) = x2 − x− 3 and the digit set

{(
0
0

)
,

(
−1
−1

)
,

(
1
0

)}
.

The companion matrix of f is equal to(
0 3
1 1

)
.

Let 0 =

(
0
0

)
, a =

(
−1
−1

)
and b =

(
1
0

)
be the digits. In this case

2a =

(
−2
−2

)
=

(
0 3
1 1

)1

·
(
−1
−1

)
+

(
0 3
1 1

)0

·
(
1
0

)
∼ (a, b),

2b =

(
2
0

)
=

(
0 3
1 1

)2

·
(
1
0

)
+

(
0 3
1 1

)1

·
(
0
0

)
+

(
0 3
1 1

)0

·
(
−1
−1

)
∼ (b, 0, a),

a+ b =

(
0
1

)
=

(
0 3
1 1

)2

·
(
1
0

)
+

(
0 3
1 1

)1

·
(
−1
−1

)
+

(
0 3
1 1

)0

·
(
0
0

)
∼ (b, a, 0).

Now we assume, that just the expansion of 2a, 2b and a+ b are known and try
to reconstruct the base of this system. Calculate the expansion of 3a + 2b in
two ways, as in the previous example.

0 0 0 0 3a+2b | 3a+2b=2a+2b+a
0 0 0 a b
0 0 b 0 a

+ 0 0 0 0 a
0 0 b a 2a+b | 2a+b=2a+b
0 0 0 a b

+ 0 0 0 0 b
0 0 b 2a 2b | 2b=2b

+ 0 0 b 0 a
0 0 2b 2a | 2a=2a

+ 0 0 a b
0 0 a+2b | a+2b=(a+b)+b
b a 0

+ 0 0 b
b a b b a
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0 0 0 0 3a+2b | 3a+2b=(a+b)+(a+b)+a
0 0 b a 0
0 0 b a 0

+ 0 0 0 0 a
0 0 2b 2a a | 2a=2a

+ 0 0 a b
0 0 a+2b b | a+2b=2b+a
b 0 a

+ 0 0 a
b 0 2a | 2a=2a

+ 0 a b
b a b b a

Both calculations give the same expansion, not contradicting the uniqueness
property. How can we proceed to recoverM? Our strategy (made more system-
atic in the following sections) is to obtain a nontrivial expression of 0 as a linear
combination of powers of x with sums of digits as coefficients. A calculation
like the one above shows

2a− b ∼ (a, 0)

which means that
b = −x · a+ 2a.

Now using the expansion of 3a+ 2b, we get

3a+ 2b = x4 · b+ x3 · a+ x2 · b+ x1 · b+ x0 · a

3a+2(−x·a+2a) = x4(−x·a+2a)+x3 ·a+x2(−x·a+2a)+x1(−x·a+2a)+x0 ·a

0 = x5 · a− 2x4 · a− x2 · a− 4x · a+ 6a = (x5 − 2x4 − x2 − 4x+ 6) · a =

= (x− 1)(x2 + 2)(x2 − x− 3) · a,

giving us a hint that the base polynomial might be one of the factors of the
right hand side, x2 − x− 3.

The above process may seem ad hoc at first sight. In the following section,
we give heuristics that enable us the algorithmic reconstruction of the base
polynomial and the digits in most cases we investigated.

4. Decision process and validation

Let n be a positive integer, f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, such
that |a0| = 3. Let M be the companion matrix of f(x) and D = {0, a, b} be the
digit set, such that D is a complete residue system modulo M . Furthermore
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suppose that the expansions of 2a, 2b and a + b are known in the following
form:

2a = Mp · xp +Mp−1 · xp−1 + · · ·+M · x1 + b ∼ (xp, xp−1, . . . , x1, b),

2b = Mn · yn +Mn−1 · yn−1 + · · ·+M · y1 + a ∼ (yn, yn−1, . . . , y1, a),

a+ b = Mm · zm +Mm−1 · zm−1 + · · ·+M · z1 + 0 ∼ (zm, zm−1, . . . , z1, 0),

where ∀i, j, k : xi, yj , zk ∈ D. We call the above three equations the addition
rules for the system. We categorize the systems according to the length of the
maximal rule. The set S(k) contains the systems with rules of the form and
maximal expansion length k, i.e. k = max{p + 1, n + 1,m + 1}. It is easy to
calculate that |S(1)| = 1 and |S(k)| = 33k−3 − 33k−6, if k ≥ 2, so the number
of systems to be analyzed increases exponentially.

The basic idea was to randomize the algorithm presented in Example 3.2.
Let na+mb be a linear combination of digits a and b. We wish to explore its
expansion by writing it as a sum or difference of several copies of 2a, 2b and
(a+ b). In each step of the addition we choose such decompositions randomly
and we probabilistically assess uniqueness of the expansion of na + mb by
running the algorithm with different decompositions multiple times. We repeat
this process for several different choices of n and m in na + mb. In order to
make the approach formal, we have to address the following questions.

� How many elements are chosen for uniqueness testing and according to
what distribution from which set?

� Since the algorithm randomly chooses a linear combination of the given
element in each step, it is possible that two runs use the same steps, or
just happens to give the same expansion output. How many times do we
have to run the algorithm to get reliable results?

� Since there may be cases where no finite expansion of an element exists,
it is also necessary to determine how many digits are calculated from the
expansion before stopping the expansion process.

To answer these questions, we introduce the following parameters:

NoR := number of runs of the algorithm

NoD := number of calculated digits of the expansion

H(k) := {(n,m) ∈ Z2 | −k ≤ n,m ≤ k}\{(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}

In order to tune these parameters, we considered systems in the sets S(2),
S(3), S(4), S(5) which do not satisfy the uniqueness property. We randomly
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selected elements na + mb and examined the empirical probability that an
addition rule passes the uniqueness test despite not having the uniqueness
property. We present our results in the following table.

NoR 2 2 2 2 3 3 3 3
NoD 2 3 4 5 2 3 4 5
H(10) 0,54 0,31 0,22 0,19 0,38 0,14 0,09 0,08
H(20) 0,52 0,23 0,14 0,1 0,35 0,08 0,03 0,03
H(30) 0,5 0,22 0,11 0,07 0,35 0,06 0,02 0,02
H(50) 0,51 0,19 0,08 0,05 0,34 0,05 0,01 0,01

NoR 4 4 4 4 5 5 5 5
NoD 2 3 4 5 2 3 4 5
H(10) 0,33 0,08 0,06 0,05 0,29 0,05 0,04 0,04
H(20) 0,31 0,04 0,02 0,02 0,27 0,02 0,01 0,01
H(30) 0,29 0,02 0,01 0,01 0,27 0,01 0,01 0,01
H(50) 0,29 0,02 0 0 0,26 0,01 0 0

Table 1. Probability for passing as a false positive for uniqueness in set S(2)

NoR 2 2 2 2 3 3 3 3
NoD 2 3 4 5 2 3 4 5
H(10) 0,7 0,45 0,23 0,13 0,58 0,34 0,08 0,06
H(20) 0,68 0,42 0,16 0,09 0,58 0,31 0,05 0,02
H(30) 0,67 0,4 0,15 0,07 0,57 0,3 0,04 0,01
H(50) 0,67 0,41 0,14 0,05 0,56 0,3 0,04 0,01

NoR 4 4 4 4 5 5 5 5
NoD 2 3 4 5 2 3 4 5
H(10) 0,55 0,3 0,05 0,04 0,53 0,44 0,04 0,03
H(20) 0,53 0,28 0,02 0,01 0,51 0,27 0,02 0,01
H(30) 0,52 0,27 0,02 0,01 0,51 0,26 0,01 0
H(50) 0,52 0,26 0,01 0 0,51 0,26 0,01 0

Table 2. Probability for passing as a false positive for uniqueness in set S(3)
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NoR 2 2 2 2 3 3 3 3
NoD 2 3 4 5 2 3 4 5
H(10) 0,55 0,29 0,17 0,11 0,38 0,12 0,07 0,05
H(20) 0,52 0,22 0,11 0,05 0,35 0,07 0,02 0,02
H(30) 0,51 0,2 0,09 0,04 0,35 0,06 0,02 0,01
H(50) 0,51 0,18 0,07 0,03 0,34 0,05 0,01 0

NoR 4 4 4 4 5 5 5 5
NoD 2 3 4 5 2 3 4 5
H(10) 0,33 0,07 0,05 0,04 0,3 0,06 0,04 0,03
H(20) 0,3 0,03 0,01 0,01 0,28 0,03 0,01 0,01
H(30) 0,28 0,03 0,01 0 0,27 0,01 0 0
H(50) 0,29 0,02 0 0 0,26 0,01 0 0

Table 3. Probability for passing as a false positive for uniqueness in set S(4)

NoR 2 2 2 2 3 3 3 3
NoD 2 3 4 5 2 3 4 5
H(10) 0,69 0,46 0,23 0,14 0,59 0,34 0,1 0,05
H(20) 0,67 0,43 0,16 0,08 0,57 0,31 0,07 0,02
H(30) 0,67 0,41 0,16 0,06 0,56 0,3 0,04 0,01
H(50) 0,67 0,41 0,14 0,06 0,56 0,29 0,04 0,01

NoR 4 4 4 4 5 5 5 5
NoD 2 3 4 5 2 3 4 5
H(10) 0,55 0,31 0,06 0,04 0,53 0,28 0,04 0,03
H(20) 0,53 0,28 0,03 0,01 0,52 0,26 0,02 0,01
H(30) 0,52 0,27 0,02 0,01 0,51 0,26 0,01 0,01
H(50) 0,52 0,27 0,02 0 0,51 0,26 0,01 0

Table 4. Probability for passing as a false positive for uniqueness in set S(5)

From the results it we concluded that the probabilities depend mostly on the
number of runs and the number of digits calculated. Therefore the parameter
choices of NoR = 5, NoD = 5 and H(k) = 10 were used in the randomized
algorithm, so for a given k = {2, 3, 4, 5} and for each system in the set S(k),
we choose a random element (n,m) from the set H(10), and we computed the
expansion of na + mb exactly five times to the fifth digit. If in all five cases
all five digits were the same, a validation process was applied to the system.
During validation, we checked the uniqueness of the expansion of all elements
of the set H(10) up to the fifth digit. If the validation was successful, the
system was declared a candidate to be a matrix numeration system, and we
proceeded to reconstruct the base polynomial f(x).
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The following pseudo-codes shows the searching and validation process:

1 Procedure GRC (generate random coefficients)

2 Input: v = an array containing two integers

3 decomp = NULL

4 if v = (1,1) then

5 decomp = (0,0,1,0,0)

6 else

7 decomp [3] = random integer between 0 and min(v[1],v[2]))

8 decomp [2] = ceiling of (v[2]- decomp [3])/2

9 decomp [1] = ceiling of (v[1]- decomp [3])/2

10 decomp [4] = v[2]- decomp [3] mod 2

11 decomp [5] = v[1]- decomp [3] mod 2

12 end if

13 return decomp

14 end Procedure

1 Procedure SearchingProcess

2 Input: array exp(aa) = expansions of 2a

3 array exp(bb) = expansions of 2b

4 array exp(ab) = expansions of a+b

5 result = NULL

6 for NoR = 1 to 5 do

7 (n,m) = random element of set H(10)

8 list = ((n,m))

9 digits = NULL

10 for i=1 to length of the longest element of expansion + 3

do

11 list = append(list ,0)

12 end for

13 for NoD = 1 to 5 do

14 while list [1] not equal to "a" or "b" or "0" do

15 D = Procedure GCD(list [1]),

16 list [1] = D[1]* exp(aa)[1] + D[2]* exp(bb)[1]+

17 + D[3]* exp(ab)[1] + D[4]*"a" + D[5]*"b"

18 for k=2 to length of the longest expansion do

19 list[k] = list[k] + D[1]* exp(aa)[k]

20 + D[2]* exp(bb)[k] + D[3]* exp(ab)[k]

21 end for

22 end while

23 digits[NoD] = list [1]

24 delete list [1]

25 end for

26 result[NoR] = digits

27 end for

28 if all elements of result are equal then

29 return TRUE

30 else

31 return FALSE

32 end if

33 end procedure
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1 Procedure ValidationProcess

2 Input: array exp(aa) = expansions of 2a

3 array exp(bb) = expansions of 2b

4 array exp(ab) = expansions of a+b

5 for n = 1 to 10 do

6 for m = 1 to 10 do

7 if !( SearchingProcess(n,m)) then

8 return FALSE

9 end if

10 end for

11 end for

12 return TRUE

13 end Procedure

During the research, the sets S(2), S(3), S(4) and S(5) could be fully inves-
tigated. The following table shows the number of systems determined by the
searching and validation process.

set systems
S(2) 4
S(3) 18
S(4) 82
S(5) 415

Table 5. Number of systems passed the searching and validation process

5. Reconstruction

During the reconstruction, 3 different cases have been identified.

Case 1: All systems passed the validation process where the expansion of a+b
is equal to 0, and the expansion of 2a and 2b are symmetric. Formally this
means that

2a ∼ (xn, xn−1, . . . , x1, b),

2b ∼ (yn, yn−1, . . . , y1, a),

a+ b ∼ (0, 0, . . . , 0)

where for all i ∈ {1, 2, . . . , n}:

xi = a ⇐⇒ yi = b,
xi = b ⇐⇒ yi = a,
xi = 0 ⇐⇒ yi = 0.

In this case we know that b = −a, and if (n,m) ∈ H(10), then the expansion
of na + mb is unique, and therefore we can determine the representation of



Numeration systems defined by addition rules 117

0 in polynomial form for all elements of H(10). If all the fi(x) polynomials
represented 0 are calculated then the gcd(f1(x), f2(x) . . . , f441(x)) can be the
base of this system.

Case 2: Some systems passed the validation process where the expansion of
2a is equal to b. Formally this means that

2a ∼ (0, 0, . . . , b),

2b ∼ (yn, yn−1, . . . , y1, a),

a+ b ∼ (zm, zm−1, . . . , z1, 0)

where for all i ∈ {1, 2, . . . , n} and for all j ∈ {1, 2, . . . ,m} : yi, zj ∈ {0, a, b}.
In this case we know that b = 2a and similarly as in the previous case, we can
describe the polynomials representing 0 for all na+mb, where (n,m) ∈ H(10),
and their greatest common divisor can be the base of these systems.

We used the following algorithm for the reconstruction of the base of these
systems:

1 Procedure SystemBase1

2 Input: array exp(aa) = expansions of 2a

3 array exp(bb) = expansions of 2b

4 array exp(ab) = expansions of a+b

5 v = list()

6 In Case 1: b = -a or In Case 2: b = 2a

7 for n = -10 to 10 do

8 for m = -10 to 10 do

9 v[i]:= representation of 0 from the expansion of na+mb

10 end for

11 end for

12 return GCD(v[1],v[2],...,v[441])

13 end Procedure

Example 5.1. Let

2a ∼ (b, 0, a, b),

2b ∼ (a, 0, b, a),

a+ b ∼ (0, 0, 0, 0)

be the expansions. Since b = −a, therefore

2a = bx3 + ax+ b = −ax3 + ax− a ⇐⇒ a(x3 − x+ 3) = 0,

2b = ax3 + bx+ a = −bx3 + bx− b ⇐⇒ b(x3 − x+ 3) = 0

and for example

10a+ b ∼ (a, a, b, a, 0, a, 0, 0),
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9a = 10a+ b = ax7+ax6+ bx5+ax4+ax2 = ax7+ax6−ax5+ax4+ax2 ⇐⇒

⇐⇒ 0 = a(x7+x6−x5+x4+x2− 9) ⇐⇒ 0 = a(x3−x+3)(x4+x3−x− 3)

so the polynomial x3 − x+ 3 can be the base of this system.

Example 5.2. Let

2a ∼ (0, 0, 0, b),

2b ∼ (a, b, 0, a),

a+ b ∼ (a, b, 0, 0)

be the expansions. Since 2a = b, therefore

2b = ax3 + bx2 + a ⇐⇒ 4a = ax3 + 2ax2 + a ⇐⇒

⇐⇒ 0 = a(x3 + 2x2 − 3) = a(x− 1)(x3 + 3x+ 3)

or
7a+ 4b ∼ (a, b, b, 0, b, a, 0, 0)

15a = 7a+4b = ax7+bx6+bx5+bx3+ax2 = ax7+2ax6+2ax5+2ax3+ax2 ⇐⇒

⇐⇒ 0 = a(x7 + 2x6 + 2x5 + 2x3 + x2 − 15) ⇐⇒

⇐⇒ 0 = a(x3 + 3x+ 3)(x5 − x4 + 2x3 − 3x2 + 5x− 5)

so the polynomial x3 + 3x+ 3 can be the base of this system.

Case 3: In the remaining cases where the rules passed the validation process,
we do not have a trivial linear relationship between a and b from the expansions
of 2a, 2b and a + b. In this case, we used the following idea. Try to find an
(n,m) ∈ H(10) pair such that the expansion of na + mb only conatins one
of the the digits a or b. If there exists a pair (n0,m0) with this property, and
without the loss of generality we assume that the missing digit in the expansion
of n0a+m0b is a, then we get:

n0a+m0b =

k∑
i=0

ϵix
i, where ∀i ∈ {1, 2, . . . , k} : ϵi ∈ {0, b}

so

n0a = −m0b+

k∑
i=0

ϵix
i = b (−m0 +

k∑
i=0

µix
i)︸ ︷︷ ︸

:=f(x)

= bf(x),

where µi =

{
0, if ϵi = 0

1, if ϵi = b
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Now we can describe the polynomials representing 0 for all (n,m) ∈ H(10) as
follows:

na+mb =

n∑
i=0

dix
i, where ∀i ∈ {1, 2, . . . , n} : di ∈ {0, a, b}

but assuming the uniqueness property we have that

n0na+ n0mb =

k∑
i=0

n0dix
i = b

k∑
i=0

tif(x)x
i + (1− ti)n0x

i

︸ ︷︷ ︸
:=F (x)

= bF (x),

where ti =

{
0, if di = a

1, if di = b

On the other hand,

n0na+ n0mb = nbf(x) + n0mb =⇒

nbf(x) + n0mb = bF (x) ⇐⇒ 0 = bF (x)− nbf(x)− n0mb =

= b (F (x)− nf(x)− n0m)︸ ︷︷ ︸
Pn,m(x)

= bPn,m(x)

so in this system the polynomial Pn,m(x) represents 0. Similarly, if the missing
digit is b, we get the same result and we can describe a polynomial, which
represents 0. Using these calculations, we formulated the following algorithm:

1 Procedure SystemBase2

2 Input: array exp(aa) = expansions of 2a

3 array exp(bb) = expansions of 2b

4 array exp(ab) = expansions of a+b

5 v = list()

6 for n = -10 to 10 do

7 for m = -10 to 10 do

8 if the expansion of na+mb does not contains a or b

9 n_0=n and m_0=m

10 end if

11 stop

12 end for

13 stop

14 end for

15 for n = -10 to 10 do

16 for m = -10 to 10 do

17 v[i]=Pn,m(x)

18 end if

19 end for

20 end for

21 return GCD(v[1],v[2],...,v[441])

22 end Procedure
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Example 5.3. Let

2a ∼ (a, a, b, b),

2b ∼ (b, a, a, a),

a+ b ∼ (a, b, 0, 0)

be the expansions. Using the above-mentioned idea, we can get that

−3a+ 3b ∼ (b, b, 0)

which means, that

(5.1)
−3a+ 3b = bx2 + bx ⇐⇒ 3a = −bx2 − bx+ 3b ⇐⇒

⇐⇒ 6a = −2bx2 − 2bx+ 6b.

We know the expansion of 2a and 2b, so

(5.2) 2a = ax3 + ax2 + bx+ b ⇐⇒ 6a = 3ax3 + 3ax2 + 3bx+ 3b

and

(5.3) 2b = bx3 + ax2 + ax+ a ⇐⇒ 6b = 3bx3 + 3ax2 + 3ax+ 3a

Using the equations 5.1,5.2 and 5.3, we get

6a = −2bx2−2bx+6b = (−bx2−bx+3b)x3+(−bx2−bx+3b)x2+3bx+3b ⇐⇒
⇐⇒ 0 = −b(x5 + 2x4 − 2x3 − 5x2 − 5x+ 3) ⇐⇒

⇐⇒ 0 = −b(x3 − x− 3)(x2 + 2x− 1)

and

6b = 3bx3 + (−bx2 − bx+ 3b)x2 + (−bx2 − bx+ 3b)x+ (−bx2 − bx+ 3b) ⇐⇒
⇐⇒ 0 = −b(x4 − x3 − x2 − 2x+ 3) ⇐⇒ 0 = −b(x3 − x− 3)(x− 1)

so the polynomial x3 − x− 3 can be the base of this system.

A complete list of reconstructed basis polynomials are presented in the Ap-
pendix.

6. Summary

We presented the problem of reconstructing numeration systems from the
expansions of pairwise sums of digits. We investigated the problem empirically.
In order to better understand the connection between the basis and the addition
rules, we propose further research directions.
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� As a direct extension of the present work, find systems with the unique-
ness property in set S(k), if k > 5.

� Find algorithms or heuristic approaches for the reconstruct of the digit
set of the systems.

� Based on the empirical observations, try to characterize additions rules
which fulfill the uniqueness property

� Extend the present work to other numeration systems, including e.g. shift
radix systems (SRS).

Conjecture 6.1. Let f(x) = xn + an−1x
n−1 + · · ·+ a1x± 3 be a monic poly-

nomial.
If ∀i ∈ {1, 2, 3, . . . , n − 1} : ai ∈ {0, 1,−1}, then f satisfies the uniqueness
property.
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bdavid1001@inf.elte.hu, bupe@inf.elte.hu, orsi.igneczi@gmail.hu
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Appendix

2a 2b a+ b base

(a,b) (0,a) (a,0) 2x− 3
(b,b) (0,a) (b,0) 3
(a,b) (b,a) (0,0) 3
(b,b) (a,a) (0,0) −3

Table 6. Reconstructed basis in S(2)

2a 2b a+ b base

(0,a,b) (0,a,a) (a,b,0)
(a,0,b) (b,0,a) (0,0,0) x2 − 3
(b,0,b) (a,0,a) (0,0,0) x2 + x− 3
(b,a,b) (a,b,a) (0,0,0) x2 − x+ 3
(a,b,b) (b,a,a) (0,0,0) x2 − x− 3
(b,b,b) (a,a,a) (0,0,0) x2 + x+ 3
(a,a,b) (b,a,a) (a,b,0) x2 − 3
(0,0,b) (a,0,a) (a,0,0) x2 − 3
(0,0,b) (b,0,a) (b,0,0) 2x2 − 3
(0,0,b) (a,a,a) (a,a,0) x2 + x− 3
(0,0,b) (b,a,a) (b,a,0) 2x+ 3
(0,0,b) (a,b,a) (a,b,0) −3
(0,0,b) (b,b,a) (b,b,0) 2x2 + 2x− 3
(0,a,b) (a,0,a) (a,a,0) −3
(0,a,b) (b,0,a) (b,a,0) x2 − x− 3
(0,b,b) (a,0,a) (a,b,0) x2 + 2x+ 3
(0,b,b) (b,0,a) (b,b,0) 2x+ 3

Table 7. Reconstructed basis in S(3)
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2a 2b a+ b base

(a,0,a,b) (a,b,a,a) (a,0,b,0) x3 − x2 − 3
(a,a,a,b) (b,a,a,a) (a,0,b,0) x3 − 3
(a,b,a,b) (b,b,a,a) (a,b,b,0) x3 − 3
(a,a,b,b) (b,a,a,a) (a,b,0,0) x3 − x− 3
(0,b,b,b) (a,a,b,a) (0,b,a,0) x2 + 3x+ 3
(a,0,0,b) (b,0,0,a) (0,0,0,0) x3 − 3
(b,0,0,b) (a,0,0,a) (0,0,0,0) x3 + 3
(a,a,0,b) (b,b,0,a) (0,0,0,0) x3 + x2 − 3
(b,a,0,b) (a,b,0,a) (0,0,0,0) x3 − x2 + 3
(a,b,0,b) (b,a,0,a) (0,0,0,0) x3 − x2 − 3
(b,b,0,b) (a,a,0,a) (0,0,0,0) x3 + x2 + 3
(a,0,a,b) (b,0,b,a) (0,0,0,0) x3 + x− 3
(b,0,a,b) (a,0,b,a) (0,0,0,0) x3 − x+ 3
(a,a,a,b) (b,b,b,a) (0,0,0,0) x3 + x2 + x− 3
(b,a,a,b) (a,b,b,a) (0,0,0,0) x3 − x2 − x+ 3
(a,b,a,b) (b,a,b,a) (0,0,0,0) x3 − x2 + x− 3
(b,b,a,b) (a,a,b,a) (0,0,0,0) x3 + x2 − x+ 3
(a,0,b,b) (b,0,a,a) (0,0,0,0) x3 − x− 3
(b,0,b,b) (a,0,a,a) (0,0,0,0) x3 + x+ 3
(a,a,b,b) (b,b,a,a) (0,0,0,0) x3 + x2 − x− 3
(b,a,b,b) (a,b,a,a) (0,0,0,0) x3 − x2 + x+ 3
(a,b,b,b) (b,a,a,a) (0,0,0,0) x3 − x2 − x− 3
(b,b,b,b) (a,a,a,a) (0,0,0,0) x3 + x2 + x+ 3
(0,0,a,b) (0,a,a,a) (a,b,b,0) x2 + 3x− 3
(0,a,a,b) (0,a,a,a) (a,0,b,0)
(0,a,b,b) (0,a,a,a) (a,b,0,0) −3
(a,0,a,b) (b,0,a,a) (0,a,b,0) x3 − 3
(a,a,a,b) (b,b,a,a) (0,a,b,0) x3 + x2 − 3
(a,b,a,b) (a,a,a,a) (0,a,b,0) x2 + 3
(0,0,0,b) (a,0,0,a) (a,0,0,0) x3 − 3
(0,0,0,b) (b,0,0,a) (b,0,0,0) 2x3 − 3
(0,0,0,b) (a,a,0,a) (a,a,0,0) x3 + x2 − 3
(0,0,0,b) (b,a,0,a) (b,a,0,0) 2x2 + 3x+ 3
(0,0,0,b) (a,b,0,a) (a,b,0,0) x2 + 3x+ 3
(0,0,0,b) (b,b,0,a) (b,b,0,0) 2x3 + 2x2 − 3
(0,0,0,b) (a,0,a,a) (a,0,a,0) x3 + x− 3
(0,0,0,b) (b,0,a,a) (b,0,a,0) 2x2 + 2x+ 3
(0,0,0,b) (a,a,a,a) (a,a,a,0) x2 + 2x+ 3
(0,0,0,b) (b,a,a,a) (b,a,a,0) 2x3 + x2 + x− 3

Table 8. Reconstructed basis in S(4)
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2a 2b a+ b base

(0,0,0,b) (a,b,a,a) (a,b,a,0) x3 + 2x2 + x− 3
(0,0,0,b) (b,b,a,a) (b,b,a,0) 2x3 + 2x2 + x− 3
(0,0,0,b) (a,0,b,a) (a,0,b,0) x2 + x+ 3
(0,0,0,b) (b,0,b,a) (b,0,b,0) 2x3 + 2x− 3
(0,0,0,b) (a,a,b,a) (a,a,b,0) x3 + x2 + 2x− 3
(0,0,0,b) (b,a,b,a) (b,a,b,0) 2x3 + x2 + 2x− 3
(0,0,0,b) (a,b,b,a) (a,b,b,0) x3 + 2x2 + 2x− 3
(0,0,0,b) (b,b,b,a) (b,b,b,0) 2x3 + 2x2 + 2x− 3
(0,0,a,b) (a,0,0,a) (a,0,a,0) x2 + x+ 3
(0,0,a,b) (b,0,0,a) (b,0,a,0) x3 − x2 − x− 3
(0,0,a,b) (a,a,0,a) (a,a,a,0) x3 + x2 + 2x− 3
(0,0,a,b) (b,a,0,a) (b,a,a,0) x4 − 2x3 − x2 − 2x+ 3
(0,0,a,b) (a,b,0,a) (a,b,a,0) 2x2 + 2x− 3
(0,0,a,b) (b,b,0,a) (b,b,a,0) x4 − x3 − 2x2 − 2x+ 3
(0,0,a,b) (a,0,a,a) (a,a,b,0) x3 + 3x− 3
(0,0,a,b) (b,0,a,a) (b,a,b,0) x4 − 2x3 − 3x+ 3
(0,0,b,b) (a,0,0,a) (a,0,b,0) x3 + 2x2 + 2x+ 3
(0,0,b,b) (b,0,0,a) (b,0,b,0) 2x2 + 2x+ 3
(0,0,b,b) (a,a,0,a) (a,a,b,0) x4 + 2x3 + x2 + x− 3
(0,0,b,b) (b,a,0,a) (b,a,b,0) 3x3 + x2 + x− 3
(0,0,b,b) (a,b,0,a) (a,b,b,0) x4 + x3 + 2x2 + x− 3
(0,0,b,b) (b,b,0,a) (b,b,b,0) 2x3 + 2x2 + x− 3
(0,a,0,b) (a,0,0,a) (a,a,0,0) x3 + 3x+ 3
(0,a,0,b) (b,0,0,a) (b,a,0,0) x4 + x3 − x2 − 3x− 3
(0,a,0,b) (a,0,a,a) (a,a,a,0) x3 + 2x2 + x− 3
(0,a,0,b) (b,0,a,a) (b,a,a,0) x5 − 2x3 − 2x2 − x+ 3
(0,a,0,b) (a,0,b,a) (a,a,b,0) 2x2 + 2x− 3
(0,a,0,b) (b,0,b,a) (b,a,b,0) x5 − x3 − 2x2 − 2x+ 3
(0,b,0,b) (a,0,0,a) (a,b,0,0) x4 + x3 + 2x2 + 3x+ 3
(0,b,0,b) (b,0,0,a) (b,b,0,0) 2x2 + 3x+ 3
(0,b,0,b) (a,0,a,a) (a,b,a,0) x5 + 2x3 + x2 + x− 3
(0,b,0,b) (b,0,a,a) (b,b,a,0) 3x3 + x2 + x− 3
(0,b,0,b) (a,0,b,a) (a,b,b,0) x5 + x3 + x2 + 2x− 3
(0,b,0,b) (b,0,b,a) (b,b,b,0) 2x3 + x2 + 2x− 3
(0,a,a,b) (a,0,0,a) (a,a,a,0) x3 + 2x2 + 2x− 3
(0,a,a,b) (b,0,0,a) (b,a,a,0) x5 + x4 − 2x3 − 2x2 − 2x+ 3
(0,b,a,b) (a,0,0,a) (a,b,a,0) x5 + x3 + x2 + 2x− 3
(0,b,a,b) (b,0,0,a) (b,b,a,0) x4 − 2x3 − x2 − 2x+ 3
(0,a,b,b) (a,0,0,a) (a,a,b,0) x4 + x3 + 2x2 + x− 3
(0,a,b,b) (b,0,0,a) (b,a,b,0) x5 − 2x3 − 2x2 − x+ 3
(0,b,b,b) (a,0,0,a) (a,b,b,0) x5 + x4 + x3 + x2 + x− 3
(0,b,b,b) (b,0,0,a) (b,b,b,0) 2x3 + x2 + x− 3

Table 9. Reconstructed basis in S(4)
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